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Fig. 1: Merging a buddha tetrahedral mesh with a background grid. Our technique is able to handle meshes with distinct
levels of refinement - observe how the internal tetrahedra of the buddha have not been refined.

Abstract—Simplicial meshes are extremely useful as discrete

approximations of continuous spaces in numerical simulations.

In some applications, however, meshes need to be modified over

time. Mesh update operations are often expensive and brittle,

which tends to make the numerical simulations unstable. In this

paper we propose an alternative technique for updating simplicial

meshes that undergo geometric and topological changes. We

exploit the property that a Weighted Delaunay Triangulation

(WDT) can be used to implicitly define the connectivity of a

mesh. Instead of explicitly maintaining connectivity information,

we simply keep a collection of weights associated with each vertex.

This approach allows for a simple way to merge triangulations,

which we illustrate with examples in 2D and 3D.
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I. INTRODUCTION

Simplicial meshes (triangulations) are the preferred data
representation for techniques in computer graphics, visual-
ization, and geometric computing. Their ability to represent
irregular and adaptive domains is of particular importance in
some applications. While triangulations are effective for static
scenes, they are not so straightforward to use in dynamic
settings. The main drawback in these situations is the fact that
updating mesh connectivity during geometrical operations re-
quires consistent and correct adjacency and incidence relations
between simplicial elements. Much has been written about
involved mechanisms for checking and repairing dynamic
mesh structures (e.g., kinetic data structures [1]).

Dynamic updates of connectivity are particularly challeng-

ing for applications that involve merging of multiple meshes,
or allow meshes to move over time. Recently, these challenges
have been one of the drivers of the development of point-
based (hybrid) approaches [2]. An alternative solution to
this problem involves focusing only on triangulations whose
connectivity can be implicitly derived from geometric con-
straints [3], [4], [5], such as Delaunay Triangulations (DT) [6].
However, these approaches are rather limited, since in some
cases the underlying meshes do not comply with the required
geometric constraints, thus falling back to the case where one
needs to explicitly manage mesh connectivity [7].

Our proposal builds on the idea of implicit connectivity,
based on a generalization of Delaunay Triangulations called
Weighted Delaunay Triangulations (WDT). A property of DTs
is the fact that all their vertices can be lifted onto a convex
polyhedron in one extra dimension (also known as the lifting
property [6], [8]). The same is not true for non-Delaunay
meshes, however. WDTs are a generalization of DTs where a
constant value is associated with each vertex in the mesh. This
value modifies the height of the lifted vertices, thus moving
them out of the lifted polyhedron. The main advantage of
WDTs is their ability to represent a wider collection of meshes.
Still, not every triangulation can be represented as a WDT. A
key feature of our work is to use a subdivision scheme to turn
any mesh into a WDT through the addition of extra vertices.

We build on previous work by Cignoni and De Floriani [9],
who proposed a technique for computing a WDT from a given
mesh by modeling the weight constraints as a linear program.



Unfortunately, this can not be done for all meshes, as the linear
program might not have a solution in some cases. Instead, we
apply a breadth-first traversal of the mesh that locally enforces
convexity constraints on the lifting construction, together with
a subdivision mechanism, which ensures a resulting WDT that
conforms with the original mesh (more details in Section IV).

We present a general way to handle the lifting construction,
which allows us to define different merging techniques. We
also describe two approaches to merge WDTs based on
different ways of lifting the polyhedron of each mesh. We
also propose an adaptive scheme that maintains the geometric
quality of simplices when merging meshes of distinct refine-
ment levels. (see Section V-C). Figure 1 shows the merging
of a tetrahedralization of the Buddha mesh with a background
grid. We intentionally left the interior of the model hollow
to highlight our technique’s support of meshes with different
levels of refinement.
Main Contributions: The main contributions of this work
are a new approach for computing a WDT from an arbitrary
simplicial mesh and a simple technique to merge multiple
triangulations. We also describe a mechanism to smooth the
transition between merged meshes with different refinement
levels. In summary, the main features of our work are:

• Simplicity: The weight computation and merging schemes
are all based on simple geometric constructions which do
not demand complex data-structures;

• Generality: Our technique can automatically merge mul-
tiple triangulations with distinct mesh resolutions and
arbitrary topology, while still ensuring consistent and
well-defined connectivity;

• Preservability: Mesh features tend to be preserved during
the merging process. Specifically, our approach easily
preserves the anisotropy of a mesh.

We implemented our proposal and performed a number of
experiments to validate the technique. In particular, we show
examples that illustrate the merging of 2D and 3D meshes.

II. RELATED WORK

Connectivity oblivious techniques for manipulation of sim-
plicial meshes can be divided into two main categories: meth-
ods that reproduce an existing triangulation from geometric
information, and methods that build a triangulation based on
the constraints given by curves and/or surfaces defined in the
domain of interest. In both cases, most methods rely on the
properties of DTs and WDTs to avoid explicitly handling the
mesh connectivity. These techniques have solid theoretical [8],
[10], [6] and computational [11], [12] foundations. In partic-
ular, [6], [8]) are good starting references for WDT.

Techniques in the first category construct a WDT cor-
responding to a given mesh by computing a valid set of
weights for its vertices. The advantage of this approach is that,
once the weights are computed, connectivity information can
be discarded. The original triangulation can then be rebuilt
algorithmically from vertex coordinates and weights. One
way to compute a valid set of weights is through a linear
programming problem, which looks for an optimal weight

distribution. Cignoni and De Floriani [9] use this formulation
to perform depth sorting of unstructured simplicial meshes,
without storing connectivity information. Balaven et al. [13]
also use a linear programming approach to solve a problem
similar to ours (see section V). However, their solution has
the limitation of only dealing with meshes that can be directly
represented as WDTs. When this is not the case, they resort to
explicit management of connectivity information. The closest
to our approach is the proposal by Pires et al. [14], where
WDTs are used to compute morphing and simplification of
meshes. Their formulation also relies on a linear program
formulation for weight computation. On the other hand, our
approach addresses the problem of weight computation in a
different way, avoiding the linear programming formulation
altogether. Since we allow small changes in the original mesh,
our technique is always able to compute a valid set of weights
that can be used to recover the given triangulation.

The second category of techniques is much more numerous,
and an exhaustive description of it is beyond the scope of
this paper. In general, these methods are concerned with
either object modeling or domain decomposition for numerical
simulation. For object modeling, the focus is on generating
a triangulation that approximates a given model, using ge-
ometric certificates to filter undesirable simplices. Examples
of connectivity oblivious object modeling techniques include
Delaunay-based surface reconstruction from point clouds [15]
and Delaunay-based isosurfacing methods [16], [17]. Domain
decomposition techniques are designed to ensure that out-
put meshes comply with constraints given by curves and/or
surfaces defined inside the domain of interest. Enforcing the
quality of simplicial elements is always a concern in these
techniques. Delaunay mesh refinement [18], sliver removal [4],
and Delaunay updates for moving meshes [7] are examples
of connectivity oblivious domain decomposition techniques.
The methodology we propose can be seen as a mechanism to
extend mesh generation and object modeling techniques, since
most operations can be implemented within our framework.

III. BACKGROUND

In this section we introduce the basic concepts that are
essential to the remainder of the paper, including fundamental
ideas regarding regular and WDTs in Euclidean spaces. A
more complete and general description of these geometrical
entities can be found in [6], [19].

A. Regular and Weighted Delaunay Triangulations
Let T be a d-dimensional triangulation in Ed, and

V = {v1, . . . , vn

}, T = {t1, . . . , tm} be the set of vertices
and d-simplices of T (d-simplices are triangles in E2 and
tetrahedra in E3). The triangulation T is said to be regular if
and only if there exists a set of points V + = {v+

1 , . . . , v+
n

} 2
Ed+1 such that V + is a subset of the vertices of a convex
polyhedron P where, for all i, v+

i

projects orthogonally
on v

i

, and the projection of downward d-faces of P is T
(a d-face t is a downward face if n

t

· e
d+1 < 0, where

e
d+1 = (0, . . . , 0, 1) 2 Ed+1 and n

t

is a vector normal to



t). In other words, a d-dimensional regular triangulation is
the vertical projection of the “lower side” of some (d + 1)-
dimensional convex polyhedron in Ed+1.

The WDT is a well-known regular triangulation. Given a
set of points V = {v1, . . . , vn

} in Ed and corresponding
scalar weights W = {w1, . . . , wn

}, the WDT is obtained by
projecting downward faces of the so-called lifted polyhedron
(a polytope, to be more precise), defined as the convex hull
of points V + = {v+

1 , . . . , v+
n

} ⇢ Ed+1, where

v+
i

= (v
i

x1
, . . . , v

i

x

d

, v2
i

x1
+ · · · + v2

i

x

d

� w
i

) (1)

is a lifted vertex and {v
i

x1
, ..., v

i

x

d

} are the Cartesian coordi-
nates of v

i

. It is not difficult to observe how a lifted vertex v+
i

may be inside the convex hull of V + (suppose, for example,
that the weight w

i

is much smaller than the weights of v
i

’s
neighbors). This means v+

i

will not be in any downward face
of the lifted polyhedron, leaving v

i

absent from the WDT of V .
Absent vertices are called redundant and will appear naturally
in the merging scheme described in Section V.

It is worth noting that the lifting map defined for weighted
vertices can be extended to simplices of a triangulation T in a
straightforward way. For example, the lifting of a k-simplex r
with vertices v

r0 , . . . , vr

k

is the k-simplex r+ in Ed+1 whose
vertices are v+

r0
, . . . , v+

r

k

, with coordinates given by (1).

B. Local Convexity
Let t

i

and t
j

be two adjacent d-simplices sharing a common
(d�1)-face r

ij

(r
ij

will be an edge in E2 and a triangle in E3)
and t+

i

, t+
j

be the lifted simplices of t
i

and t
j

. The (d � 1)-
face r+

ij

is said to be locally convex if the (d + 1)-simplex
generated from the union of vertices in t+

i

and t+
j

lies on the
upper half-space of each hyperplane containing t+

i

and t+
j

. A
polyhedron in Ed+1 is called locally convex if all (d�1)-faces
shared by two d-simplices are locally convex.

Local convexity is a necessary, but not sufficient, condition
to ensure global convexity of a polyhedron [20]. However,
in the particular case of a polyhedron generated by lifting a
convex triangulation, local convexity leads to global convexity
(see [21] for details) and, as remarked by Balaven et al. [13],
this property has widely been used as a mechanism to verify
whether a given triangulation is regular. As we show in
the next section, the association between lifting and local
convexity comprises the core of our approach.

It is important to highlight that not every triangulation is
regular. In [12], it is presented seven examples of meshes
that are not regular. Because of this, it may be impossible to
build a convex polyhedron whose projection matches a given
triangulation, and therefore any lifting of this triangulation will
contain at least one non-locally convex (d� 1)-simplex.

IV. WDT COMPUTATION AND CONFORMAL REFINEMENT

Given a triangulation T in Ed, we compute a set of weights
for its vertices to represent T as a WDT. We rely on a geo-
metric construction that exploits the lifting and local convexity
properties in Ed+1 to compute the weights. A triangulation
conforming to the original mesh can be reconstructed by an

Original!
Triangulation!

Weighted!
Vertices!

Conformal!
Weighted!

Mesh!

Weighted Delaunay Triangulation!

Lifting! Subdivision!

Fig. 2: WDT computation: original triangulation is traversed
in breadth-first manner to assign weights to vertices using the
lifting construction. A subdivision step follows to ensure the
weighted mesh conforms with the original triangulation.

algorithm that computes a WDT from vertex coordinates and
associated weights (see, for example, [12]). Therefore, inci-
dence and adjacency relations between simplices are implicit
in the weighted vertices, and are not stored explicitly.

Conventional approaches to weight computation look for
a solution to a set of linear inequalities, or try to solve a
linear programming problem [13], which may not have a
solution. We, on the other hand, use a deterministic procedure
that builds a polyhedron in Ed+1 that is locally convex as
much as possible. This step generates a preliminary weight
assignment that might not enforce local convexity to some
(d � 1)-simplices. We then employ a subdivision process to
handle these simplices, thus ensuring that a convex polyhedron
is generated as output. As a result, the original triangulation
can be rebuilt from the weighted vertices, even though a few
simplices of T may appear subdivided after the reconstruction.
The diagram in Figure 2 provides an overview of our approach.

A. Computing Weights
Let t

i

be a d-simplex of a triangulation T in Ed and t
j

be another d-simplex in T sharing a (d� 1)-face r
ij

with t
i

.
Suppose that weights have already been assigned to vertices
of t

i

, such that one can compute the hyperplane ⇡
i

in Ed+1

containing t+
i

. In other words, ⇡
i

is the support hyperplane
of t+

i

. Let v be the vertex of t
j

opposite to r
ij

and ṽ be the
vertical projection of v onto ⇡

i

, as illustrated in Figure 3.
Notice that a small vertical perturbation of ṽ toward the
positive half-space of ⇡

i

, denoted as v+, makes the simplex
r+
ij

locally convex with respect to t+
i

and t+
j

= r+
ij

[ v+.
Therefore, if the coordinates of ṽ are (v

x1 , . . . , vx

d

, ṽ
x

d+1),
we use equation (1) to define the weight w

v

of the vertex v
of the vertex v as:

w
v

= v2
x1

+ . . . + v2
x

d

� (ṽ
x

d+1 + ✏) (2)

where ✏ is a small vertical perturbation of ṽ that makes r+
ij

locally convex with regard to t+
i

and t+
j

.

Fig. 3: Vertex lifting to ensure local convexity.



Fig. 4: Simplices are lifted in a breadth-first fashion. Red
simplices are lifted to ensuring local convexity, but this can
not be ensured for the edges of the yellow simplex.

Fig. 5: Inserting absent edges. A red edge absent from the final
triangulation (left), is included using several smaller edges
(right), with a subdivision process that generates new vertices
with proper weight assignments.

By repeating the construction above for all neighboring
simplices of each lifted d-simplex (red triangles in Figure 4),
we can ensure that each lifted (d � 1)-simplex is locally
convex. We initialize our algorithm by selecting an arbitrary
d-simplex (a triangle in E2 or a tetrahedron in E3) from the
input triangulation, and setting its vertices’ weights to zero.

Although weights are assigned consistently to vertices of
T , some (d � 1)-simplices of the original triangulation are
not handled during the weight computation process described
above (see the yellow triangle in Figure 4). This is not an issue
for most (d�1)-simplices, which are locally convex naturally,
and appear in the reconstructed triangulation despite not being
processed. We describe next our handling of simplices that are
not locally convex after the lifting is complete.

B. Enforcing Conformal Meshes
Absent simplices can be forced to appear in the weighted

triangulation by using a subdivision process, also employed
in Delaunay-based mesh generation and modeling tech-
niques [22]. Such subdivision strategies ensure that the re-
constructed weighted triangulation conforms with the original
triangulation. Formally, given a triangulation T in Ed, the
subdivision ensures that for each k-simplex r of T there exists
k-simplices r

w1 , . . . , rw

s

, s � 1 in T
w

(the reconstructed
weighted triangulation) such that |r| = |r

w1[· · ·[r
w

s

|, where
|r| is the underlying space of r.

Suppose that an edge e 2 T is absent from T
w

, where
T

w

is the weighted triangulation obtained as described before.
The subdivision step consists of splitting e at its midpoint v

e

,
and assigning a weight to v

e

to ensure that it appears in the

weighted triangulation. As shown in the left of Figure 5, the
absent edge e intersects a set T

w

e

of d-simplices in T
w

. To
keep changes as local as possible, we ensure that the weight
of v

e

only alters the simplices of T
w

e

, and keep the remaining
triangulation unchanged. This property can be satisfied by
computing the weight of v

e

as follows: let t
v

e

be the d-
simplex of T

w

containing v
e

and t+
v

e

be the lifting of t
v

e

in
Ed+1. We call l

v

e

the vertical line through v
e

, and compute the
intersection point ṽ

e1 between l
v

e

and the support hyperplane
of t+

v

e

, as well as the highest intersection ṽ
e2 of l

v

e

with the
hyperplanes supporting the lifted d-simplices in T̃

w

� T
w

e

.
It is easy to see that any choice of weight assignment that

places v+
e

strictly between ṽ
e1 and ṽ

e2 ensures that v
e

will
appear in the weighted triangulation (v+

e

will be underneath the
lifted convex hull). This approach only modifies the simplices
in T

w

e

, since v+
e

is above the hyperplanes supporting the
simplices in T̃

w

� T
w

e

. In our current implementation, we
set a weight that places v+

e

halfway between ṽ
e1 and ṽ

e2 .
Although this procedure adds v

e

to the weighted triangulation,
it does not ensure that each sub-segment of e will appear in
the triangulation. If a sub-segment still does not appear, we
recursively apply the same procedure. Since the lifting of each
new vertex is placed below existing simplices, the subdivision
process finishes in a finite number of steps. In practice, few
absent simplices demand more than one or two iterations.

The procedure described above for recovering absent edges
can be extended to enforce triangular faces in 3D complexes.
The centroid of each missing triangular face is inserted and
positioned exactly as was done for absent edges. In fact, in
the 3D case, we first recover all missing edges before splitting
absent faces, since most missing triangles naturally appear
after the edges are recovered.

V. MERGING WEIGHTED DELAUNAY TRIANGULATIONS

One of the main advantages of a WDT is the fact that
incidence and adjacency relations among simplices are au-
tomatically resolved, thus avoiding the need for connectivity
manipulation. This benefit can be explored in applications
involving the interaction between two or more meshes, where
the guarantee of consistent connectivity between the meshes
is usually a complex and painful task. Below, we describe
two techniques that allow WDTs to be merged using a lifted
polyhedra construction, designed to keep changes as local as
possible and only modify a small neighborhood of the merged
region. Since meshes are often represented in different levels
of detail or refinement, merging results are prone to generate
badly shaped simplicial elements. We address this issue with
a simple fringe mechanism.

A. Convexification-based Merging
We call the first proposal convexification-based merging. Let

T1 and T2 be two triangulations and suppose that T2 must be
merged with T1 while keeping T1 as unchanged as possible
(i.e. we only want to affect a neighborhood surrounding T2).
We position T2 inside T1 and lift the polyhedron T2 in such a
way that T +

2 is squeezed between the lifted polyhedron T +
1



(a) merging region (b) lift to supporting hyperplanes

(c) lift polyhedron (d) local convexity perturbation

Fig. 6: Convexification-based merging

Fig. 7: Translation-based merging.

and the supporting hyperplanes for those simplices of T +
1 not

affected by the merging (Figure 6).
The squeezing process is composed of three steps. First,

the d-simplices of S ⇢ T1 that do not intersect T2 are iden-
tified (Figure 6.a) and their supporting hyperplanes computed
(Figure 6.b). In the second step, we set the weight of each
vertex v of T2 in such way that the vertex is placed at the
highest intersection ṽ between the vertical line passing through
v and the supporting hyperplanes of the d-simplices in S
(Figure 6.b). This construction results in a polyhedron in Ed+1,
denoted by T̃2(Figure 6.c). The final step makes the (d� 1)-
simplices of T̃2 locally convex, using a subdivision procedure
as before. Starting from the d-simplices t̃+

i

2 T̃2 with at least
one face on the boundary of T2, we apply a small vertical
perturbation on each vertex opposite to t̃+

i

, to position it above
the supporting hyperplane of t̃+

i

and below T +
1 . We repeat this

procedure recursively, moving vertices towards the interior of
T̃2 (Figure 6.d). Finally, we subdivide absent simplices to force
them to appear. Since vertices of T1 inside T2 are placed in the
interior of the convex hull of T +

1 [T
+
2 , they become redundant

and do not appear in the merged triangulation.
Although the convexification-based approach ensures that

the only simplices of T1 affected by the merging are the ones
in S, it is also prone to discard more elements of T2. In contrast
to the approach of Section IV-A that propagates a front while
computing weights, here we lift T2 by propagating different
fronts simultaneously from the elements at the boundary of
the merging region. Therefore, no guarantee can be given with
respect to the local convexity for simplices at the union of two
or more fronts, and non-locally convex faces can appear.

B. Translation-based Merging
We implemented a second merging scheme, called

translation-based merging, to reduce the number of missing
elements in T2. This approach is prone to change more
simplices in T1 than the previous one, but it also reduces the
number of missing elements of T2 considerably. We apply
the lifting scheme described in Section IV-A to T1 and T2

independently, but using a vertical displacement for T1 twice
as large as the one used for T2. More specifically, the value
of ✏ in equation (2) is halved when lifting T2, thus making
the lifted polyhedron T +

2 less curved than T +
1 . Once weights

have been assigned to vertices in T1 and T2, we displace T +
2

vertically (adding a constant to all weights) until it “touches”
T +

1 from below, as illustrated in Figure 7. As T +
2 is less

curved than T +
1 , their support hyperplanes tend to be below

T +
1 , thus keeping T2 unchanged after the merging process

(including simplices subdivided during the weight assignment
step). Although new subdivisions can appear in T2, and T1

can be affected in a wider neighborhood of T2, this merging
method behaves well in practice, as shown in Section VI.

C. Fringe
Badly shaped simplices are likely to appear during the

merging process, especially when meshes have distinct refine-
ment levels. In order to address this problem, we create an
intermediate triangulation, called fringe, that makes a smoother
transition between meshes to be merged together.

The fringing process works as follows: we initially compute
an estimate of local density. We assign an average edge length
to each vertex, and normalize these values to make the largest
average equal to 1. We then define a regular grid whose
resolution is given by the smallest edge present in the scene,
and place it around the inner mesh. The density estimates for
each vertex serve as boundary conditions on this grid, and we
run a Laplacian solver to smoothly transition between densities
on the inside and on the border of the grid.

The solution of the Laplacian smoothing solver can be seen
as the probability that a vertex on the regular grid should be
present in a transition mesh. Therefore, we selectively maintain
vertices of the grid based on their density estimates. Finally,

Fig. 8: Fringing. On the left, two meshes are merged, along
with the regular grid containing the local density estimates
for the meshes. Red circles mark boundary conditions on the
Laplacian Smoothing Solver. On the right, the smaller mesh is
merged to a fringe (in blue) that makes a graceful transition
between the resolution of the internal and external meshes.



(a) 2D meshes of the cartoon animation (b) Merging of all meshes in a given frame

(c) Four snapshots of the animation sequence

Fig. 9: 2D Cartoon Animation illustrating merging with several dynamic meshes. See video in supplemental material.

we construct the fringe by generating a Delaunay Triangulation
of the points that were maintained. We also apply one iteration
of Laplacian smoothing solver to the fringe to make its
simplices better shaped. Once the fringe is constructed, the
merging is computed in two steps: first, we merge the internal
mesh with the fringe, and then merge the result with the outer
mesh (Figure 8).

VI. EXPERIMENTAL RESULTS AND APPLICATIONS

We implemented the techniques described above using the
CGAL computational geometry library. We used CGAL’s
support for WDT computation. We computed vertex coordi-
nates and weights computed with our method, and CGAL to
compute the WDT. This has shown to be robust in the tests
we performed. A series of merging examples is given below
containing several triangulations of different characteristics,
including 2D and 3D meshes. In all experiments conducted,
we set ✏ = 10�4 (see equation 2 for details).

A. Merging 2D meshes

The ability and flexibility of merging triangulations is illus-
trated first with a physically-based cartoon animation of 2D
meshes. The animation is composed of a scene with meshes
that move inside a background triangulation. The background
mesh performs collision detection and simplifies object place-
ment, since we can compute the adjacency between distinct
objects by checking whether edges in the background grid
connect them. Figures 9(a) and 9(b) show the meshes and the
merging result using the translation-based scheme.

Figure 9(c) has four intermediate frames illustrating the
capability of our technique to handle multiple meshes simul-
taneously. In our implementation the elastic deformation of
each object was pre-computed. The order in which objects

are merged naturally solves the problem of front-to-back
alignment. In this example, we prioritize the mesh of the last
object merged, thus placing it in front of all the others.

As algorithms to compute the WDT always generate a trian-
gulation for the convex hull of the weighted points, we have
to handle concavities explicitly. Vertices in the background
grid inside a concavity of a merged mesh can be forced to
appear by adjusting their weights. This adjustment makes the
vertices’ lifted counterparts lie below the convex polyhedron
of all merged meshes, above their supporting hyperplanes. In
this example, we only handle missing edges at the boundary
of objects, while not forcing missing edges in the interior of
objects to appear. Therefore, mesh flips can be observed.

B. Merging 3D meshes

The second set of experiments shows the interaction be-
tween tetrahedral meshes. Due to occlusion, screenshots of the
merging result in 3D hardly convey the strength of our connec-
tivity oblivious technique. Therefore, we present renderings of
cutaway sections of the models. In addition, we first validated
merging results without fringing, since we wanted to stress the
impact at the tetrahedra closer to the merging region.

The first experiment is composed of a moving tetrahedral
sphere passing through a mesh of the aorta artery. Fig-
ures 10(a) and 10(b) show the sphere merged inside the aorta
using both the convexification and translation-based merging
schemes. Even though the convexification-based approach
impacts a smaller neighborhood around the merging region,
more absent simplices tend to be generated with this technique.

In Figure 10(b) we observe that some vertices in the
neighborhood of the sphere were removed (became redundant)
when using translation-based merging. However, no missing
simplices were identified in the translation-based approach,



(a) Convexification-based merging

(b) Translation-based merging

Fig. 10: Merging the aorta artery tetrahedral mesh with a
tetrahedral decomposition of a sphere. a) Convexification-
based merging, 4.63% missing edges; b) Translation-based
merging, no absent edges. See video in supplemental material.

Fig. 11: Comparison between fringe merging (left) and
convexification-based merging (right). The fringe ensures a
smoother transition between the two merged meshes, thus min-
imizing the occurrence of elongated, low-quality tetrahedra.

while 4.63% of missing simplices were found and subdivided
using the convexification-based merging (all inside the sphere)
Figure 11 compares the result of convexification-based merg-
ing in Figure 10 to the result obtained using fringing, which
allows a smoother transition between the aorta and the sphere.

Table I lists the number of vertices in each mesh, as well as
the time to perform weight computation and the triangulation.
We can observe that timings for weight computation are
negligible, the most expensive operation is the triangulation.

Dataset Vertices Weight Computation Triangulation
Aorta 9529 45.05 1259.52
Sphere 58 0.094 12.28
Grid 1 50480 305.15 6633.47
Rocker 10713 53.24 1662.97
Rod 3098 10.24 870.40
Valve 3857 16.38 882.68
Grid 2 8371 30.72 744.14
Buddha 27975 178.17 5230.59

TABLE I: Mesh data and WDT computation (all times in ms)

Merging Meshes Convexification-based Translation-based
Aorta-Sphere 53.24 63.48

Grid 1-Rocker 33062.91 38082.17
Rocker-Arm 528.38 503.80

Valve-Rod 223.23 196.69
Grid 2-Buddha 61526.01 665647.87

TABLE II: Merging Times (all times in ms)

Table II shows the merging time in both approaches. In the
second example, three merges are used to compute the result.
Both merging methods produce similar performance results.

Figure 12 illustrates how our technique handles large and
complex tretrahedral meshes with arbitrary topology. Fig-
ure 12(a) shows the tetrahedral meshes (only boundary faces
are shown) of three mechanical pieces merged inside a cubic
background grid. Notice from the close-ups that the anisotropy
of the gray meshes has been preserved after merging. In fact,
no missing simplices (thus no new vertices) have appeared
after merging these models using the translation-based scheme.

VII. DISCUSSION AND LIMITATIONS

A remarkable aspect of our approach is that, despite its
simplicity, it is able to handle and merge complex simplicial
meshes without managing connectivity explicitly, as is usually
done with conventional Delaunay methods. However, it is
important to point out that there exist significant differences
between our approach and Delaunay-based schemes. Our tech-
nique starts from a set of triangulations, whereas Delaunay-
based methods build a triangulation from curves and surfaces
constraining the domain of interest. The difference between
the two methodologies becomes more evident when dealing
with anisotropic meshes. Although anisotropic versions of
Delaunay Triangulations and Constrained Delaunay Triangu-
lations have been used to handle anisotropic meshes [23],
such techniques demand either tensor estimation to define
the anisotropy or an explicit manipulation of constraints,
which can become as complex as the connectivity management
during merging operations. In fact, our approach can be seen as
a first step toward a new framework for connectivity oblivious
mesh representation using the idea of regular triangulations.

In some applications, the translation-based merging scheme
may affect a wide neighborhood around the merging region,
making vertices redundant. Although one can always reinstate
missing vertices by vertically displacing then beneath the con-
vex hull of lifted points, checking for redundancy can become



(a) (b)

(c) (d)

Fig. 12: Merging in 3D: (a) tetrahedral meshes to be merged
(boundary surface is shown), (b) mechanical pieces merged
in the background grid; (c) and (d) closeup view show the
original meshes were preserved after merging.

costly. Plane projection plus convexification can indeed ensure
local mesh updates for the background grid. However, the
number of internal missing simplices exceeded 10% in one of
our experiments (our worst case), which can be unacceptable
in applications where internal meshes must be preserved. This
large number of absent elements, in some cases, is due to
numerical instabilities, as the cavity between the convex hull
and the support planes can become too narrow. This makes
it numerically difficult to convexify the lifted polyhedron
with vertical perturbations. If an excessively large vertical
perturbation is applied to a vertex, numerical predicates can
“see” adjacent simplices as coplanar, violating what is known
as the general position hypothesis. This makes it difficult to
predict which vertices will be seen as coplanar.

VIII. CONCLUSIONS

In this work, we proposed methods, based on weighted De-
launay Triangulations, to merge simplicial complexes without
the need for explicit management of connectivity information.
We also presented a new algorithm to compute these weights
based on breadth-first traversal of the mesh. Merging results
are satisfactory, in particular with respect to the algorithm’s
stability and locality of mesh updates.

In the future, we would like to revisit the weight assignment
technique, to better enforce local convexivity of the lifted
polyhedron. Another interesting avenue for future research is
to combine our framework with numerical simulations. Since
our merging technique generates high quality simplices, we
believe it may be coupled with existing numerical models.
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