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Abstract 
The problem of specification of temporal transformations for Computer Anima­

tion production is investigated. Based on this analysis, an interactive anima­
tion language is developed which supports both procedural and key-frame 
animation. It is a flexible software environment for the design and prototyping 
of animation programs and interfaces. The language is implemented in C within 
the Unix operating system, and consists of C-like expressions, built-in func­
tions and animation constructs. There is also an escape mechanism to run Unix 
commands. A small set of animation tools is also developed to exemplify the 
system's utilization. These include a three dimensional model interface library, 
a spline library, and simple mechanics, collision detection and inverse 
kinematics functions. 
Key Words: Computer Animation , Simulation, Actor Systems, Interactive Systems. 

1. Introduction 

Animation design or scripting is the description of the temporal transforma­
tions in a scene. The way in which this information is specified, depends on the 
control modes and interfacing techniques used. Control modes can be classified 
as interpolated and algorithmic animation. They correspond, somehow, to the sub­
tle difference between data and programs. 

Interpolated Animation specifies a sequence of data elements describing the 
state of the scene at successive points in time. In general, all the details 
must be specified, and although the animator has complete control of the trans­
formations, complex animation is usually difficult to describe. Interpolating 
systems can be subclassified further according to the input methods. Motion 
tracking, score-based, and key-frame systerns are some examples. In motion track­
ing systems, actual movements recorded in real time serve as the input for the 
animation [Maxwell 83]. In score-based systems, movements are described in an 
alphanumeric choreographic notation, very much like a musical score [Badler 79]. 
In key-frame systems the state of the scene is described at key frames, and the 
inbetween frames interpolated automatically by the system [Stern 83] [Gomez 85]. 

Algorithmic animation specifies, through a set of procedures, the rules that 
regulate transformations in the scene. This is a powerful method that can solve 
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complex animation problems, but, on the other hand, usually requires intensive 1j 
software development. Algorithmic systems, according to the degree of abstrac- • 
tion supported, range from a general orogramming language enhanced for anima-
tion, to a task level knowledge-based system [Zeltzer 84b] . 

Several authors, however, have recently acknowledged a need for interpolated 
and algorithmic control modes under the same system [Fortin 83] [Zeltzer 84a], 
and for an integration of control modes [Hanrahan 84], because those approaches 
individually are unable to provide an effective interface for animation develop­
ment. 

This calls for a model of interaction that associates the power of algo­
rithmic control with the high level of manipulating expression provided by in­
terpolated animation, and that also, incorporates flexibility to describe a wide 
range of dynamic situations, and extensibility for creating animation abstrac­
tions. 

The script language integrates algorithmic and interpolating animation con­
trol, while being compatible with the criteria of extensibility and flexibility. 
The animation control mechanism built into the language is designed to support 
synchronized independent events, similar to actors in ASAS [Reynolds 78] and 
MIRA [Thalmann 83]. 

In comparison with ASAS and MIRA, Script differs mainly in three distinct 
aspects. The first is related to the programming base language. Script is imple­
mented in C, following its main characteristics, while ASAS and MIRA are based 
respectively in Lisp and Pascal. The second is concerned to the way events are 
handled: Script allows the definition of nested parallel processes, that is sup­
ported neither by ASAS nor by MIRA. This closure property is very important, be­
cause it makes possible to break complex animation problems in simpler ones, 
easier to program and manta in. Third, the Script language provides a more 
general scheme for the description of dynamic animation parameters. 

2. The Script Language 

Script is an animation language based on concurrent synchronized events. It 
has C-like expressions, control of flow statements, C built-in functions and 
animation constructs. 

The language is meant to complement C at a higher level, providing an inter­
active mechanism for the description of animation processes, features that C 
doesn't have. As a consequence of this objective, a mechanism to link C code is 
incorporated into the language, allowing the simultaneous use of script and C. 
These buit-in functions behave the same way as regular functions, and should be 
used whenever faster or lower level control is necessary. 

The basic actions of the language are specified by statements, in the form 
of expressions, compound, control of flow and animation constructs. 

The animation description constructs are scripts, events and tracks. Scripts 
are time programs that are executed in parallel to generate animation. Tracks 
are time variables used to define dynamic animation parameters. 

Scripts and Events 

The script construct is the primary element for animation specification in 
the language. Scripts are static algorithmic descriptions, that can be instanced 
into dynamic events to perform animation actions. They can be abstracted as tem­
poral functions that will be acti ve for some period o f time. Script variables 
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are local to each instance, and last while that instance exists. They are 
prototypical, in the sense that one script description may originate several in­
stances of distinct events. 

Events are the run-time instantiation of scripts that model their temporal 
and algorithmic properties. They are composed of a body of instructions and a 
private memory that registers the uniqueness of each instance in relation to the 
others. Events can generate other events, defining a hierarchy of procedural in­
stances implicitly ordered and synchronized by activations at time boundaries, 
during their active periods. 

Once a script is started, the event instance lasts until explicitly stopped, 
being activated for every time interval. If an event is stopped, its dependent 
sub-events are stopped as well. Synchronization between events is guaranteed by 
the parallel activation of events at time interval boundaries. Each event has 
incorporated in its memory a local time, that is automatically updated by these 
activations. The activation consists of the time update, the evaluation of all 
expressions in the event body, and the recursive activation of dependent sub­
events. 

The periodic activation of the event hierarchy originates at the highest 
level of the event tree. Time acts as streams of updating rates that flows 
through events at each activation cycle. In this way instantiated scripts are 
played, in very much the same manner as film projectors ar videotape players. 

Intercommunication of events 
global variables. This solution 
quate for simple interactions. 

Tracks 

is possible, in 
provides a coarse 

a limited way, by means of 
level of communication ade-

Tracks are data structures that hold the necessary elements to describe time 
variable parameters. They constitute a flexible mechanism that accommodate the 
needs of various different parameter types. Tracks are specified by a list of 
values and a set of manipulating functions. Each type of track may have dif­
ferent configuration, as well as, different functions assigned to it. Track 
values at particular instants in time are accessed through some of these func­
tions. Several techniques can be used to generate them, and, in general, but not 
necessarily, there will be some kind of interpolation, such as spline, parabolic 
or linear functions. Other functions will perform various manipulating opera­
tions. The basic ones are: insertion, deletion and modification of elements; and 
access of the first, last, previous and next elements in the track structure. 

Script algorithmic descriptions, event control mechanisms, and track data 
objects, make up the set of primitive animation entities in the language. 
Together they forro the basis upon which other animation abstractions can be 
built, extending the repertory of operation within the language. 

3. Language Syntax 

The script language syntax, with few exceptions, is patterned after the C 
programming language. Comments, identifiers, operators, numerical and string 
constants are specified in the same way as in C. 

The basic data types are real and string variables, track and event struc­
tures. Real variables are double precision floating point values. String vari­
ables hold arrays of characters terminated by a null character. Track structure 
is a list of marks and Events are references to script instances. The data dec­
laration grammar is: 
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data decl: REAL namelist; 
STRING namelist; 
TRACK namelist; 
EVENT namelist; 

I 
I 
I 

Functions and scripts are the primary procedural objects in the language. 
The procedure declaration grammar is: 

proc_decl: FUNCTION name 
localvar decl 

param_decl 

{ stmtlist } 
I SCRIPT name ( param_decl 
localvar decl 

{ stmtlist } 

param_decl:data decl list 
localvar decl:data decl list 

- -

Expressions are combinations of primary expressions and operators. Primary 
expressions are numerical constants, reference to variables, function calls, and 
parenthesized expressions. Binary operators in decreasing order of precedence 
are (" * I + - = < => == != && li =) with the same meaning as in C. Unary 
operators are the arithmetic and logical negation, respectively- and !. Func­
tion calls may be regular functions or C builtin functions. Arguments are a pos­
sible empty list of expressions separated by commas. The expression grammar is: 

expr: NUMBER 
variable 
( expr ) 
expr BINOP expr 
variable ASSIGNOP expr 
UNOP expr 
function ( arglist 
built-in ( arglist 

Statements specify the elementary actions in the language, that can be ex­
pressions, compound, control of flow and animation constructs. The statement 
grammar is as following with optional definitions inside angle brackets. 

stmt: expr ; 
{ stmtlist 
RETURN [expr] 
IF ( expr ) stmt [ELSE stmt] 
FOR ( [expr]; [expr]; [expr] stmt 
PLAY script ( arglist ) 
[event = ] START script ( arglist ) 
STOP [event] ; 

4. The Computing Environment 

We propose as a model of interaction, an open mechanism based on layers of 
functional abstractions and multiple interfacing processes. Functional abstrac­
tions are specified in script or C language, and developed with conventional 
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programming tools, such as interpreters, compilers, text editors and debuggers. 
The interface between the script language and C facilitates the integration of 
levels in the development of animation tools. Layers of functional abstractions 
are created with those primitive algorithmic constructs to define a hierarchy of 
animation entities that manipulate object parameters at different levels of 
detail. At the top level the user interacts with a complex of simulation 
machines associated to several interfacing processes. They generate the ap­
propriate controlling parameters, and the animation is produced. 

The script language supports the prototyping of these animation interfaces, 
assembled from a set of pre-defined building blocks. The animation and utility 
tools developed establish a basic interaction protocol between the script lan­
guage and other components of the animation system, and also, define a primitive 
set of animation control procedures. They are related to general input/output, 
three dimensional object modeling, event/track manipulation, interpolation, col­
lision detection, viewing and display control. These tools are C procedures, im­
plemented as built-in functions into the script language. 

The user interface is one of the most critical elements in the animation 
system, mainly because it is the accessing channel to the system's capabilities. 
The interface, besides human factors considerations, has to be complete, in 
order to allow full use of the system's resources. 

In algorithmic systems, like Script, users interact at different levels, and 
because it is extensible, new elements that require interfacing may be frequent­
ly added to the system. This means that a complete user interface, in this case, 
will actually be a meta-interface - a development mechanism for prototyping and 
refinement of animation interfaces. Furthermore, multiple interfaces may 
coexist, in the context of a multiprogramming system, sharing global data ob­
jects. 

The ~ethodology adopted here for the development of user interfaces is known 
as the building block approach [Foley 82] [Green 82] . In this approach, inter­
faces are assembled from basic modules that implement common interaction techni­
ques. Interfaces may also be created by the selective addition/modification of 
existing prototype interfaces. 

Three main interfaces are used most of the time in 
interfacing modules developed with these tools. They 
preter, a script editor, and a track editor. 

conjunction with other 
are: the script inter-

Emacs, a powerful screen-oriented text editor, is used as the script editor. 
Script files are read, modified and written back whenever necessary between 
script execution cycles. 

The track editor is analogous to the 
83] and Bbop [Stern 81], and supports 
manipulation. The editor maintain a list 
modified interactively. 

S. E::x:amples 

motion editors used in Mutan [Fortin 
full d-spline [Kochanek 84] track 
of tracks that can be accessed and 

In this secti'on, simple animation scripts are presented to give a flavor of 
the language and to demonstra te the system' s usage. Some examples are complete 
working scripts, while others are simplified versions of the actual ones, with 
the distracting details taken out for clarity in the presentation. 
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Example 1: A cylinder rolls in one direction with its displacement calcu­
lated from its rotation. One track controls directly the cylinder rotation, 
while the cylinder position is derived from it radius. 

track cr; 

script cylroll() 
real rot, pos; 

rot = linear(cr, t); 
setobj("cylinder", "rx", rot); 
pos = pos + (rot * getobj("cylinder", "radius")); 
setobj("cylinder", "px", pos); 

Example 2: A prototype for a cycle script that uses the built-in function 
stopped to inquire the status of a script instance, starting it again when it 
finishes. ~ 

script cycle () 
event e; 

if (stopped (e)) 
e= start scriptname(arguments); 

Example 3: A ball bouncing inside a cubic space. The ball trajectory is cal­
culated from a initial position and direction vector, using accelerated motion 
interpolation to account for the effects of gravity. A collision detection test 
determines the necessary trajectory reorientation whenever the ball is about to 
cross one of the cube boundaries. The functions newtraj and collision, not 
shown, were written in C for efficiency reasons. Newtraj modifies the trajectory 
track parameters for a new trajectory begining at the collision point. Collision 
tests if there is any intersection between the ball trajectory and the six 
planes of the cube. It returns a parametric value in the interval [0.0, 1.0] if 
there is any intersection, and returns 1.1 if no intersection. 

track px, py, pz; 

script inittraj(tkptr tx, ty, tz; 
real x, y, z, 

real gr; 

gr = - o. 98; 
tkinsert(tx, 
tkinsert(ty, 
tkinsert(tz, 

vx, vy, vz;) 
I* gravitational constant */ 

O, x, vx, o. o) ; 
O, y, vy, o. o) ; 
O, z, vz, gr); 
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script bounce(string env, obj; 
real x, y, z, vx, vy, vz;) 
real xO, yO, zO,/* current center */ 
x1, y1, z1, /* new center */ 
cp; /* intersection param */ 

if (t==O) { /* initialization*/ 
ldobj(env); ldobj(obj); 
attachobj(env, obj); 
inittraj(px, py, pz, x, y, z, vx, vy, vz); 
xO accmotion(px, t); 
yO accmotion(py, t); 
zO accmotion(pz, t); 

x1 accmotion(px, t); /* calculate new position */ 
y1 accmotion(py, t); 
z1 accmotion(pz, t); 
if( (cp = collision(xO, yO, zO, x1, y1, z1)) .1) { 

newtraj(cp, px, py, pz, xO, yO, zO, x1, y1, z1); 
t = 1 - cp; 
xl accmotion(px, t); 
y1 accmotion(py, t); 
zl accmotion(pz, t); 

set(obj, "pxyz", x1, yl, zl); /*move the object */ 
xO = xl; yO = yl; zO = zl; /* update curr position */ 

Example 4: The demo script combines the bouncing ball example with the a 
robotics manipulator function to produce the animation sequence shown in figure 
1. The robot arm grasps the ball, lifts it up, and throws it. The ball hits the 
wall several times and bounces back until it stops completely. The ball initial 
trajectory, elasticity and gravitational coeficient are controlled by tracks and 
global variables. The script launch guides the arm's motion. 

script launch () 
real x, y, z; 

x spline(lx, t); 
y spline(ly, t); 
z = spline(lz, t); 
movearm(x, y, z); 
if (t > tknext(lx, 0) && t < tkprev(lx, tklast(lx))) 

setobj("ball", "pxyz", x, y, z); 
if (t == tklast(lx)) stop; 

script demo () 
real x, y, z, vx, vy, vz; 

if (t == 0) start launch(); 
if (t == tkprev(lx, tklast(lx))) 

x tkget(lx, t, 0); 
y tkget(ly, t, 0); 
z=tkget(lz, t, 0); 
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vx x tkget(lx, tkprev(lx, 
vy y- tkget(ly, tkprev(ly, 
vz z - tkget(lz, tkprev(lz, 

t), 
t) , 
t), 

o) ; 

0); 
o) ; 

start bounce("room", "ball", x, y, z, vx, vy, vz); 

if (intr()) stop; 
display("scene"); 

6. Summary 

.We have proposed the integration of interpolated and algorithmic animation 
in a system that, based on the simulation paradigm, allows animation development 
in layers of functional abstractions, and its specification through multiple in­
terfacing processes. 

.. 
• 

The central coordinating mechanism in the system is an interactive inter- • 
preter for a computer animation language Script, that . supports concurrent 
synchronized events, and track data structures. The Script language is intended 
to perform a double duty, in both the description of temporal object transforma-
tions, and the prototyping of animation interfaces, playing an important role in 
the realization of our model of interaction. 

The design philosophy behind the Script animation system was to create an 
open mechanism for animation production, that being flexible and extensible 
would evolve with day to day use. 

7. Extensions and New Directions 

The Script language would benefit from the addition of several features, 
among them: a richer set of operators, such as the reminder (%), compound as­
signments (+=, *=, /=, %=), and auto increment/decrement (++, --); string 
operations that could be implemented as built-ins, such as copy, compare and 
concatenation; a three dimensional vector data type; array data structures for 
the existing data types; and additional control of flow constructs like break 
and continue. The animation mechanism of the language could be enhanced with the 
addition of a time structure, and a send/receive communication scheme. 

New directions for work on the subject point towards the research of more 
sophisticated ways and resources for the description of complex animation 
problems. Some emerging topics that ~eed to be explored include: general col­
lision detection, dynamics simulation tools, object manipulators, and knowledge­
based animation. 
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Figure 1: Robot arm and bouncing ball animation sequence 

518 

i 

• 

• 

518




