
Memory-Efficient Order-Independent Transparency
with Dynamic Fragment Buffer

Marilena Maule∗, João L. D. Comba∗ Rafael Torchelsen† Rui Bastos‡
∗UFRGS

{mmaule,comba}@inf.ufrgs.br
†UFFS

rafael.torchelsen@uffs.edu.br
‡NVIDIA

rbastos@nvidia.com

Fig. 1. Screenshots of the exterior and interior of the Power Plant model, with up to 588 transparent layers and 12,748,510 triangles rendered with the
Dynamic Fragment Buffer technique at interactive frame rates.

Abstract—Order-independent transparency (OIT) rendering is
computationally intensive due to required sorting and sufficient
memory to store fragments before sorting. We present Dynamic
Fragment Buffer, a revamped two-pass OIT rendering technique,
which performs correct blending of a large number of transpar-
ent layers at interactive frame rates. Our approach self-adjusts
memory allocation to handle a variable number of fragments
per pixel without wasting memory. In this paper we perform a
detailed analysis of several design decisions which lead to this
technique. We present a collection of experiments that illustrate
the advantages of our technique with respect to others OIT
algorithms in the literature.

Keywords-Order-Independent Transparency

I. INTRODUCTION

The ability to render scenes with transparency effects is
crucial to increase realism in computer-generated images. The
transparency process relies on the composition, in visibility
ordering, of multiple samples that capture the interaction of
light against transparent materials of the scene. To enforce
ordering for transparency computation, object-space sorting
is a possibility. However, this can lead to artifacts in the
composition when scenes have interpenetrating primitives.

Another possibility is to defer the visibility ordering to
be performed at fragment level, leveraging the computational
power of graphics cards. The class of algorithms that do
fragment sorting is truly order independent (thus, the OIT)
allows correct fragment blending. To accommodate for sorting

at the fragment level, OIT algorithms must have a strategy to
combine multiple samples (here simply called layers) for each
pixel in depth-sorted order.

The most intuitive solution to the sorting problem, inti-
mately attached to the transparency effect, is to store all
fragments in an unbounded buffer, and sort them in a post-
processing phase. The per-pixel storage can be done using
sophisticated data structures, but their efficient implementation
on the GPU can be tricky due to the multiple factors that
influence performance (e.g. cache, memory locality, concurrent
accesses and write updates, etc). This paper shows that the
correct usage of memory is able to shift the limits, and handle
scenes that the others cannot.

An efficient approach is to use a fixed-size array of layers
per pixel, because it has low costs of memory management.
However it might incur in inaccurate results if any pixel
requires more layers than the pre-allocated array size. Fur-
thermore, this approach wastes memory since the number of
layers varies across pixels.

The use of linked lists is a classical solution for dynamic
memory allocation without pre-defined size. However, current
GPUs do not have dynamic allocation of memory, so, the
emulation of per-pixel linked lists in GPU buffers suffers
from performance penalties caused by heuristic of memory
allocation in overflow cases.

Another approach to the problem uses a base+displacement



scheme that requires a two-step computation. In the first
step, only the number of layers required for each pixel is
computed. Once the number of layers is known, in the second
step, per-pixel layers can be evaluated and stored compactly
in consecutive memory addresses. Implementing this idea
efficiently on the GPU is particularly challenging, as we can
observe in the implementation described in the DirectX SDK
11 [1], which crashes with an untreated overflow for scenes
with an average of more than 8 layers per pixel.

In this paper we present the Dynamic Fragment Buffer
(DFB), an efficient implementation that shifts the memory
bottleneck for storing transparent layers, enabling the correct
rendering of a larger set of scenes with high number of layers
and highly variable distribution of these layers. We follow the
base+displacement idea, but with significant improvements in
performance and memory management. For example, Figure 1
shows screenshots of the rendering at interactive rates of the
Power Plant model, which can generate frames with several
hundred of per-pixel layers.

The non-trivial impact of design decisions in the GPU im-
plementation of these algorithms led us to design a collection
of experiments, which validates the proposal of our algorithm,
and allows it to be compared against competing strategies. All
of them also perform visibility-correct blending of fragments.
In summary, the contributions introduced in the paper are:

• Dynamic Fragment Buffer, a memory-economic tech-
nique able to allocate the exact amount of memory
required to the multiple per-pixel layers in each frame;

• An efficient integration of our solution using CUDA with
the OpenGL pipeline, which allows rendering scenes with
multiple layers at interactive frames;

• A comprehensive evaluation and analysis of competing
OIT strategies, using scenes of increasing complexity and
different image resolutions.

II. RELATED WORK

There are two main classes of OIT algorithms for handling
transparency computation at the fragment level: depth-peeling
solutions, originated with the Virtual Pixel Maps [2], and
buffer-based solutions, inspired by the A-buffer [3]. Depth-
peeling approaches combine layers with a reduced memory
usage, but require several passes over the geometry. On the
other hand, buffer-based methods can be implemented in a
single rendering pass, at the expense of memory to store
multiple layers. To correct evaluate transparency, all layers
must be stored in the buffer.

In a single geometry step, the A-buffer first stores all
fragments in per-pixel linked lists, followed by a second
step where lists are sorted in visibility order and blended
accordingly. The Per-Pixel Linked Lists (PLL) [5] describes
a GPU implementation closest to the A-buffer. This technique
takes advantage of atomic operations, recently available in
shaders, to emulate a linked list inside a buffer in shared GPU
memory. Each node in the linked list contains the fragment
attributes and an index to the previously stored fragment of
the same pixel. A variation of this algorithm using paged

Fig. 2. Per-Pixel Paged Linked Lists: example showing three transparent
triangles and three transparent lines, which are illustrated over the Head
Pointer Buffer. The Head Pointer Buffer keeps a pointer to the PagedNode
Buffer, which indexes the page of the last received fragment from the
respective pixel. For example, the number 18 in the Head Pointer Buffer
indicates that the last fragment for that pixel entry is stored in page 18 of
the PagedNode Buffer. The PagedNode Buffer keeps fragments attributes in
pages of size four per node, with one index to the next page and if there is
no more pages, it indicates with −1. For example, in page 18, the number 6
indicates that the continuation of the list is in page 6. Image modified from
[4].

per-pixel lists (PPLL) was described in [6]. The paging
scheme, illustrated in Figure 2, stores more fragments per link,
improving memory access efficiency.

The general idea of the A-buffer algorithm using a
base+displacement approach is implemented in DirectX SDK
11 [1]. The method consists of two geometry passes per frame.
The first pass only counts how many fragments are generated
per pixel. Once concluded, a prefix sum operation computes
offsets, used in the second geometry pass to store fragments
inside an entry in the shared buffer. A final shader sorts the
fragments in visibility ordering, before blending results in the
image buffer. The performance penalty of the two geometry
steps can be reduced using vertex buffer objects. However,
the prefix sum operation performed in shaders can be very
inefficient, and turn the application impractical for scenes
with a large number of transparent layers and large screen
resolutions. The S-buffer proposed by Vasilakis and Fudos [7]
addressed the prefix sum issue described above, and is similar
to the CUDA Thrust implementation we used in our proposal.

Slightly different from the A-buffer, the F-buffer [8] and
R-buffer [9] also store all fragments, but propose to use a
different structure instead of a linked list. Both algorithms
keep all fragments in a general buffer, with an attribute that
explicitly encodes the pixel associated to them. Fragments are
processed in multiple steps in visibility ordering. At each step,
the frontmost fragment is processed to blend its contribution
to the resulting image. Once processed, a fragment is removed
from further processing. To overcome the unbounded memory
requirement, techniques were proposed using buffers of fixed-
sizes[10], [11], [12] and geometry preprocessing [13].

A simplification of the A-buffer is the use of a buffer of
fixed-size, which is very efficient, simple to implement and has
the advantage of not needing dynamic memory management.
However, it may lead to artifacts due to overflow. Correct



transparency evaluation incurs in large memory requirements
proportional to w × h × l, where w and h are the width and
height of the screen, and l is the maximum number of layers in
the scene. An example of fixed-sized A-buffer implementation
is described in FreePipe [11]. For comparison purposes, we
use the fixed-size buffer implementation described in [14],
which is more efficient than FreePipe because it uses GLSL
4.0 instead of CUDA, thus taking advantage of the optimized
hardware pipeline. We refer to this implementation as Buffer
3D (B3D).

The depth-peeling method consists in multiple passes over
the geometry to extract visibility layers in depth-sorted order.
It can be performed in back-to-front order, as initially pro-
posed by Mammen, or in front-to-back order, as proposed by
Everitt [15], or in both directions, as proposed in the dual
depth-peeling algorithm [16]. These approaches are able to
correctly evaluate transparency and have the advantage of
low resources requirements, but the geometry passes might
increase the processing time.

The Stochastic Transparency method [17] differs from the
other methods by exploring probabilistic sampling to approx-
imate blending without actually performing the costly sorting
operation. However, it incurs in storage of multiple samples
per pixel, furthermore, the final image requires post-processing
to treat the resulting noise due to the limited number of
samples.

In this paper, we focus our testing and analysis on tech-
niques able to perform correct OIT rendering. We refer the
work of Maule et al. [4] for a more complete review of OIT
algorithms.

III. DYNAMIC FRAGMENT BUFFER

The Dynamic Fragment Buffer (DFB) was designed to
render high quality images, composed by multiple trans-
parent layers, at the best memory usage possible. It uses
a base+displacement approach, because it provides compact
storage of multiple fragments. Furthermore, most steps can be
efficiently implemented by shader programs, leveraging the
optimized graphic hardware pipeline.

Rendering of the opaque portion of geometry is more
efficient when done on a separated geometry step, which
sets up the framebuffer background and the depth buffer. In
the following transparency rendering step, the depth buffer is
tested to discard occluded fragments, but it is not updated.
Rendering opaque and transparent fragments altogether is
possible, but implies in wasting processing time and memory
by shading and storing occluded fragments. When working
with transparent textures, such as foliage rendering, it may be
inevitable.

The algorithm for transparency rendering has four modules:
(i) fragment counting, (ii) prefix sum, (iii) fragment storing,
and (iv) sorting and blending. Fragment counting uses a
geometry pass to render primitives without shading, in order
to evaluate the number of fragments to be stored at each
pixel. The prefix sum accumulates these counters to compute
a base address, which points to the fragment list associated

Fig. 3. Execution flow: an overview of similarities and differences among
the Buffer 3D (B3D), Dynamic Fragment Buffer (DFB) and Paged per Pixel
Linked Lists (PPLL).

to each pixel in the shared buffer. A second geometry pass is
performed to compute and store fragments with shading. The
final step consists of the sorting of all fragments of a given
pixel, followed by blending. Figure 3 shows the execution flow
of DFB, along with the competing strategies B3D and PPLL,
with three modules in common: draw geometry, shade/store
and sort/blend. We detail the DFB modules below.

A. Fragment Counting

The first step of the algorithm uses a geometry pass to
count the number of fragments per pixel. For this purpose, the
scene geometry is rendered without shading. The algorithm
assumes that opaque geometry is already processed, so, trans-
parent fragments are tested against the depth buffer without
modifying its value, in order to discard occluded fragments.

We use a shader to count fragments, with each thread being
responsible for updating the count in a countingBuffer. This
is implemented using an atomic increment, in order to avoid
read-after-write race conditions among concurrent threads.
A 32-bit unsigned integer texture is used to represent the
countingBuffer. The stencil buffer could also be used for this
purpose, but its 8-bit representation would limit the scenes to
256 layers. This limitation would prevent rendering models
such as the Power Plant, which has cases of more than 500
layers (Section IV). Since no fragments are rendered and the
color buffers contents are not read in this stage, the color buffer
is not cleared, which improves performance.

Conversely, the countingBuffer must be cleared, and the
simplest solution would be calling a shader which would
impose a memory synchronization barrier. However, this can
be done more efficiently. Before the first frame, a shader is
called to clear the countingBuffers. For the subsequent frames,
instead of calling a new shader, we clear this buffer at the end
of the last stage of the algorithm (sorting/blending stage).

B. Prefix Sum

In the second stage, we prepare the indexing structures to
store all fragments consecutively in memory. For this purpose,
for each pixel, we define a base index that points to the address
in the shared buffer where the associated fragment list starts.
This is done using a prefix sum over the list of per-pixel
counting results, computed in the previous stage.



Fig. 4. DFB storage. The pixel-correspondent value from the countingBuffer
s added to the associated index from the baseBuffer. This composed address
stores the incoming fragment into a free position in the shared buffer.

Prefix sum is implemented efficiently on the GPU using
a scan operation. Starting from zero, the scan iteratively
accumulates the counting of fragments from previous pixels,
and results are stored in a baseBuffer texture. After the scan
ends, the per-pixel base index, pointing to a reserved list into
the shared buffer, is stored in the baseBuffer. The last base
combined with the last counter indicates the total number of
transparent fragments generated for the entire frame.

We use the optimized parallel scan implementation provided
by the Thrust 1.5.1 [18] library, with additional cost of
memory copies. Since Thrust is still being developed, the
direct access of CUDA resources by Thrust operators is not
available. However, we can copy a CUDA resource array, like
the counting and base buffers, to a Thrust vector, where the
scan operation can be performed quickly. Once the scan ends,
data is copied back to the CUDA array, which consists of a
pointer to the textures accessed in subsequent shaders. To end
this step, the countingBuffer is efficiently cleared.

C. Storing Fragments

The second geometry pass is responsible for the generation
of the fragments with shading, and its sequential storage
in shared memory (which we call the Dynamic Fragment
Buffer). The per-pixel base index (baseBuffer), computed in
the previous phase, is used to address the fragment list in the
shared buffer. Each base address is added to the incoming
fragment count to define the address of the next free position
to store the fragment. So, before start this step, the countBuffer
must be cleared. In this step, the framebuffer is not used, and
do not need to be cleared. As nothing is read from the shared
buffer yet, it does not need to be cleared either. Figure 4
illustrates the addressing scheme for an incoming fragment.

D. Sorting and Blending Fragments

The last stage of the algorithm sorts and blends fragments
from the shared buffer. The base indices are used to determine
the start of the fragment list, and the counters state how many
fragments need to be considered for each particular pixel.

A shader pass is used to first sort the pixel lists of fragments,
followed by the colors compositions. We launch one thread for
each pixel, which is responsible to perform an insertion sort
in the pixel list and traverse it in front-to-back order, blending

Resolution B3D DFB PLL4 PLL1 DxDFB
5002 1250 500 500 333 11
8002 625 294 213 141 4
11002 345 170 114 74 0

TABLE I

Performance (in FPS) comparison for the decimated Bunny model (69K
triangles). Small resolutions, in the first column, were used to be able to
capture the performance of DxDFB.

the fragments. The baseBuffer indicates were the pixel list
start, and the countingBuffer indicates how many pixels the list
contains. If the list is empty, no color is sent to the framebuffer.

As mentioned before, the coutingBuffer is cleared in this
step, thus avoiding an extra clear shader call.

IV. EXPERIMENTS

Experiments were performed in a computer with an Intel i7
980 processor and a GeForce 580 (1.5 GB working memory)
running Windows 7. We compare the DFB implementation
against competing techniques using a collection of scenes
with varying geometry and number of transparent layers (non-
opaque) under different screen resolutions. All techniques
were completely implemented using GLSL 4.0, only the DFB
scan makes use of Thrust 1.5.1 with CUDA 4.0. Instead
of rendering the result to the framebuffer, we used Frame
Buffer Objects (FBO) to generate images with resolutions not
supported by our monitors.

As discussed in the related work, a base+displacement
algorithm closest to our proposal was described in the DirectX
SDK11 [1]. We made minimal modifications to the original
DirectX Deep Frame Buffer proposal (DxDFB), just to load
3D models and get performance measurement values by the
QueryPerformanceCounter Windows function. The B3D and
the PPLL implementations were instrumented with the same
performance measurement code. For these techniques, and
for the DFB, we used an insertion sort algorithm due to its
efficiency for arrays with few elements. PPLL was tested in
two versions: (i) four fragments per-page (PPLL4) and (ii) a
single fragment per-page (PLL), emulating the original per-
pixel linked lists technique.

To validate the algorithms under different scene configura-
tions, we measured performance with a virtual walkthrough
around the scene. The viewing changes allow the algorithms
to be naturally tested in situations with varying image cover-
age, visible geometry and number of transparent layers. We
evaluated synthetic scenes, variations of instances with simple
geometric models, as well as a stress test with a complex
CAD model. Since B3D uses a fixed per-pixel array, without
overflow checking. So, we set its size to the maximum number
of transparent layers (computed offline by a tracer program for
each test configuration). For all tests, we guarantee the correct
image generation.

The DxDFB implementation showed to be very limited, as
shown in Table I, we could only evaluate it using a decimated
version of the Stanford Bunny (with 69K triangles).DxDFB



Fig. 5. FPS for synthetic scenes. Scenes are composed of 1, 5 and 10 quads,
covering different percentages of the screen, for three image resolutions.
Illustrations of the coverage are presented above each graph.

has the lowest FPS among all methods, and does not run
at higher resolutions. DFB is much more competitive and
faster than PLL and PPLL, while being the one to use the
least memory of all. The B3D algorithm is the fastest among
all methods due to its simplicity, and in this Bunny scene
it is twice as fast as the others. However, the B3D method
is severely limited by the amount of memory available, and
has trouble dealing with scenes with uneven distribution of
transparent layers across all the pixels (because it allocates the
same number of layers, regardless of how many are needed).

Figure 5 shows the results of synthetic scenes used to
evaluate the characteristics of the techniques under controlled
parameters. The scenes are composed only by quadrilaterals
to alleviate the geometry processing cost, and let us focus
in the other aspects. We changed (i) the screen resolution,
(ii) the number of transparent layers, by introducing more
quadrilaterals, and (iii) the percentage of pixels covered on
the screen.

Memory consumption of each technique depends on the at-
tributes stored for each pixel, and can be calculated as follows:
(i) B3D is proportional to (width× height)×max layers,
(ii) PPLL, to (width× height× percent)× (dmax layers

page size e ×
page size), and (iii) DFB, to (width× height× percent)×
max layers. Even for 0% coverage, DFB still has to perform
two geometry steps, thus decreasing performance. When more

Fig. 6. Memory management costs for synthetic scenes: costs are given in
seconds for scenes with 1 and 10 quads, with varying resolutions and screen
coverage. Only methods with dynamic memory allocation are considered.

than 25% of the screen is covered, DFB is the second fastest
technique. Note that B3D wastes memory in inverse proportion
to the percentage covered (e.g., when 25% of the screen is
covered, 75% of the memory reserved by B3D is wasted).

The same synthetic scenes are used to evaluate the isolated
costs of memory management, associated to the techniques
with dynamic memory allocation. Thus, B3D, which uses
a fixed buffer, is not considered here. Figure 6 shows the
time consumed by overflow checking and buffer resizing. It
includes counting and scan stages, and the buffer resize when
a future overflow is detected by the DFB. For the PPLL
techniques, it includes overflow queries and the heuristic buffer
resize (which simply doubles the size needed by the last frame,
not taking into account that some pages are not completely
full). When the screen resolution increases 25%, we observe
the PPLLs performance decreases by an order of magnitude,
while DFB costs increase at a slower rate.

Figure 7 presents a series of performance and memory
measurements for the Stanford Dragon model. The memory
consumption, given in colored boxes, represents the largest
amount required by a given method to render all frames in the
virtual walkthrough. We separate the results in three parts, cor-
responding to scenes with 1, 5 and 10 instances of the model.
Scenes with more than one instance have them disposed side
by side, and the camera navigates elliptically around them.
Each scene is rendered with 3 different resolutions, for a
total of 9 graphs. As expected, B3D is the fastest algorithm.
However, it can not handle 4 out of the 9 tests, because the
system does not have the required memory. Discarding B3D
from the analysis, DFB has the best performance in 8 of the
9 tests, while having the lowest memory consumption.

We also performed experiments with a massive CAD model,
the entire Power Plant, composed of 12,748,510 triangles. The
camera visits the outside and interior of the model, varying



drastically the quantity of visible geometry and transparent
layers during the tour. Because this model has a large number
of triangles and transparent layers (up to 590), memory
requirements are high and the B3D approach is unable to
run correctly (it would require more than 4GB for fragment
storage). This case also illustrates the situation where the
stencil buffer cannot be used to count fragments, since it can
only count up to 256 layers. All techniques with dynamic
memory allocation can render this scene at barely interactive
rates (between 4 and 8 FPS on average), but only at the low
resolution of 800x600.

Figure 8 demonstrates a virtual walkthrough in the Power
Plant model. At the top, some screenshots represent the model
coverage on the screen and its relation to performance (at the
bottom of the figure). More pixels covered leads to peaks of
processing time, which is represented by the lines plotted in
the front plane. In the background, a stacked chart presenting
the count of pixels containing different number of layers. We
can also observe the impact of the number of layers over
the performance of the methods. We clearly observe the DFB
time line smoother than the others. The peaks in PPLL4 and
PLL plots are caused by the hick ups of memory reallocation.
In the virtual walkthrough, they represent frozen frames. We
observed a correlation between peaks and the increase of depth
complexity in the frames. DFB not only has a consistent
superior performance, but also requires less memory. This is
because overflows are easier identified by the total amount
of memory required by the frame, and DFB knows the exact
amount of memory that need to be allocated in such cases.

V. DISCUSSION

In this section we discuss the results obtained above with
regards to the geometry costs, impact of varying image reso-
lutions, costs of memory allocation, and image quality.

A. Performance Impact due to Geometry Processing

Scenes with a large number of triangles and few transparent
layers configure the worst situation for the DFB technique due
to its two geometry passes. The impact of the two passes can
be clearly seen in Figure 7 for the lowest resolution with 10
instances. For the PPLL techniques, the amount of geometry
influences the most when a frame must be rebuilt due to
overflow. B3D, which uses a single geometry pass, is less
affected than the others with respect to geometry costs.

B. Performance Impact due to Image Resolutions

The scan operation is the costliest step of the DFB, and its
performance is directly dependent of the screen resolution.
In our tests, the Thrust exclusive scan showed to be data
dependent, which means that its performance changed with
the number of transparent layers in the frame. Due to the fixed
array allocation, the B3D approach required more memory to
keep all fragments. This was especially important for high
depth-complexity scenes, where B3D was unable to handle
large resolutions without exceeding the memory limits.

Fig. 7. FPS and memory consumption for the Stanford Dragon model. Tests
with scenes composed of 1, 5, and 10 instances of the model and three image
resolutions. One model has 871,414 triangles, with up to 20 transparent layers.
Five instances can go up to 28 layers, and 10 instances up to 46 layers.
Performance graphs have different scales to better present the differences
among techniques when the number of instances changes. Boxplots display
performance variations among all frames in the virtual walkthrough, with 25,
50 and 75 percentiles, and upper and lower errors.

PPLL also decreases performance when image resolution
increases, but the causes are different and the performance
loss is greater. To test for overflow, PPLL must wait until the
GPU finishes processing the current frame, causing a pipeline
stall. When more pixels are covered, the heuristic re-allocation
causes the frame to be rebuilt many times, always waiting
to know whether there was overflow or not. Performance
degradation due to such stalls can be seen in all results
(Figure 5, 6, 7 and 8), especially in the peaks of PLL and
PPLL plots in Figure 8.

As can be seen in Figure 6, the DFB performance degrades
smoothly as the resolution increases, and its memory con-
sumption is lower than the other approaches (Figure 7). This
makes the DFB the most suitable technique for applications
that require rendering large image resolutions.

C. Performance Impact due to Memory Allocation

The DFB was named after its ability of adjusting itself
at each frame to use the minimum memory possible, while



Fig. 8. A tour around the Power Plant model: only DFB, PPLL4 and PLL were able to visualize the full Powerplant with 12,748,510 triangles and up to
590 transparent layers, at 800x600. Screenshots show frames captured during the tour. The graph lines show the seconds to generate each frame of the tour.
Color-coded areas in the background show the percentage of pixels with different numbers of transparent layers; each strip indicates ranges of 5%, up to a
total of 50%. The other half is filled by fragments with [0..9] layers. Peaks in PLL and PPLL4 are caused by memory reallocation.

keeping the necessary fragments to correctly evaluate OIT
using less memory than the others. Since it requires contiguous
storage, an amount of memory must be pre-allocated to assure
contiguity.

PPLL and B3D techniques also need contiguous memory,
but they cannot estimate the correct buffer size because, having
a single geometry pass, they are unable to count the number
of fragments that must be stored in each frame. Because of
that, both techniques may waste memory, or lose fragments
when the allocated number of layers is not enough (overflow).

Overflow cases may produce incorrect renderings. PPLL can
detect these cases, resize the buffer and rebuild the frame.
Since this technique does not know how many fragments were
lost, it can not precisely increase the buffer size. Thus, a
heuristical increase of the buffer size is applied and the frame
is re-generated, overflow is checked again, and the process
repeated until the buffer size is large enough, or until there is
no more memory available. The consequences of this iterative
memory allocation are the elevated costs presented in Figure 6,
and the peaks of performance loss in Figure 8. Because the
DFB monitors closely the number of fragments per pixel, and
the total number per frame, an overflow only occurs when the
GPU memory is insufficient to handle the frame.

D. Performance Impact due to Memory Addressing

Both the DFB and B3D have sequential per-pixel arrays of
fragments, which helps to improve memory locality. However,
B3D uses an array of fixed size, thus forcing a conservative
choice of slots per pixel, leading to memory wasting. When
arrays are processed in B3D, the look-ahead cache may copy
trash from unused entries. The array organization of DFB
avoids both wasting and copying trash to the cache.

Differently from DFB and B3D, the main PLL drawbacks
with respect to memory addressing are the bottlenecks gener-
ated due to the use of a single counter for all pixels, leading to
serialization, and the random memory access. Both problems
are also shared by PPLL, which reduces them by creating
pages of consecutive fragments. But, it is still hard to define a
good page size. If the page is too small, many random accesses
are required to assemble the list; if the page is too big, memory
is wasted and trash is copied to the cache. The same does not
occur with the DFB, which has fragments from the same pixel
sequentially organized in the shared buffer.

B3D has better performance than DFB since it has only one
texture read to get the fragment list, while DFB needs two.
PLL and PPLL need to follow several links of the list, using
random memory accesses, to assemble the entire fragment list.

E. Image Quality

All the algorithms evaluated were able to compute correct
images of transparent scenes if the system provides enough
memory. Since the physical components are limited, manage-
ment of the existing memory is necessary to avoid waste and
allow generation of complex scenes with several layers.

DFB is able to dynamically require more memory while
producing the frame. Thus, an overflow only occurs when
there is no more memory available for the GPU. The DxDFB
implementation could do the same, but the implementation
fixed the buffer to an average of eight fragments per pixel.
For simple scenes this is enough, since some of the pixels
might not have transparency layers, while others may have
more than the average number.

Differently, PPLL detects and treats overflow cases, as
described above. Once the algorithm detects an overflow, it



increases the buffer by an estimated size until the overflow
no longer happens, or the memory required is not available.
For all techniques, artifacts can happen if the memory is not
enough. By using less memory, DFB is less susceptible to
such artifacts. B3D could use a similar heuristic to increase
the buffer size, but the reallocation of the entire buffer due to
one missed fragment could result in severe performance loss.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we introduced DFB, a memory-efficient al-
gorithm to render, at interactive rates, high-quality images
from scenes composed of several transparent layers. When
compared to fixed-size approaches such as B3D, DFB presents
memory savings proportional to the asymmetry of layers
among pixels in the frame. With increasing number of trans-
parent layers and screen resolution, B3D becomes impractical
due to its high memory requirements. Compared with PPLL,
the DFB performance advantage increases with the number of
transparent layers and screen resolution, due to the interactive
memory allocation used by PPLL.

Results shown that DFB has the best memory usage, with
the same image quality at competitive frame rates. It also pre-
sented significant improvements over the DxDFB technique,
being able to achieve interactive frame rates, thus making our
solution competitive with the state of the art OIT techniques.
Even for scenes with a large amount of geometry, like the
Power Plant, DFB proved to be the best choice.

There are several avenues of future work. We would like to
extend our algorithm to support larger image resolutions for
massive models, possibly using some space partitioning in the
scene. In addition, we would like to revisit recurrent problems
of OIT methods, such as z-fighting and aliasing.

ACKNOWLEDGMENT

This work was sponsored by a scholarship by Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES).
We also like to thank Vitor Pamplona for additional support.

REFERENCES

[1] Microsoft, “Oit11 sample,” http://msdn.microsoft.com/en-
us/library/ee416572%28v=VS.85%29.aspx, 2010.

[2] A. Mammen, “Transparency and antialiasing algorithms implemented
with the virtual pixel maps technique,” IEEE Comput. Graph. Appl.,
vol. 9, no. 4, pp. 43–55, 1989.

[3] L. Carpenter, “The a-buffer, an antialiased hidden surface method,”
in SIGGRAPH ’84: Proceedings of the 11th Annual Conference on
Computer Graphics and Interactive Techniques, 1984, pp. 103–108.

[4] M. Maule, J. ao L.D. Comba, R. P. Torchelsen, and R. Bastos, “A
survey of raster-based transparency techniques,” Computers & Graphics,
vol. 35, no. 6, pp. 1023 – 1034, 2011.

[5] J. C. Yang, J. Hensley, H. Grűn, and N. Thibieroz, “Real-time concurrent
linked list construction on the GPU,” Computer Graphics Forum, vol. 29,
no. 4, pp. 1297–1304, 2010.

[6] C. Crassin, “Paged per pixel linked lists,”
http://blog.icare3d.org/2010/07/opengl-40-abuffer-v20-linked-lists-
of.html, 2010.

[7] A. A. Vasilakis and I. Fudos, “S-buffer: Sparsity-aware multi-fragment
rendering,” Eurographics Short Paper, 2012.

[8] W. R. Mark and K. Proudfoot, “The f-buffer: a rasterization-order fifo
buffer for multi-pass rendering,” in HWWS ’01: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, 2001,
pp. 57–64.

[9] C. M. Wittenbrink, “R-buffer: a pointerless a-buffer hardware
architecture,” in HWWS ’01: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware, 2001, pp.
73–80.

[10] N. P. Jouppi and C.-F. Chang, “Z3: an economical hardware technique
for high-quality antialiasing and transparency,” in HWWS ’99: Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, 1999, pp. 85–93.

[11] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu, “Freepipe: a pro-
grammable parallel rendering architecture for efficient multi-fragment
effects,” in I3D ’10: Proceedings of the 2010 ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games, 2010, pp. 75–82.

[12] M. Salvi, J. Montgomery, and A. Lefohn, “Adaptive transparency,” in
Proceedings of the ACM SIGGRAPH Symposium on High Performance
Graphics, ser. HPG ’11. New York, NY, USA: ACM, 2011, pp. 119–
126. [Online]. Available: http://doi.acm.org/10.1145/2018323.2018342

[13] L. Bavoil, S. P. Callahan, A. Lefohn, a. L. D. Comba, Jo and C. T.
Silva, “Multi-fragment effects on the GPU using the k-buffer,” in I3D
’07: Proceedings of the 2007 Symposium on Interactive 3D Graphics
and Games, 2007, pp. 97–104.

[14] C. Crassin, “Fast and accurate single-pass a-buffer using OpenGL
4.0+,” http://blog.icare3d.org/2010/06/fast-and-accurate-single-pass-
buffer.html, 2010.

[15] C. Everitt, “Interactive order-independent transparency,” Technical re-
port, NVIDIA Corporation, 2001.

[16] L. Bavoil and K. Myers, “Order independent transparency with dual
depth peeling,” Technical report, NVIDIA Corporation, 2008.

[17] E. Enderton, E. Sintorn, P. Shirley, and D. Luebke, “Stochastic trans-
parency,” in I3D ’10: Proceedings of the 2010 ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, 2010, pp. 157–164.

[18] nVidia, “Thrust,” http://code.google.com/p/thrust/.


