LIBTEX - A Software Toolkit for Texture Synthesis
in Computer-Generated Images

MARCELO WALTER

Instituto de Informatica - UFRGS
Porto Alegre - Brasil

Department of Computer Science
University of British Columbia
Vancouver, BC, Canada, V6T 1Z2

marcelow@cs.ubc.ca

Abstract.

The use of texture techniques in computer graphics may significantly improve the

realism of the computer generated images. At the same time texture techniques are not able to
implement in a straightforward way. Here we present an application independent library of C
written routines named LIBTEX which allows the inclusion of texture effects in any photorealistic
rendering system. The available functions and the architecture of the library are described as well
as some examples stressing the flexibility and easiness of use of LIBTEX.

1 Introduction

A major research goal in computer graphics is the
improvement of realism in computer-generated pic-
tures. The final goal is photorealism, that means, a
computer-generated picture that depicts the world as
a photograph. Many advances in this area have been
made possible by adding in the computer-generated
images the visual information known as texture.

Texture Mapping [Catmull (1974)][Catmull (19-
75)], Bump Mapping [Blinn (1978)] and Solid Tex-
ture [Peachey (1985)][Perlin (1985)] are well known
texture techniques (for a comprehensive survey on
texture literature see [Walter (1992)]).

Despite the research advancements and the im-
portance of texture to improve realism, the use of
texture techniques is not as general as one could ex-
pect. The main reason is that the texture algorithms
are usually very specific and are not able to imple-
ment in a straightforward way. In some classes of
applications the implementation cost of texture tech-
niques is too high when compared to the desired re-
alism and then this realism is neglected. As another
evidence, most rendering educational systems do not
implement texture synthesis.

In this way we have designed and implemented a
library of application-independent texture functions
named LIBTEX, addressing some of the problems
above mentioned. LIBTEX provides a set of func-
tions to add the texture effects in computer synthe-
sized images. These functions can be seen as a soft-
ware toolkit which allows the inclusion of texture
effects in any application where the final goal is pho-

comunicagoes

torealism. The main goal in the design of this library
was to construct a flexible and easy-to-use group of
C functions that would perform all of the necessary
tasks for adding texture effects in computer gener-
ated pictures.

Texture techniques are well suited to be man-
aged as a special group inside an integrated sys-
tem for image synthesis. This was first proposed
in [Carey-Greenberg (1985)], where a series of tex-
ture mapping techniques were added to the testbed
imaging system existing at the Program of Com-
puter Graphics at Cornell University. LIBTEX was
strongly inspired on that idea, but it has a signifi-
cant improvement which is its application indepen-
dent approach.

This paper is organized as follows: the next sec-
tion describes LIBTEX more carefully, one example
explaining its use is then presented and finally some
conclusions are gived.

2 LIBTEX Description
2.1 LIBTEX Architecture

LIBTEX (LIBrary TEXture) is a set of application-
independent routines which -provides texture effects
for computer-generated images. The available tech-
niques are texture mapping [Catmull (1974)], bump
mapping [Blinn (1978)] and some solid texture ef-
fects [Peachey (1985)][Perlin (1985)]. Together, these
three techniques address most of the needs in a pho-
torealistic rendering system. Details of these tech-
niques can be found in [Walter (1991)] and in the
above cited papers. The implemented routines are

SIBGRAPI V (1992) 5-8

6

organized into three general categories which corre-
spond to the three texture techniques above cited.

The use of the routines is occurrence-oriented,
that means, the user has to define occurrences where
some parameters are set. A different occurrence is
needed for each different desired texture effect. The
parameters inside one occurrence define the way it
will be used. For example, in a texture mapping oc-
currence, the name of the texture map is a manda-
tory parameter which defines where the texture map-
ping algorithm will look for the texture information.

After defining an occurrence, the user receives
an occurrence identifier number which must be used
inside the routines calling. The occurrence identifier
number is the link between the occurrence parame-
ters and the techniques themselves. The general flow
of execution for the first two group of routines - tex-
ture mapping and bump mapping - is illustrated on
figure 1.

Texture Map
OBJECT
v 1
5 p
geomestric
\
uv v [
u
|]
uyv
Texture Texture Texture
iy luati sampling
definition occurrence "
identifier
number S i
LIBTEX color andlor perturbed normal
Shading
Model

rgb color

Figure 1: Texture Evaluation (texture mapping and
bump mapping) inside LIBTEX

First the user shall define the texture occur-
rence, receiving the occurrence identifier. Then the
texture evaluation procedure will take place. The
Tezture Evaluation Module performs the specific tex-
ture algorithm for each texture type. This module
receives the parametric coordinates of the location
of the point to be rendered, the occurrence identifier
number and general geometric information necessary
for the texture evaluation. For example, the bump
mapping function requires the unperturbed normal
in order to generate the perturbed normal.

The parametric coordinates are then sent to the
Texture Sampling Module. The sampling process is
responsible for retrieving the texture value at a given

SIBGRAPI V, novembro de 1992

M. WALTER

%,v location in the texture map. Thus, the basic re-
trieve operation is a point sampling. This texture
value has different meanings according to the spe-
cific texture algorithm. For texture mapping this
value is a pointer to a rgh color in a color texture
file. For bump mapping this value express the sur-
face displacement along the normal vector direction.
Different maps for each different desired effect will
be set by the user when the occurrence is opened.

The final result from the Tezture Evaluation Mod-
ule can be the rgb color for the point being rendered
(i.e., a texture color) and/or the perturbed normal.
This information can finally be usevd in a shading
model when the final rgb value for the pixel will be
find.

It is assumed that the objects being rendered
are represented in parametric coordinates. There is
no automatic transformation from geometric object
space (x,y,z) into the parametric space (u,v) of the
object. There is a mapping from the parametric ob-
Jject space into the parametric texture space.

The last group of routines perform the solid tex-
ture functions. The evaluation flow is slightly differ-
ent from the previous described. Here the object’s
geometric world coordinates are used directly as an
input information to the evaluation module as illus-
trated on figure 2.

Object l

xyz

Texture Evaluation
(Noise,Wood,
Marble, Bozo)

LIBTEX
Surface properties (color)

Shading Model

rgb color

Figure 2: Solid Texture Evaluation inside LIBTEX

The evaluation module then perform the spe-
cific solid texture technique desired by the user. The
available solid texture functions are noise as cited
in [Perlin (1985)], bozo, wood and marble effects,
which are functionally composed from the basic noise
function. The produced information - rgb color for
the point being rendered - can be used in a shading
model to find the final rgb value for the pixel.

One should bear in mind the modular charac-
teristic of LIBTEX, which is supposed to be used

comunicagées

LIBTEX: A SOFTWARE TOOLKIT FOR TEXTURE SYNTHESIS 7

together with other functional processes that form
the visualization pipeline in a photorealistic render-
ing system.

2.2 Functions

The available texture techniques are implemented as
a group of functions which perform the texture algo-
rithms. These functions can be functionally catego-
rized into three general categories: initialization rou-
tines, evaluation routines and finalization routines.

The Initialization Routines initialize any nec-
essary texture information and assign a occurrence
identification number for later use. The initializa-
tion routines search for the defined texture maps
and open the texture occurrence. There are four ini-
tialization routines: bumpopen, which opens a bump
mapping occurrence; initializenoise, which ini-
tializes the three-dimensional array that defines noise;
textopen, which opens a user-defined texture map-
ping occurrence; textopenRGB, which opens a rgb
texture mapping occurrence.

The distinction between textopen and text-
openRGB comes from the distinction between the two
possibilities of texture maps to be used with the tex-
ture technique. The textopen function uses a user
defined terture map which is a texture map where
the texture values are set up by the user in a indi-
rect way. For example, if it is necessary a red and
white chessboard pattern, the user will define two
files as illustrated on figure 3.

0808

00001111

00001111 255 255 255
00001111 255 0 0
00001111 0 0 o
11110000 ...
11110000

11110000 0 0 0
11110000
chessboard.map file redwhite.color file

Figure 3: Texture Map file and Color file

The chessboard.map file contains the pointers to
a color file, in this case the redwhite.color file. The
link between the map and the associated colors is es-
tablished when the occurrence is opened. Here the
“zeros” from the chessboard.map file are pointers to
the first entry into the redwhite. colorfile, which is the
white color in rgb coordinates (r=255;g=255;b=255).
The “ones” from the chessboard.map file are pointers
to the second entry into the redwhite. color file, which
is the red color in rgb coordinates (r=255;g=0;b=0).
With this indirection one can easily change the color

comunicagées

of the chessboard pattern. The numbers in the tex-
ture map may vary from 0 to 255, which allows user
defined maps of 256 different colors. All color files
have a lenght of 768 bytes, which correspond to the
256 possible rgb colors for a user defined texture
map.

On the other hand, the textopenRGB function
uses a not user defined tezture map which is a tex-
ture map whose texture information comes from a
scanned picture, a digitalized image or even a priop
rgb synthesized image. In this case the user has no
control over the final texture effect.

The initializenoise function defines the noise
values in the integer coordinates of the solid texture
cube. For the non-integer coordinates the values of
noise are obtained by cubic interpolation.

The Evaluation Routines perform the specific
texture algorithm for each texture type. There are
seven evaluation routines: bozo, which access the
1so-values of noise and sets a specific color for each
region which delimits the iso-values; bumpmap, which
performs the bump mapping technique; map, which
performs the texture mapping technique for user de-
fined texture maps;mapRGB, which performs the tex-
ture mapping technique for not user defined texture
maps; marble, which performs marble-like color pat-
terns; noise, as defined in [Perlin (1985)]; wood,
which performs wood-like grain pattern.

For the bozo, marble, noise and wood func-
tions it is necesssary the prior calling of the initi-
alizenoise function, since these functions made use
of the noise array which is initialized by the initi-
alizenoise function.

Besides the file’s name where the texture map is
defined, the map and mapRGB functions need as an
input parameter the number of times the texture
map will be replicated over the object’s surface. The
bumpmap function needs the partial derivatives of the
parametric function which describes the object being
rendered. The user can controll as well the numbef
of times the bump map will be replicated over the
object’s surface.

The Finalization Routines close the previous o-
pened texture occurrences and atualize the current
occurrence identification number. This is done since
there is a limit on the number of possible different
texture occurrences. A full explanation of LIBTEX
functions can be found in [Walter (1992a)].

2.3 Implementation Notes

The LIBTEX memory management is being done
static and that is the reason why there is a maximum
number of occurrences. Also, the different maps are
not being read into the memory since the total size

SIBGRAPI V, novembro de 1992

8

of the different possible maps at a given time could
easily overflow the memory space. Thus, the time re-
quired for the texture evaluation is directed related
to this constraint.

The different maps - bump map, user defined
texture map - and the color files are all written as a
colection of unsigned char values. Each map has a
header which express the map number of rows and
lines. On figure 3, for example, the chessboard.map
file has a header of four bytes expressing that the file
has 8 rows and 8 lines.

The LIBTEX routines are written in standard
C language and have been used within Sun worksta-
tions environment. The source code shall be linked
together with the application program which is sup-
posed to use the LIBTEX routines.

3 Conclusions

We have presented an application independent group
of routines named LIBTEX which allows, in a easy
way, the inclusion of texture effects in any photoreal-
istic rendering system. The use of LIBTEX gives an
easy and fast access to a wide range of different tex-
ture techniques: texture mapping, bump mapping
and some solid texture effects.

Some experiences with the use of LIBTEX have
demonstrated that the time required to add a tex-
ture effect may vary from some minutes to a few
hours, depending on the basic rendering technique,
on the shape complexity of the objects and on the
complexity of the scene. When the objects have an
easy parametrization like a sphere for example, the
texture effects can be added in a matter of minutes.

LIBTEX is easily expandible due to its group
of routines characteristic. New texture techniques
can be included as well as improvements on the al-
ready implemented routines can be made effective.
In the near future we plan to overcome the following
restrictions of LIBTEX:

o the necessity that the objects be represented in
parametric coordinates,i.e, there is not an auto-
matic mapping from the geometric object space
to the parametric texture space;

e the point sampling. Sometimes this kind of sam-
pling can result in high aliasing artifacts which
are undesirable;

e the static memory allocation routines, i.e., the
number of different occurrences is limited and
the different maps are not read into memory.

SIBGRAPI V, novembro de 1992

M. WALTER

4 Acknowledgements

This work was developed while the author was as
an associated researcher at the Graduate Program
on Computer Science at “Universidade Federal do
Rio Grande do Sul” in Porto Alegre - Brazil . The
support of CNPq is gratefully acknowledged. The
author would like to express his thanks also to his
adviser at UFRGS, Prof. Anatdlio Laschuk.

5 References

[Blinn (1978)] BLINN, J. F. Simulation of Wrinkled
Surfaces. Computer Graphics, New York, v.12,
n.3, p.286-292, Aug. 1978.

[Carey-Greenberg (1985)] CAREY, R.J. & GREEN-
BERG, D.P. Textures for Realistic Image Synthe-
sis. Computer & Graphics, Oxford, v.9, n.2,
p.125-138, Apr. 1985.

[Catmull (1974)] CATMULL, Edwin E. A Subdi-
vision Algorithm for Computer Display of
Curved Surfaces. Utah:Department of Com-
puter Science, University of Utah, 1974. (PhD dis-
sertation, Technical Report UTEC-CSc-74-133).

[Catmull (1975)) CATMULL, E.E. Computer Dis-
play of Curved Surfaces. In: CONFERENCE ON
COMPUTER GRAPHICS, PATTERN RECOG-
NITION and DATA STRUCTURES, May 14-16,
1975, Los Angeles. Proceedings...New York:
IEEE, 1975. p.11-17.

[Peachey (1985)] PEACHEY, Darwyn R. Solid Tex-
turing of Complex Surfaces. Computer Graph-
ics, New York, v.19, n.3, p.279-286, July 1985.

[Perlin (1985)] PERLIN, K. An Image Synthesizer.
Computer Graphics, New York, v.19,n.3, p.287-
296, July 1985.

[Walter (1991)] WALTER, Marcelo. A Obtencao
de Texturas na Sintese de Imagens Realis-
ticas num Ambiente Limitado. Porto Ale-
gre:CPGCC da UFRGS, Jan. 1991. (M.Sc. The-
sis)

[Walter (1992)] WALTER, Marcelo. A Cross In-
dexed Guide to Texture Literature. Porto
Alegre:CPGCC da UFRGS, Jun. 1992. (Research
Report)

[Walter (1992a)] WALTER, Marcelo. LIBTEX
- Uma Biblioteca para Sintese de Texturas
em Imagens de Computagao Gréfica. Porto
Alegre:CPGCC da UFRGS, July 1992. (Research
Report)

comunicagées

