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Fig. 1. An image of the Copacabana sidewalk modeled with the proposed technique

Abstract—In this paper, we propose a method to model the
Copacabana beach sidewalk pavement, and Portuguese pave-
ments in general. Given a black and white source image, the
proposed method outputs the geometry of all individual stones
that compose the pavement. Different from previous mosaic
techniques, we focus on capturing the particularities of such
pavements: the stones (tiles) must completely follow the edges,
being mostly represented by irregular quadrilaterals with no
particular orientation. A set of experiments demonstrates the
effectiveness and stability of our proposal.
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I. INTRODUCTION

The Copacabana beach sidewalk, in Rio de Janeiro, repre-
sents a famous use of a traditional pavement style known as
Portuguese pavement. This paving technique is used for many
pedestrian areas in Portugal and in the old Portuguese colonies,
including Brazil. The pavement is created by setting black
and white stones, in general, in an harmonic way revealing
distinctive tiled patterns. The Copacabana beach sidewalk,
in its current form, was designed by Roberto Burle Marx,
a famous Brazilian landscape architect. The pattern exhibits
large curves resembling the waves of the sea, as shown in
Fig. 2.

Our purpose is to devise an unsupervised computational
method to model the Portuguese pavement as presented in
the Copacabana sidewalk. Portuguese pavement is in fact a

kind of Opus Palladium mosaic, where tiles of irregular shapes
are used to convey images in an expressive manner. There
are several proposals in the literature for computing digital
mosaics using different strategies [1]. However, observing the
Copacabana sidewalk pavement, one can note a few distinct
features that have to be considered for our purpose:

• The stones present mostly irregular quadrilateral shapes
• The region bounds (edge features) are perfectly honored
• The stones (tiles) are placed with arbitrary orientations

except near the bounds

This paper presents a method capable of modeling Por-
tuguese pavement in an effective way. Inspired by techniques
employed in previous works [2], [3], [4], [5], [6], such as
hardware-assisted centroidal Voronoi diagram and distance
field, our method does results in mosaics with the character-
istics presented by the Copacabana beach sidewalk. Figure 1
illustrates the achieved result. This paper also demonstrates
that the presented technique can be directly applied to model
other occurrences of Portuguese pavement.

The rest of this paper is organized as follows. The next sec-
tion reviews related works. Section III describes the proposed
method in detail. Section IV presents and discusses achieved
results, and concluding remarks are drawn in Section V.
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Fig. 2. Photo of Copacabana beach sidewalk (image from Wikipedia.org)

II. RELATED WORK

Battiato et al. [1] presented a nice and comprehensive
overview of different digital mosaic techniques. They have
grouped mosaics in two types: tile mosaics, where a source
image is decomposed into tiles, and multi-picture mosaics,
where images from a database is used to cover an assigned
source image. Clearly, the Copacabana sidewalk fits in the first
group, using as the source image the black and white drawing
of waves.

Different proposals use computational geometry combined
with image processing to achieve the mosaic patterns. Hae-
berli [2] inspired many other proposals by using a Voronoi
diagram from randomly placed generating points. Voronoi
diagrams produce mosaics with tiles of variable shapes and
does not honor region bounds; on the other hand, Voronoi
diagram can be efficiently computed with the use of graphics
processing units [7]. In order to honor region bounds, Dobashi
et al.[8] integrated edge information to the Voronoi diagram
construction. They proposed an iterative procedure that tries to
minimize an error function by repositioning the center of the
polygons produced by the Voronoi. Faustino and Figueiredo
[9] used centroidal Voronoi diagram together with a density
function to adapt the size of the tiles according to features of
the source image; in their proposal, the tiles are not aligned
to the image edges.

Centroidal Voronoi diagram tends to generate regular hexa-
hedral grids. To avoid such a pattern, Hausner [3] proposed to
build centroidal Voronoi diagram with the use of a Manhattan-
like metrics. They built the diagrams with graphics hardware

acceleration by drawing square based pyramid with apex at
the seed points. Each pyramid is aligned according to a
direction field computed from the source image. In the end,
they replaced the Voronoi cells by regular square tiles; as a
result, the tiles were laid along curving square grids. Elber and
Wolberg [4] also use Manhattan distance metrics to lay rows
of square tiles aligned to feature curves of the source image.

Di Blasi and Gallo [5] have also proposed an effective
method to build artificial mosaics. From the source image,
they first extracted the guidelines, filled the distance transform
matrix, and then computed the corresponding gradient matrix,
used to guide tile placement, leading to realistic results.
Fritzsche et al. [6] have opted to implement an interactive
tool in order to better achieve artistic mosaics, and employ
centroidal Voronoi diagram with Lloyd’s method. More re-
cently, Zhang and Yu [10] have proposed a technique to create
mosaics with irregular tiles by employing polygon tessellation.

Although expressive, none of these techniques can be di-
rectly employed to reproduce the Portuguese pavement as
found in the Copacabana sidewalk. Different from the previous
proposals, the source image in our case is rather simple; how-
ever, this simplicity cannot lead to unnatural stone placement.

Passos and Walter [11] proposed a technique to build mo-
saics on 3D surfaces with arbitrarily-shaped tiles, combining
a physically-based relaxation method with Voronoi diagram.
In order to honor region bounds, they introduced artificial
forces to repel tiles from the edges. These artificial forces
help to avoid placing tiles across region bounds but tiles do
not perfectly follow the edges. In the end, they achieved 3D
textured mosaics with variable-shaped tiles; however, the final
arrangement is not suite for our purpose; as Voronoi cells are
directly mapped to mosaic tiles, the final result tends to include
several close to regular pentagonal and hexahedral tiles.

III. PROPOSED METHOD

The proposed method to model Portuguese pavements is
also based on the construction of a centroidal Voronoi diagram
(CVD). We have also opted for using graphics hardware
acceleration to efficiently compute the diagram. In order to
ease the implementation, we decided to build the diagram
in the same resolution of the provided source image. The
number of stones, n, could be explicitly provided, but we
prefer to derive n from the image resolution. By doing that,
we ensure screen-coordinate precision for accurately extracting
the geometry of the stones.

We derive n by first choosing the average amount of pixels
that represent half of each stone side, h̄. Assuming at first each
stone as a regular square, we have:

n =
Iw Ih
(2h̄)2

(1)

where Iw and Ih represent the width and the height of the
source image, respectively. As we shall describe, the average
half side, h̄, plays an important role as a parameter throughout
the proposed method.



Once the number of stones is defined, the proposed method
performs the following procedures to model the pavement:

• Compute the corresponding distance field
• Compute the centroidal Voronoi diagram
• Extract and adjust the stone shapes

A. Distance field

The input source image is a black and white image repre-
senting the mosaic drawing. One typical image is illustrated in
Fig. 4a. The first step of our method is to compute a distance
field from the source image. The distance field will express
the distance from any point in the domain to the closest edge,
i.e., the frontier between black and white pixels. The distance
field is represented by an image of the same resolution of the
source image.

We first initialize each pixel value of the distance field image
as a huge number. We then process each corresponding source
image pixel and check if it is on an edge; if so, we assign the
distance value to the pixel. This is performed by checking the
vicinity of each given pixel. Two groups of vicinities exist:
four adjacent vertical or horizontal pixels and four adjacent
diagonal pixels. If there exists a pixel with different color in
the first vicinity group, the distance value of the current pixel
is set to 0.5; otherwise, if there exists a pixel with different
color in the second vicinity group, the distance value is set to√

2/2. If there is no pixel with different color in the vicinity,
no value is set. To fill the missing values, we apply a chamfer
distance transform using the quasi-Euclidean 3x3 chamfer type
[12]. Fig. 3 illustrates this process, and Fig. 4b shows the
corresponding computed distance field image from the source
image shown in Fig. 4a.

The distance field values will be used to evaluate the
distance of each stone to the closest edge. We also need to
compute the corresponding gradient of the distance value to
align the stones near the edges for the Voronoi computation.
The gradient value is evaluated using the Sobel operator:

gx =

 −1 0 +1
−2 0 +2
−1 0 +1

 gy =

 +1 +2 +1
0 0 0
−1 −2 −1

 (2)
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Fig. 3. Distance field computation using chamfer distance transform

(a) Source image

(b) Distance field

Fig. 4. Distance field extracted from the source image

B. Centroidal Voronoi diagram

The next step in our algorithm is the computation of the
centroidal Voronoi diagram (CVD). The final cells of the CVD
are mapped to model the stone shapes. For that reason, we have
the challenge to build the CVD in a way that the resulting cell
shapes attend, as much as possible, the requirements imposed
by the particularities of the Copacaba-sidewalk mosaic (and
usually Portuguese-pavement mosaic in general): irregular
quadrilateral shapes, honored bounds, and random orientation
where possible.

To compute the CVD, we first randomly distribute the



generating points in the domain and use the graphics hardware
to compute the diagram. The CVD results from an iterative
method. At each pass, for each resulting Voronoi cell, we
compute its center of mass and use it as the new corresponding
generating point. This method produces a stable diagram after
a few iterations.

The conventional CVD tends to result in a regular hexa-
hedral grid of cells. In order to avoid this arrangement, we
employ the same strategy as Fritzsche et al. [6]: the use of
frustums of pyramid with round corners, instead of cones, as
primitives to compute the diagram on the graphics hardware.
Each frustum of pyramid is assigned a color that encodes
the generating point identification number. In our method,
each frustum of pyramid is created based on a axis-aligned
rectangle. For each generating point, a different rectangle
is created, randomly choosing a scale factor, sx, in the x
direction as illustrated in Fig. 5.

When drawing the pyramid for the diagram construction,
in order to get cells with no particular alignment direction,
we apply a rotation along the z axis; the angle of rotation is
chosen based on a 2D Perlin noise distribution. In this way,
we tend to get cells with arbitrary orientation while preserving
alignment among adjacent cells.

The main challenge to compute the CVD using this non-
conventional metrics is to choose the initial rectangular size of
each frustum cap. If a too small size is chosen, the tendency
is that we end up with a regular CVD, because the cap is
so small that could be replaced by a single point (i.e., the
pyramid would be replaced by a cone). On the other hand,
if a too large size is chosen, we may have overlapping caps
in the first place, invalidating the diagram construction. We
have opted to use the average half stone side (see Eq. 1) as a
parameter: the cap size is set proportional to the value of h̄,
as shown in Fig. 5.

h̄
x

y

h̄ sx

(a) Pyramid cap (b) 3D pyramid

Fig. 5. Pyramid primitive for Voronoi computation

The value of h̄ is also used to make the cells of the
Voronoi diagram to naturally follow the image edges. During
the iterative procedure, after computing the center of mass
of each cell, we fetch the distance field image and check if
the point is too close to an edge. If the distance to the closest
edge is less than 1.5h̄, we compute the corresponding gradient
(Eq. 2) and moves the point along the gradient direction in
order to set it at a distance equals to h̄ to the closest edge. As
a result, all cells along the edges will have their generating

(a) Initial configuration

(b) Final configuration after 20 iterations

Fig. 6. Iterative centroidal Voronoi diagram construction

points aligned. To ensure that cells across edges meet each
other on the edges, we do not use the value from the Perlin
noise to rotate the corresponding pyramids, but instead we use
the distance-field gradient to set a rotation angle that aligns
the cells with the edges:

θ = atan2

(
gy
gx

)
− π

2
(3)

Figure 6 illustrates the iterative construction of the CVD
based on the source image shown in Fig. 4a. Note that, in the
final configuration, the cells are aligned to the image edges,



(a) Polygons from Voronoi (b) Wide angle elimination (c) Imposed separation (d) Final black and white stones

Fig. 7. Polygon extraction

present rectangular-like shapes, and are placed with random
orientation except near the edges.

C. Polygon extraction

Once the Voronoi diagram is built, we start the procedure
to extract the geometry of each stone, based on the diagram
cells. In the CVD image, each cell is identified by pixels with a
particular color, which encodes the cell identification number.
Our goal is to model the set of stones, with the corresponding
vertex coordinates.

We first process the CVD image to identify the vertices.
Given a pixel p(i,j), we access its three adjacent pixels p(i+1,j),
p(i,j+1), and p(i+1,j+1). Among these four pixels, we check
how many different colors exist: if there exist 3 or 4 different
colors, the middle point, (x, y) = (i + 1, j + 1) in world
coordinate, corresponds to a vertex. This vertex is saved and
added to the vertex list of each polygon identified by the
different colors. Note that vertices are shared among adjacent
polygons. For pixels along the border of the image, a similar
procedure is applied looking for 2 different colors among
the two adjacent pixels. The four corners of the image also
represent vertices assigned to the polygons corresponding to
the colors of the corner pixels.

Next, based on its vertices, we compute the center of mass
of each polygon and then sort the incidence to get a cyclic
counter-clockwise sequence, based on the angle of the vector
from the center of mass to each vertex (we assume cells are
star shaped). A set of extracted polygons, corresponding to the
diagram cells, is illustrated in Fig. 7a.

As can be noted, polygons from the Voronoi cells still do
not attend our requisites. Our goal is to get a tessellation
where most tiles are quadrilaterals. We then process the list of
extracted polygon performing a set of procedures to converge
the number of vertices per polygon to four, as far as possible,
without corrupting the achieved tessellation.

The first employed procedure eliminates the wide angles
of polygons. For each polygon, if we find a wide internal
angle (for instance, greater than 120o), we move the vertex
to the segment connecting the previous and the next vertices
in the vertex list of the polygon. We in fact turn the angle to
a value equals to 180o; the vertex cannot be eliminated from

the tessellation due to the adjacent polygons. The image in
Fig. 7b illustrates the change in polygon shapes.

Voronoi cells do not perfectly honor region bounds; more-
over, moving the vertices can lead to edge misalignment. In
order to ensure that the tessellation completely follows the
edges, we move, along the distance field gradient towards the
edge, all vertices whose corresponding source image color
differs from the color associated to the polygon’s center of
mass. Note that these procedures move vertices that are shared
by all adjacent polygons, avoiding overlapping.

We then consider each polygon in isolation, replicating the
shared vertices, and extracted the final list of vertex coor-
dinates. For each individual polygon, vertices associated to
wide angles are no longer considered. We also eliminate very
small edges, discarding one of its incident vertices. Finally, we
shrink the polygon by moving each of its vertices towards the
center of mass, by half of a provided grout separation value.
Note that moving the vertices towards the center of mass does
not shrink the polygons in an envelope way. This in fact is a
desired behavior, since it mimics the grout thickness variation
found on real pavements. The image in Fig. 7c illustrates the
achieved results of this procedure.

It is also important to note that, in all these procedures,
we do not allow the number of vertices of a polygon to be
reduced to a value less than four. As a final step, as illustrated
in Fig. 7d, we assign black or white color to each polygon
(stone), based on the source image color associated to the
center of mass.

IV. RESULTS

This section presents some computational experiments that
demonstrates the proposed method in action. All these experi-
ments were run setting the parameters to the following values:

• the average half stone side, h̄, is set to 4.0;
• the scale factor, sx, applied to the pyramid cap, varies

from 0.5 to 2.0;
• the number of iteration to compute the CVD is set to 20;
• the wide angle limit to eliminate the polygon vertex is

set to 120o;
The image in Fig. 8 is the achieved result from the source

image shown in Fig. 4a. Together with the image in Fig. 1,



it demonstrates that the proposed method is able to model
the Copacabana beach sidewalk with its famous waves. The
stones follow the edges with no significant misalignment. The
stones are placed with no particular orientation, except near the
edges, mimicking the arrangements we find in real Portuguese
pavements.

An important contribution of our method is its ability to
create mosaics where most tiles have irregular quadrilateral
shapes. This is achieved by first using frustums of pyramid
with rectangular caps to build the CVD and Perlin noise
to randomly set cell’s orientation without degrading adjacent
coherence. The resulting cells then undergo a set of procedures
to model the final shapes of the stones. The histogram shown
in Fig. 9 depicts the distribution of number of vertices per
polygon: the initial distribution corresponds to the configura-
tion just after converting CVD cells to polygons; the final
distribution corresponds to the configuration of the black
and white stones. As can be noted, most of the stones are
quadrilaterals.

Fig. 8. Modeled Copacabana beach sidewalk

In Fig. 10, it is shown the result from modeling a real
pavement drawing found in Lisbon. Again, one can note that
the proposed method does correctly model the stones of the
pavement.

The method can be applied to general drawings in order to
get a Portuguese-pavement mosaic style. See the flower and
the guitar drawings, and the image of the statue of Christ the
Redeemer, modeled in Fig. 11. These results illustrate how
generated mosaics honor the source image edges.

The fact that the same set of parameter values works for
a variety of different experiments demonstrates that we have
achieved one of our goals: the conception of an unsuper-
vised method for modeling Portuguese pavements. This also
demonstrates that the method is quite stable. Nevertheless, it

Fig. 9. Histogram of number of polygons: the proposed procedure produces
tessellation where the majority of polygons are quadrilaterals

Fig. 10. Lisbon sidewalk

may be desired to adjust these parameters to get different
arrangements; especially, the first two that control the sizes
and influence the shapes, respectively, of the resulting stones.
As an example, we rerun the algorithm using the source image
in Fig. 4a but fixed the scale factor (sx) to 1.0. In Fig. 12,
we compare the histogram of stone areas. As can be noted, a
constant scale factor produces more stones with similar size
(area), as expected.



(a) Flower drawing (b) Flower zoom

(c) Guitar drawing (d) Guitar zoom

(e) Statue of Christ the Redeemer (f) Statue zoom

Fig. 11. Examples of general drawings modeled as Portuguese pavements

Computing the CVD based on primitive drawing imposes
that the result accuracy is limited by the framebuffer resolu-
tion. We can use offscreen rendering buffer, but the solution
does not scale to large domains. As a consequence, the
maximum number of stones is also limited. In our experiments,
we have observed that setting the average half side, h̄, to a
value less than 3.0 degrades the shapes of the generated stones.

Fig. 12. Histogram of stone areas: a constant scale factor produces more
stones with similar size (area)

V. CONCLUSION

In this paper, we proposed a new method for mosaic model-
ing. Our goal was to mimic Portuguese pavements, especially
the Copacabana beach sidewalk pavement with its waves.
The proposed solution does attend the main particularities
of such mosaics: the stones completely follow the edges,
being mostly represented by irregular quadrilaterals with no
particular orientation. Our method has demonstrated to be
stable and has been applied to a variety of drawings.

In the current implementation, only the CVD computation
is done based on the graphics hardware. As future work, we
plan to implement the entire algorithm on the GPU and to
investigate a procedure to generate realistic procedural texture
in realtime. We also plan to investigate the rendering of
Portuguese pavements, taking into account deterioration with
time and imperfections. Another natural and straightforward
extension is to apply the proposed method to colored images.
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