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Abstract. Two relaxation schemes, a probabilistic and a dictionary-based one, applied to edge
detection, are described. The problem of edge detection is defined using a statistical approach. The
solution, in terms of statistical decision theory, leads to a test among hypotheses of configurations of sets
of four pixels (quadriplets). The relaxation schemes are also developed using the quadriplets as labelling
objects. The initial probabilities for the label set of each object are sinthesized from the values obtained
in the statistical tests. The interaction neighbourhood adopted for the two methods is the
4-neighbourhood. The iterative label probability updating is performed using a classical heuristic
procedure in the two schemes. Tests using noisy synthetic and real images are presented. An
experimental analysis of convergence to a consistent and non-ambiguous labelling and speed of
convergence is performed for the two schemes and the results are compared. A change in the dictionary
according to a modification in the definiton of consistency is proposed and the resulting scheme is tested

and compared with the two other ones.

1. Introduction

The classification of the pixels in a scene as objects of
the type edge or non-edge is useful in a variety of
applications. It is a fundamental step for the image
understanding task, where it is necessary to identify the
objects that are contained in the image.

Several edge detection techniques have been
proposed in the literature. For a survey of the main
methods, the reader may consult [Lim, 1990] or
[Gonzalez and Woods, 1992].

Two major problems faced by edge detectors are:
a) the inevitable presence of noise in the image and b)
the need to incorporate context in order to obtain
meaningful results.

In this paper an attempt to overcome these two
problems is made. First, by formulating the local edge
detection problem as a statistical hypothesis testing
problem and modifying a method that has been
proposed by [Mascarenhas and Prado, 1980]; second,
by using two relaxation techniques, one with a
probabilistic formulation [Kittler, 1987] and the other

based on the use of a dictionary [Hancock and Kittler,
1990], to incorporate spatial context in the local
technique.

2. Review of the Local Edge Detection Method

The method that was used as a basis for the local edge
detector was derived through a bayesian formulation of
a statistical hypothesis testing problem [Mascarenhas
and Prado, 1980], by taking explicitly into
consideration the randomness of signal and noise.

A two-dimensional autoregressive model was
adopted for the signal, according to the following
expression:

sk+L1+1) = p.sk+1,1) + po.sk,l+1) -

-prpaskD + [(pD(1pD) UKD (1)

In this model, the random variables are supposed
to have null means; p, (p,) is the correlation
coefficient between non-noisy pixels s(k,l) on the
horizontal (vertical) direction; and { Uk} is a set of
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noncorrelated gaussian random variables, with the
same variance as {s(k+1,+1)}. The same model was
used for the additive, independent noise.

This model leads to a separable structure of the
covariance matrices for the processes, in terms of
Kronecker products of the covariance matrices on the
horizontal and vertical directions.

The edge detection problem is proposed in the
following terms: having observed a set of four noisy
pixels v(k1), v(kl+1), v(k+1), v(k+1,1+1), where
vk = sk, + n(k,]) (i. e., noisy signal = signal +
noise), we want to take a decision about the signal
without noise.

The edge characterization is based on a set of
hypotheses for decision about a non-noisy quadriplet
(set of four pixels as in the previous paragraph), each
one associated with a particular edge type, besides the
non-edge decision.

The original work of [Mascarenhas and Prado,
1980] adopted a set of seven hypotheses, associated to
edges that characterized the direction but not the sense
of the contour. In order to obtain a refinement on the
labelling, aiming at well defined contours, it is
necessary to modify the original formulation, taking
into account the sense of the edges. This leads to a set
of thirteen hypotheses. The hypotheses are composite
(each one of them involves a region in the space of the
signal), and overlapping, since a given set of non-noisy
pixels can satisfy more than one hypothesis constraint.

More specifically, Figure 1 below describes the
set of four pixels (quadriplets) used as a basis for the
model definition. Figure 2 displays the edge of the
first type and its definition. Figure 3 shows the
remaining eleven types of edges, as well as the
non-edge configuration. Their definitions are
analogous.

sk,)) ® - - - ® s(kl+1)

skk+1,]) @ - - - @ s(k+1,1+1)

Figure 1: Quadriplet used as basis for the model

definition.
.

o @
s(k,D-[sk, 1+ D) +s(k+1,D+sk+1,1+1)] /32 A

Figure 2: Edge of the first type and its definition.
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Figure 3: The other eleven types of edge and the
non-edge configuration.
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The non-negative parameter A allows to take into
consideration psychophysical considerations, adjusting
the result to a visual judgement.

The formulated local edge detection problem
consists in taking a decision about the non-noisy signal
s(k,]), according to one out of the thirteen hypotheses,
from the observation of a set of four pixels v(kl), as
shown in figure 4.

vkl ® - - - ‘ vik,1+1)

vktlD) @ - - - @ v(k+11+1)

v(k,]) = s(k]) + n(k,D)
Figure 4: Observed quadriplet for local edge detection.

According to the bayesian approach, the optimal
local decision rule is the one that minimizes the
average risk.

The average risk for a decision v, is given by:

R(y;) = [ dv[sds C(s.y)f(vIs)a(s) @)

In this equation, o(s) defines the probability
density function of the nonnoisy signal; f(vls) gives the
conditional probability density function of the noisy
signal given the nonnoisy signal. C(s.y) is the cost
function associated with a signal value s and a decision
y,. Observe that this optimal solution depends on the
choice of the cost function C(s,y,), as it is usual in
Bayesian formulations.

This average risk is minimized by selecting the
decision Y that corresponds to the minimal inner
integral, given by:

Aiv) = [ ,C(s.v:).0(s)£(v]s) ds A3)

In order to circumvent computational difficulties,
the original work of [Mascarenhas and Prado, 1980]
involved a redefinition of the problem, with
preliminary decisions between two non-overlapping
hypotheses, by means of likelihood ratios of the type:

Il |zA°(s)f(VIs)ds . C01=Coo

h |<Ao(s)f(v|s)ds : Cy0-Ciy @
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The same technique was also applied in this work,
but, instead of only two, we now have three
hypotheses, because the sense of the edge is taken into
account. Therefore, the modified testes involve three
quantities:

A_1(v) = C_i 1 I i(DHC 01 Jo(W)+C 1111 ()

Ao(v) =C10.lLi(WHCo0.Jo(M+C 1 oI1i(v)  (5)

A1(v) = C 1 Iy (WHC o 1 Lo(W)+C 1 111(V)
where:

Lw= [ o(s)£(vls).ds

O%

Io(v) = j o(s).£f(vls).ds ©)
[ T<a
I,.v)= L o(s).f(vls).ds

+ G, represents the cost of taking a decision j when
the correct hypothesis is i.

* A, A and A are the risks associated with each of
the hypotheses in the individual tests.

* J)s-a-li 1ca@nd [ ), denote the integrals over the

domain of definition of hypotheses -1, 0 and 1,
respectively, in the individual tests.

Two further simplifications are necessary in order
to obtain a computationally feasible problem: 1) a
reduction in the number of observed variables v(k,])
from four to two; 2) an approximation on the integrals
computation by performing two dimensional integrals,
instead of four dimensional integrals. Under the
gaussian assumption, these integrals are performed by
computing error functions and Gauss-Hermite
quadrature.

In order to apply the relaxation schemes, it is
necessary to derive initial probabilities that are
associated with each hypothesis. These probabilities
are obtained from the risks given by equations (5) and
(6) through the following heuristic procedure. First,
the risk for each hypothesis is inverted:

Bi=1.i=-10.1 )
Then, in order to normalize the results of the six tests

(each one involving three hypotheses), the following
transformations were performed:

B_
BB, =32
BBO=‘;—‘0’=1 @®)
BB, =3

Finally, the initial probabilities for the iterative
relaxation procedures were computed by dividing the
previous values by the sum of the thirteen values,
corresponding to the thirteen hypotheses.

3. Relaxation Labelling Techniques

Once the local edge detection is completed, one can
start to use the spatial contextual information provided

by the adjacent quadriplets. Two methods to
incorporate this information have been used:
probabilistic and dictionary based relaxation labelling
techniques.

3.1. Probabilistic Relaxation Labelling Techniques

The sets of objects that we will be dealing with will be
the quadriplets previously defined.  The labels
associated with each quadriplet will be those defined in
the previous section.

The compatibility between objects will be dictated
by two rules. The first one determines that the contour
derived from the local edges should be continuous (it
deals only with direction of edges). The second one
imposes that the sense of the edges should not be
incompatible.

In our case these rules will be applied to objects in
a 4-neighbourhood (center, north, south, east and
west).  Furthermore, the probabilistic formulation
avoids combinatorial problems by dealing with only
pairs of objects.

The iterative procedure that has been proposed by

[Kittler, 1987] is formulated by the following
equations: P
Pu+l(60=W0i) == (80=w0i)-q"(09=w¢;) ©)

X P 00=w0,).q"(Bo=wor

v=l

0=W || n
q"(Bo=wo:) = H B el pee) (10)
=1

The iterative process starts with the probabilities
given by the labelling performed by the local edge
detection process. The a priori probabilities P, =
W), 1 = 1,....13 for the center quadriplet are assumed
to be equal in such a way that no configuration is
favoured. The support functions q'®, = wy), i =
1,....13 convey the contextual information for each
labelling of the center quadriplet and it is expressed in
terms of the conditional probabilities P(6, = w «0)
involving only pairs of quadriplets. An example of a
matrix C of conditional probabilities P(6, = w «l0) = ¢,
is given below for the left neighbour of the central
quadriplet.
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[(too0tid tooooiy ]
Looiit tooooiy
ro03 it tooooy
00000 003000
00000 0300 ;00
00;000 0,00 ;00

Cw=| 020000 00212000 (11)
lopids Iovoufl
y003 337 7000073
00000 0012000
002000 0300300
toolid tooooiy
100344 tooo005]

3.2. Dictionary-Based Relaxation Techniques

The highly structured characteristics of the contextual
edge detection problem impose severe restrictions on
the type of compatibility between neighbour labellings
allowed. This is a strong point in favour of
dictionary-based relaxation techniques [Hancock and
Kittler, 1990]. For example, by adopting a
4-neighbourhood, among the 13° possibilities, only a
relatively small number (4743) of configurations are
allowed, from the point of view of consistent contour
labelling.

As compared with probabilistic relaxation, this
method has the advantage of simultaneously
considering the 5 quadriplets of a 4-neighbourhood and
the central quadriplet for specifying the allowed
configurations, instead of only pairs of quadriplets with
probabilistic relaxation. However, an increase on the
computational effort may be required at each iteration,
due to the larger number of configurations (4743
versus 676 in our case).

The updating scheme, that starts with the local
edge detection labelling probabilities, is given by
equation (9), as in the previous case. The support
function is expressed as

Sra _Zo(eo=W0i) P0,) i
q"(Bo=wo)= Z [lgoP(Tl) P(Ay(Bo=w¢y) (12)
In this equation, P(A*(6,=w,)) represents the

probability associated with the k™ entry of the
dictionary for central labelling 6,=w,,. It is reasonable
to assume that this probability should be given by the
inverse of Z(0,=w,;) (the number of entries for 6,=w,).
It was also assumed that the a priori probabilities P(6))
for each quadriplet labelling on the 4-neighbourhood
denoted by I, should be equal . P*(6), 1in I, denotes
the previous labelling probabilities of the
configurations on the 4-neghbourhood that occur in the
current entry of the dictionary.
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4. Experimental Results

The computational implementation was performed
using C language on a network of Sun workstations,
running under the SunOS version 4.1.3 operating
system and the OpenWindows version 3.0 graphical
interface. In order to visualize the images the SAO
application  program  from the  Smithsonian
Astrophysical Observatory was used. Image
formatting was done through the Khoros program,
from the University of New Mexico.

The matrix Co of the costs defined in (5) was
selected in the form:

Ciaa Coa Cia 011

Co= C-10 Co() Cl() =l K 0K (13)
Cai Co1 Ciy 110

with K>1. The reason for this is the fact that the

non-edge decision has to be discouraged, since, with
the reformulation of the statistical detection problem in
terms of non-overlapping hypotheses, the non-edge
hypothesis was favoured [Alves, 1993].

The computation of the integrals I (v), I(v) and
I,(v) was performed through a previous construction of
a table look up to reduce the effort during execution of
the edge detection program.

The mapping from the quadriplets classification to
the pixels is done by superposition, as explained by the
following. Each pixel is labelled as edge or non-edge.
In a quadriplet, the pixels that are labelled as edges are
the ones to the left of the edge of the quadriplet,
according to its sense. Since each pixel can belong to
up to four quadriplets simultaneously, the pixel will
have four classifications. It was assumed that the
classification will be done by favouring the edge label,
that is, if one or more of the classifications indicate
edge, this hypothesis will be adopted.

Several tests using synthetic and real images were
performed [Alves,1993]. In this work we will present
two examples, involving a synthetic and a real image.

Figures 5 and 6 show the original and noisy
synthetic images respectively (the variance of the
additive gaussian noise is four). Figure 7 displays the
result of the local edge detector. One can observe gaps
on the contour of the circle as well as several isolated
points and segments. In figures 8 and 9 we find the
results of the application of the probabilistic and the
dictionary-based relaxation, respectively, after 13
iterations. A slightly better result was obtained with
the last method, at the price of an increased
computational cost. Table 1 below summarizes the
data for these tests.
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Image size 100x100
Signal to noise ratio 5.12
Hardware SparcStation IPX
Network status Single user
Vert. and hor. correl. 0.96

coef. (signal)

Vert. and hor. correl. 0

coef. (noise)

A 7

K 2.0x10°
CPU time - table 383.7s
construction

CPU time - classification 3.1s
Probabilistic relaxation  28.6 s
1* iteration

Dictionary-based relax.  590.7 s
1* iteration

Table 1: Data for synthetic image experiment.

Figure 8: Probabilistic relaxation over synthetic image
after 13 iterations.

Figure 5: Original synthetic image.

Figure 9: Dictionary-based relaxation over synthetic
Figure 6: Noisy sinthetic image. image after 13 iterations.
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Figure 10 displays the original real image. It was
acquired by an airborne synthetic aperture radar (SAR)
over Tapaj6és area, Brazil, on April 1992 (SAREX
Mission). The theoretical and practical number of
looks are seven and four, respectively, and, under
these conditions, the resulting speckle noise is
approximately gaussian, although signal-dependent.
Figures 11, 12 and 13 show the results of the local
edge detection, the probabilistic and the
dictionary-based relaxation, respectively, after 15
iterations. Table 2 below summarizes the data for this
experiment.

Image size 250x250

Signal to noise ratio 5.95

Hardware Sparc 10

Network status Single user

Vert. and hor. correl. 0.96

coef. (signal)

Vert. and hor. correl. 0

coef. (noise)

A 7

K - diagonal tests 1.0x10°
- vert. and hor. tests  5.0x10°

CPU time - table 121.6s

construction

CPU time - classification 6.7 s

Probabilistic relaxation ~ 67.3 s

1% iteration

Dictionary-based relax.  1536.4 s

1* iteration

Table 2: Data for real image experiment

Figure 10: Original real image.
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Figure 12: Probabilistic relaxation over real image
after 15 iterations.

Figure 13: Dictionary-based relaxation over real image
after 15 iterations.



The visual results with both relaxation schemes
are similar but an elimination of isolated pixels and
two pixel size segments can be obtained through a
modification of the dictionary. The result is shown in
figure 14 (CPU time for 1* iteration = 1409.3 s).

Figure 14: Modified dictionary-based relaxation over
real image after 15 iterations.

5. Concluding Remarks

Although both iterative relaxation procedures are not
guaranteed to converge, no deterioration on the
labelling was observed with the increase in the number
of iterations. On the other hand, both procedures
displayed a tendency to achieve local consistency, but
sometimes at the price of global inconsistency. This
was observed, for example, in the case of gaps on the
circumference, where the contextual information
stabilized the decision at the non-edge label, before the
global information of edge conveyed from both sides
could be reached at that point.

As far as a comparison between both relaxation
methods, one could state that the convergence speed
per iteration is roughly the same, but the CPU time per
iteration is much longer for the dictionary-based
relaxation for the size of the dictionary. Yet, this
method gives slightly better results under low
signal-to-noise ratio and is able to be easily modified
to emphasize or remove the support to certain spatial
edge configurations.
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