
• •

•

SCRIPTS: A COMPUTER ANIMATION SYSTEM

Luiz Velhot

The Media Laboratory
Massachusetts Institute of Techology

Abstract
The problem of specification of temporal transformations for Computer Anima­

tion production is investigated. Based on this analysis, an interactive anima­
tion language is developed which supports both procedural and key-frame
animation. It is a flexible software environment for the design and prototyping
of animation programs and interfaces. The language is implemented in C within
the Unix operating system, and consists of C-like expressions, built-in func­
tions and animation constructs. There is also an escape mechanism to run Unix
commands. A small set of animation tools is also developed to exemplify the
system's utilization. These include a three dimensional model interface library,
a spline library, and simple mechanics, collision detection and inverse
kinematics functions.
Key Words: Computer Animation , Simulation, Actor Systems, Interactive Systems.

1. Introduction

Animation design or scripting is the description of the temporal transforma­
tions in a scene. The way in which this information is specified, depends on the
control modes and interfacing techniques used. Control modes can be classified
as interpolated and algorithmic animation. They correspond, somehow, to the sub­
tle difference between data and programs.

Interpolated Animation specifies a sequence of data elements describing the
state of the scene at successive points in time. In general, all the details
must be specified, and although the animator has complete control of the trans­
formations, complex animation is usually difficult to describe. Interpolating
systems can be subclassified further according to the input methods. Motion
tracking, score-based, and key-frame systerns are some examples. In motion track­
ing systems, actual movements recorded in real time serve as the input for the
animation [Maxwell 83]. In score-based systems, movements are described in an
alphanumeric choreographic notation, very much like a musical score [Badler 79].
In key-frame systems the state of the scene is described at key frames, and the
inbetween frames interpolated automatically by the system [Stern 83] [Gomez 85].

Algorithmic animation specifies, through a set of procedures, the rules that
regulate transformations in the scene. This is a powerful method that can solve

t Author's current address: Globo Computação Gráfica, Rua J. Carlos, 101, Rio de Janeiro.

509

509

complex animation problems, but, on the other hand, usually requires intensive 1j
software development. Algorithmic systems, according to the degree of abstrac- •
tion supported, range from a general orogramming language enhanced for anima-
tion, to a task level knowledge-based system [Zeltzer 84b] .

Several authors, however, have recently acknowledged a need for interpolated
and algorithmic control modes under the same system [Fortin 83] [Zeltzer 84a],
and for an integration of control modes [Hanrahan 84], because those approaches
individually are unable to provide an effective interface for animation develop­
ment.

This calls for a model of interaction that associates the power of algo­
rithmic control with the high level of manipulating expression provided by in­
terpolated animation, and that also, incorporates flexibility to describe a wide
range of dynamic situations, and extensibility for creating animation abstrac­
tions.

The script language integrates algorithmic and interpolating animation con­
trol, while being compatible with the criteria of extensibility and flexibility.
The animation control mechanism built into the language is designed to support
synchronized independent events, similar to actors in ASAS [Reynolds 78] and
MIRA [Thalmann 83].

In comparison with ASAS and MIRA, Script differs mainly in three distinct
aspects. The first is related to the programming base language. Script is imple­
mented in C, following its main characteristics, while ASAS and MIRA are based
respectively in Lisp and Pascal. The second is concerned to the way events are
handled: Script allows the definition of nested parallel processes, that is sup­
ported neither by ASAS nor by MIRA. This closure property is very important, be­
cause it makes possible to break complex animation problems in simpler ones,
easier to program and manta in. Third, the Script language provides a more
general scheme for the description of dynamic animation parameters.

2. The Script Language

Script is an animation language based on concurrent synchronized events. It
has C-like expressions, control of flow statements, C built-in functions and
animation constructs.

The language is meant to complement C at a higher level, providing an inter­
active mechanism for the description of animation processes, features that C
doesn't have. As a consequence of this objective, a mechanism to link C code is
incorporated into the language, allowing the simultaneous use of script and C.
These buit-in functions behave the same way as regular functions, and should be
used whenever faster or lower level control is necessary.

The basic actions of the language are specified by statements, in the form
of expressions, compound, control of flow and animation constructs.

The animation description constructs are scripts, events and tracks. Scripts
are time programs that are executed in parallel to generate animation. Tracks
are time variables used to define dynamic animation parameters.

Scripts and Events

The script construct is the primary element for animation specification in
the language. Scripts are static algorithmic descriptions, that can be instanced
into dynamic events to perform animation actions. They can be abstracted as tem­
poral functions that will be acti ve for some period o f time. Script variables

510

•

510

I

are local to each instance, and last while that instance exists. They are
prototypical, in the sense that one script description may originate several in­
stances of distinct events.

Events are the run-time instantiation of scripts that model their temporal
and algorithmic properties. They are composed of a body of instructions and a
private memory that registers the uniqueness of each instance in relation to the
others. Events can generate other events, defining a hierarchy of procedural in­
stances implicitly ordered and synchronized by activations at time boundaries,
during their active periods.

Once a script is started, the event instance lasts until explicitly stopped,
being activated for every time interval. If an event is stopped, its dependent
sub-events are stopped as well. Synchronization between events is guaranteed by
the parallel activation of events at time interval boundaries. Each event has
incorporated in its memory a local time, that is automatically updated by these
activations. The activation consists of the time update, the evaluation of all
expressions in the event body, and the recursive activation of dependent sub­
events.

The periodic activation of the event hierarchy originates at the highest
level of the event tree. Time acts as streams of updating rates that flows
through events at each activation cycle. In this way instantiated scripts are
played, in very much the same manner as film projectors ar videotape players.

Intercommunication of events
global variables. This solution
quate for simple interactions.

Tracks

is possible, in
provides a coarse

a limited way, by means of
level of communication ade-

Tracks are data structures that hold the necessary elements to describe time
variable parameters. They constitute a flexible mechanism that accommodate the
needs of various different parameter types. Tracks are specified by a list of
values and a set of manipulating functions. Each type of track may have dif­
ferent configuration, as well as, different functions assigned to it. Track
values at particular instants in time are accessed through some of these func­
tions. Several techniques can be used to generate them, and, in general, but not
necessarily, there will be some kind of interpolation, such as spline, parabolic
or linear functions. Other functions will perform various manipulating opera­
tions. The basic ones are: insertion, deletion and modification of elements; and
access of the first, last, previous and next elements in the track structure.

Script algorithmic descriptions, event control mechanisms, and track data
objects, make up the set of primitive animation entities in the language.
Together they forro the basis upon which other animation abstractions can be
built, extending the repertory of operation within the language.

3. Language Syntax

The script language syntax, with few exceptions, is patterned after the C
programming language. Comments, identifiers, operators, numerical and string
constants are specified in the same way as in C.

The basic data types are real and string variables, track and event struc­
tures. Real variables are double precision floating point values. String vari­
ables hold arrays of characters terminated by a null character. Track structure
is a list of marks and Events are references to script instances. The data dec­
laration grammar is:

511

511

data decl: REAL namelist;
STRING namelist;
TRACK namelist;
EVENT namelist;

I
I
I

Functions and scripts are the primary procedural objects in the language.
The procedure declaration grammar is:

proc_decl: FUNCTION name
localvar decl

param_decl

{ stmtlist }
I SCRIPT name (param_decl
localvar decl

{ stmtlist }

param_decl:data decl list
localvar decl:data decl list

- -

Expressions are combinations of primary expressions and operators. Primary
expressions are numerical constants, reference to variables, function calls, and
parenthesized expressions. Binary operators in decreasing order of precedence
are (" * I + - = < => == != && li =) with the same meaning as in C. Unary
operators are the arithmetic and logical negation, respectively- and !. Func­
tion calls may be regular functions or C builtin functions. Arguments are a pos­
sible empty list of expressions separated by commas. The expression grammar is:

expr: NUMBER
variable
(expr)
expr BINOP expr
variable ASSIGNOP expr
UNOP expr
function (arglist
built-in (arglist

Statements specify the elementary actions in the language, that can be ex­
pressions, compound, control of flow and animation constructs. The statement
grammar is as following with optional definitions inside angle brackets.

stmt: expr ;
{ stmtlist
RETURN [expr]
IF (expr) stmt [ELSE stmt]
FOR ([expr]; [expr]; [expr] stmt
PLAY script (arglist)
[event =] START script (arglist)
STOP [event] ;

4. The Computing Environment

We propose as a model of interaction, an open mechanism based on layers of
functional abstractions and multiple interfacing processes. Functional abstrac­
tions are specified in script or C language, and developed with conventional

512

•

512

•

f

I
programming tools, such as interpreters, compilers, text editors and debuggers.
The interface between the script language and C facilitates the integration of
levels in the development of animation tools. Layers of functional abstractions
are created with those primitive algorithmic constructs to define a hierarchy of
animation entities that manipulate object parameters at different levels of
detail. At the top level the user interacts with a complex of simulation
machines associated to several interfacing processes. They generate the ap­
propriate controlling parameters, and the animation is produced.

The script language supports the prototyping of these animation interfaces,
assembled from a set of pre-defined building blocks. The animation and utility
tools developed establish a basic interaction protocol between the script lan­
guage and other components of the animation system, and also, define a primitive
set of animation control procedures. They are related to general input/output,
three dimensional object modeling, event/track manipulation, interpolation, col­
lision detection, viewing and display control. These tools are C procedures, im­
plemented as built-in functions into the script language.

The user interface is one of the most critical elements in the animation
system, mainly because it is the accessing channel to the system's capabilities.
The interface, besides human factors considerations, has to be complete, in
order to allow full use of the system's resources.

In algorithmic systems, like Script, users interact at different levels, and
because it is extensible, new elements that require interfacing may be frequent­
ly added to the system. This means that a complete user interface, in this case,
will actually be a meta-interface - a development mechanism for prototyping and
refinement of animation interfaces. Furthermore, multiple interfaces may
coexist, in the context of a multiprogramming system, sharing global data ob­
jects.

The ~ethodology adopted here for the development of user interfaces is known
as the building block approach [Foley 82] [Green 82] . In this approach, inter­
faces are assembled from basic modules that implement common interaction techni­
ques. Interfaces may also be created by the selective addition/modification of
existing prototype interfaces.

Three main interfaces are used most of the time in
interfacing modules developed with these tools. They
preter, a script editor, and a track editor.

conjunction with other
are: the script inter-

Emacs, a powerful screen-oriented text editor, is used as the script editor.
Script files are read, modified and written back whenever necessary between
script execution cycles.

The track editor is analogous to the
83] and Bbop [Stern 81], and supports
manipulation. The editor maintain a list
modified interactively.

S. E::x:amples

motion editors used in Mutan [Fortin
full d-spline [Kochanek 84] track
of tracks that can be accessed and

In this secti'on, simple animation scripts are presented to give a flavor of
the language and to demonstra te the system' s usage. Some examples are complete
working scripts, while others are simplified versions of the actual ones, with
the distracting details taken out for clarity in the presentation.

513

513

Example 1: A cylinder rolls in one direction with its displacement calcu­
lated from its rotation. One track controls directly the cylinder rotation,
while the cylinder position is derived from it radius.

track cr;

script cylroll()
real rot, pos;

rot = linear(cr, t);
setobj("cylinder", "rx", rot);
pos = pos + (rot * getobj("cylinder", "radius"));
setobj("cylinder", "px", pos);

Example 2: A prototype for a cycle script that uses the built-in function
stopped to inquire the status of a script instance, starting it again when it
finishes. ~

script cycle ()
event e;

if (stopped (e))
e= start scriptname(arguments);

Example 3: A ball bouncing inside a cubic space. The ball trajectory is cal­
culated from a initial position and direction vector, using accelerated motion
interpolation to account for the effects of gravity. A collision detection test
determines the necessary trajectory reorientation whenever the ball is about to
cross one of the cube boundaries. The functions newtraj and collision, not
shown, were written in C for efficiency reasons. Newtraj modifies the trajectory
track parameters for a new trajectory begining at the collision point. Collision
tests if there is any intersection between the ball trajectory and the six
planes of the cube. It returns a parametric value in the interval [0.0, 1.0] if
there is any intersection, and returns 1.1 if no intersection.

track px, py, pz;

script inittraj(tkptr tx, ty, tz;
real x, y, z,

real gr;

gr = - o. 98;
tkinsert(tx,
tkinsert(ty,
tkinsert(tz,

vx, vy, vz;)
I* gravitational constant */

O, x, vx, o. o) ;
O, y, vy, o. o) ;
O, z, vz, gr);

514

514

•

script bounce(string env, obj;
real x, y, z, vx, vy, vz;)
real xO, yO, zO,/* current center */
x1, y1, z1, /* new center */
cp; /* intersection param */

if (t==O) { /* initialization*/
ldobj(env); ldobj(obj);
attachobj(env, obj);
inittraj(px, py, pz, x, y, z, vx, vy, vz);
xO accmotion(px, t);
yO accmotion(py, t);
zO accmotion(pz, t);

x1 accmotion(px, t); /* calculate new position */
y1 accmotion(py, t);
z1 accmotion(pz, t);
if((cp = collision(xO, yO, zO, x1, y1, z1)) .1) {

newtraj(cp, px, py, pz, xO, yO, zO, x1, y1, z1);
t = 1 - cp;
xl accmotion(px, t);
y1 accmotion(py, t);
zl accmotion(pz, t);

set(obj, "pxyz", x1, yl, zl); /*move the object */
xO = xl; yO = yl; zO = zl; /* update curr position */

Example 4: The demo script combines the bouncing ball example with the a
robotics manipulator function to produce the animation sequence shown in figure
1. The robot arm grasps the ball, lifts it up, and throws it. The ball hits the
wall several times and bounces back until it stops completely. The ball initial
trajectory, elasticity and gravitational coeficient are controlled by tracks and
global variables. The script launch guides the arm's motion.

script launch ()
real x, y, z;

x spline(lx, t);
y spline(ly, t);
z = spline(lz, t);
movearm(x, y, z);
if (t > tknext(lx, 0) && t < tkprev(lx, tklast(lx)))

setobj("ball", "pxyz", x, y, z);
if (t == tklast(lx)) stop;

script demo ()
real x, y, z, vx, vy, vz;

if (t == 0) start launch();
if (t == tkprev(lx, tklast(lx)))

x tkget(lx, t, 0);
y tkget(ly, t, 0);
z=tkget(lz, t, 0);

515

515

vx x tkget(lx, tkprev(lx,
vy y- tkget(ly, tkprev(ly,
vz z - tkget(lz, tkprev(lz,

t),
t) ,
t),

o) ;

0);
o) ;

start bounce("room", "ball", x, y, z, vx, vy, vz);

if (intr()) stop;
display("scene");

6. Summary

.We have proposed the integration of interpolated and algorithmic animation
in a system that, based on the simulation paradigm, allows animation development
in layers of functional abstractions, and its specification through multiple in­
terfacing processes.

..
•

The central coordinating mechanism in the system is an interactive inter- •
preter for a computer animation language Script, that . supports concurrent
synchronized events, and track data structures. The Script language is intended
to perform a double duty, in both the description of temporal object transforma-
tions, and the prototyping of animation interfaces, playing an important role in
the realization of our model of interaction.

The design philosophy behind the Script animation system was to create an
open mechanism for animation production, that being flexible and extensible
would evolve with day to day use.

7. Extensions and New Directions

The Script language would benefit from the addition of several features,
among them: a richer set of operators, such as the reminder (%), compound as­
signments (+=, *=, /=, %=), and auto increment/decrement (++, --); string
operations that could be implemented as built-ins, such as copy, compare and
concatenation; a three dimensional vector data type; array data structures for
the existing data types; and additional control of flow constructs like break
and continue. The animation mechanism of the language could be enhanced with the
addition of a time structure, and a send/receive communication scheme.

New directions for work on the subject point towards the research of more
sophisticated ways and resources for the description of complex animation
problems. Some emerging topics that ~eed to be explored include: general col­
lision detection, dynamics simulation tools, object manipulators, and knowledge­
based animation.

8. Acknowledgements

Thanks to David Zeltzer, whose work has been a major contribution to the
computer animation field, and a invaluab.le source of inspiration to me.

Thanks to Gloriana Davenport for her interest in this project and help in
administrative matters. Thanks to Christopher Sawyer-Laucanno for proof-reading
and style suggestions.

Thanks to Project Athena for the use of computing resources, and especially
to Jim Gettys for providing the VS-100 display software.

516

•

,. . ..
•

516

• •

•

9. References

[Maxwell 83] Maxwell, Delle Rae., Graphical Marionette: A Modern Day
Pinocchio., Master's thesis, Massachusetts Institute of Technology, 1983.

[Badler 79] Badler, N. and Smoliar, S., Digital Representations of Human
Movement., ACM Computing Surveys 11(1) :19-37, March, 1979.

[Stern 83] Stern, Garland., Bbop- A Program for 3-Dimensional Animation. ,
NICCOGRAPH '83, pages 403-404., Niccograph, Tokyo, Japan, December, 1983.

[Gomez 85] Gomez, Julian., Twixt: A 3D Animation System, Computer and Graphics
9(9): pp. 291-298., Pergamon Press Ltd, (1985),

[Zeltzer 84b] Zeltzer, David., Issues in 3-D Computer Character Animation. ,
1984, Course Notes: Tutorial on Computer Animation - ACM Siggraph 84 .

[Fortin 83] Fortin, D., Lamy, J. F. and Thalmann, D., A Multiple Track
Animation System for Motion Synchronization., Motion: Representation and
Perception, pages 180-185., ACM Siggraph/Sigart, April, 1983.

[Zeltzer 84a] Zeltzer, David., Representation and Control of Three dimensional
Computer Animated Figures., PhD thesis, Ohio State University, 1984.

[Hanrahan 84] Hanrahan, Pat and Sturman, David., Interactive Control of
Parametric Models., 1984, Course Notes: Tutorial on Computer Animation­
ACM Siggraph 84.

[Reynolds 78] Reynolds, Craig William., Computer Animation in the World of
Actors and Scripts., Master's thesis, Massachusetts Institute of
Technology, 1978.

[Thalmann 83] Thalmann, D. and Magnenat-Thalmann N., The Use of High-level 3-D
Graphical Types in the Mira Animation System., IEEE Computer Graphics and
Applications, 3(9) :9-16, December, 1983.

[Foley 82] Foley, James and Van Dan, Andries., Fundamentals of Interactive
Computer Graphics., Addison Wesley, 1982.

[Green 82] Green, M., Torwards a User Interface Prototyping System. , Graphics
Interface 82, pages 37-46., NCGA Canada, May, 1982.

[Kochanek 84] Kochanek, Doris., Interpolating Splines with Local Tension,
Continuity and Bias Control., Computer Graphics, pages 33-42., ACM
Siggraph, July, 1984.

[Baecker 69] Baecker, R. M., Picture Driven Animation., In Proceedings AFIPS
Spring Joint Computer Conference, pages 273-288., AFIPS, 1969.

[Burtnyk 73] Burtnyk, N. and Wein, M., Interactive Skeleton Techniques for
Enhancing Motion Dynamics in Key-Frame Animation., Communications of the
ACM 19(10) :564-569, October, 1973.

517

517

Figure 1: Robot arm and bouncing ball animation sequence

518

i

•

•

518

