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Abstract—The use of computational techniques in the process-
ing of histopathological images allows the study of the structural
organization of tissues and their pathological changes. The overall
objective of this work includes the proposal, the implementation
and the evaluation of a methodology for the analysis of cervical
intraepithelial neoplasia (CIN) from histopathological images.
For this pourpose, a pipeline of morphological operators were
implemented for the segmentation of cell nuclei and the Delau-
nay Triangulation were used in order to represent the tissue
architecture. Also, clustering algorithms and graph morphology
were used to automatically obtain the boundary between the
histological layers of the epithelial tissue. Similarity criteria and
adjacency relations between the triangles of the network were
explored. The proposed method was evaluated concerning the
detection of the presence of lesions in the tissue as well as the
their malignancy grading.

Keywords-Cervical Intraepithelial Neoplasia (CIN); Neighbor-
hood Graphs; Medical Image Processing; Computer-Aided Di-
agnosis

I. INTRODUCTION

In the last decades, the automatic diagnosis of cancer and
the mapping of its evolution have been supported by different
methodologies, which can be used to identify primary lesions
usually found in the early stages of the disease. It is known
that the cure for many types of cancer is associated with
early detection and appropriate treatment, according to the
malignancy level. Pathologists conduct the assessment of these
lesions by the analysis of stained histological sections con-
taining biopsy samples. Generally, the diagnosis is based on
international standards. However, this process is still subjective
and presents great variability, since the final diagnosis comes
from the personal experience of the pathologist [1] [2].

Computer-aided diagnosis in histopathology is based on
quantitative measures extracted from intrinsic attributes of
images obtained from the histological samples. According to
Demir & Yener, the improvement in this research field over
the past decades is due to the prospects in the large scale
use of decision support systems as part of advanced cancer
treatments. Furthermore, it is an area with many challenges to
be overcome [3]. Also, improvements in diagnostic accuracy
come from enhancements in sample preparation techniques,
imaging approaches, as well as training pathologists and

other healthcare professionals to better understand and be
able to identify key attributes directly associated with the
abnormalities that are being detected and evaluated. Thus,
decision support systems can be very effective in improving
diagnostic capability if they are not constrained by quality of
the data that are provided as inputs

In the study reported herein, histopathological images of ep-
ithelial tissue of the cervix (Fig. 1(a)) were used as data source
to model the structural organization of its cells. The basal layer
(BL) of this epithelium presents cells with large nuclei and
small rounded-shape cytoplasmic area. The intermediate layer
(IL) cells have polygonal shape with vacuoles and glycogen.
Finally, the surperficial layer (SL) contains squamous cells
normally flat and with no vacuoles [4].

The so-called cervical intraepithelial neoplasia (CINs) con-
sist of proliferative lesions that lead to irregular cell maturation
in the tissues. They preceed the squamous cell carcinoma of
the cervix, and, if left untreated, they may develop into an
invasive carcinoma. CINs can be divided into: mild dyspla-
sia (CIN1), moderate dysplasia (CIN2) and severe dysplasia
(CIN3) [4]. Fig. 1(b) shows a schematic representation of
the structural changes that occur at the cellular level on the
cervix epithelial tissue. From the pathological point of view, it
is interesting to note that the CINs vary from mild dysplasias
to invasive carcinoma through of a gradual process.

Besides the ratio between the nuclear and the cytoplasmic
volume (represented by their areas in two-dimensional im-
ages), the portion of the epithelial tissue affected by the lesion
is a major perceptual parameter used by the pathologist to
define the diagnosis and stands out with high relevance in the
analysis: when only the basal layer of the tissue is affected
the diagnosis is characterized as low-grade lesion (CIN1),
and when the intermediate or superficial layers are affected,
the diagnosis is characterized as high-grade lesion (CIN2 or
CIN3).

This paper describes the proposal, the implementation and
the evaluation of a method for automatic analysis of CINs,
through the evaluation of the structural changes caused by
these premalignant lesions in the layers of the cervical epithe-
lial tissue. This proposal will be carried out through the study
of the processes involved in the structural organization of cells



(a) Epithelial tissue and its layers

(b) Structural variations of the cervical epithelial tissue layers [5]

Fig. 1. Cervix epithelium

by techniques based on Neighbourhood Graphs.
Contributions: The proposed method should contribute to

increase the accuracy in generating diagnoses in histopathol-
ogy, through the automatic identification of the presence of
intraepithelial lesions in the tissue and also the identification
of their malignancy level. The study and the application
of techniques of image processing and pattern recognition
appropriate to this context may help in early identification of
carcinogenic processes associated with these lesions, which
may act as a second opinion to the pathologist.

A. Related work

Landini et al. [6] present an approach based on graph
theory for the structural characterization of tissues through
mathematical models that describe the geometry of relations
between the cells. In this work, images of oral tissues were
used to distinguish between cancer dysplastic and normal
epithelia.

The use of topological features in the characterization and
diagnosis of cancer can also be found in [7]. Here, low-
resolution images were used as data source. Metrics were
extracted for each cell nuclei representing the nodes of a
network. The experiments show an accuracy of at least 85%,
which indicates the feasibility of the approach. In a more
recent work [8], Gunduz-Demir presents another approach for
mapping the evolution of cancer, based on the analysis of
connectivity of the network elements.

The characterization of histological tissues through graph
theory can also be used to characterize different types of

tissues. A methodology for classification of tissue architecture
using graph modeling is described in [9]. The proposed
methodology was tested in two types of tissues: epithelial
and adipose. A similar approach is described in [10], using
morphological and topological attributes. Each tissue is rep-
resented by a graph obtained from the geometry of its cells,
given the proximity between them.

In a more specific context, Keenan et al. [11] presents a
method for automatic classification of cervical lesions. The
nuclei segmentation in tissue images is based on a process
called iterative thresholding. The pixels belonging to nuclei
are selected according to specific threshold values at each
algorithm iteration. The remaining process generates a network
over the segmented nuclei using the Delaunay Triangulation
(DT ). Then, metrics related to the triangles are calculated. The
results indicate better accuracy in the separation of normal and
high-level lesions (CIN 3).

B. Technique overview

In the study presented here, a new method for automatic
identification of the cervical tissue layers is proposed based
on the structural organization of its components. The image
acquisition and the identification of the perceptual parameters
of interest was performed with the assistance of domain
specialists. The watershed transform and a pipeline of morpho-
logical operators were used in the segmentation process. The
Delaunay Triangulation was the model adopted to represent
the cell nuclei as a neighborhood graph. Through the Region-
Based analysis the epithelial tissue layers could be identified
and used in the classification of the CINs. This method is
described in sections III and IV.

II. TECHNICAL BACKGROUND

A. Morphological Reconstruction

Transformations based on morphological reconstructions
can be used as filters, eliminating regions of interest. The
reconstruction involves the use of a second image M , called
“marker”, which contains the initial points of the transforma-
tion. M is a subset of the input image A. Let A be represented
by its connected components, the reconstruction of A by M
is denoted A∆BM and is defined through Eq.(1), where B
is the structuring element and Ck is a connected component
belonging to A:

A∆BM = ∪{Ck : Ck ∩M 6= ∅} (1)

The reconstruction can be defined as an important morpho-
logical operation with many practical applications, such as the
conditional dilation. If an image A is dilated (Eq.(2)) by a
structuring element B whose origin is contained in it, A will
suffer an expansion which is conditioned by the shape of B.
So, the application of successive morphological dilations leads
to the loss of the original boundaries of A. This situation can
be circumvented by defining the conditions for this expansion,
i.e., through the restriction of the translations [12]. Let S be a
subset of A, the conditional dilation can be defined as Eq.(3):



A⊕B = ∪b∈B(Ab) (2)

S ⊕A B = ∪s∈S(Bs ∩A) (3)

The application of n conditional dilations is called geodesic
dilation of size n. Considering M a marker, and A the input
image, the reconstruction of A by M can be implemented ap-
plying a sequence of geodesic dilations until the convergence
of the transformation as described in Eq.(4):

(M ⊕A B)n = (((M ⊕A B)⊕A B)⊕A . . .⊕A B) (4)

B. Watershed from markers
The watershed transform is one of the most popular methods

of segmentation based on region growing. Usually, the water-
shed is applied on the morphological gradient of the image,
however, due to its being susceptible to noise, the resulting
image of this operator can present many local minima, gen-
erating many watershed lines as final result which is known
as over-segmentation. The use of filters on the image of the
gradient can reduce this effect [13].

Another approach to avoid over-segmentation is the ap-
plication of the watershed from markers [14]. The markers
bound the “basins” to be segmented, i.e. the minimum points
from which the algorithm should start. In this way, each
region identified by the algorithm corresponds to a single
marker. The watershed from markers can be implemented
by reconstruction. This processing is called the minimum
imposition.

C. Neighborhood Graphs
The use of models that describe connections between histo-

logical components allows the exploration of an additional set
of attributes, providing support to the structural analysis of the
tissue. The network generation may take into account different
criteria to define the links or edges between its components.
Assuming a binary image whose connected components are
the objects of interest, we have a set V of vertices, represented
by these elements and a set E of edges representing neigh-
borhood relations between them. A popular class of models
for neighborhood graphs is those obtained from the Voronoi
Diagram (V D) [15]. The V D represents a space partition
formed by the equidistant points from the elements of V . For
all v ∈ V a polygon Z(v) formed by points closer to v than
to any other element of V can be defined in Eq.(5). Z(v) is
also called influence zone of v:

Z(v) = m ∈ <2,∀q ∈ V \v, dist(m, v) < dist(m, q) (5)

Delaunay Triangulation: Also known as the dual graph
of the V D, the Delaunay Triangulation (DT ) establishes
connections among triples of points, always forming triangles.
In this model, given a set of points P = p1, p2, , pn ∈ <2,
the triangle pi, pj , pk ∈ DT (P ) if its circumcircle is empty
(Fig. 2(a)). The duality between the DT and the V D can be
seen in Fig. 2(b).

Fig. 2. (a) Criteria for a triangle that belongs to the Delaunay Triangulation
(DT). (b) DT (solid lines) vs VD (dotted lines)

III. STRUCTURAL ANALYSIS

The characteristics of the cell nuclei are important parame-
ters in the analysis of histological images and they can describe
specific functional changes. As a consequence, the majority of
segmentation methods applied to these images aims to separate
the nuclei. The segmentation method applied is determined by
the attributes of interest. When nuclei morphology is impor-
tant, methods based on edge detection are more suitable, as
they provide more precise contours. In the case of topological
attributes, the approximate location of the nuclei may be
sufficient to represent the spatial dependence between them. In
this way, the resulting image of the segmentation process is a
binary image in which each nucleus is a connected component.
Thus, the segmented nuclei can be represented by a set of
vertices of a graph using the location of their centroids.

Starting from this set, the relationship among its elements
can be modeled through different criteria. Due to its particular
properties, the Delaunay Triangulation (DT ) was the model
adopted in this work. The uniformity of polygons generated
by this model (always triangles) allows additional attributes
to be explored (Fig. 3). Furthermore, the DT can be easily
obtained by the Voronoi Diagram, defined over the segmented
nuclei. In this way, a graph G(V,E) can be obtained by the
DT (V ), where V represents the centroids of the cell nuclei
and E is defined by the connections between the elements of
V .

Fig. 3. The Delaunay Triangulation on the tissue

Region-based Analysis: Related studies show that an
approach based on the extraction of global attributes (taking
into account the entire structure of the tissue) provides support
to the analysis of the structural organization of different
tissues [9] [10]. However, samples that were obtained from
the same tissue can only be differentiated through gradual
changes in some tissue regions. As a consequence, for the
images analyzed in this work it is more appropriate a local



attribute extraction, characterized by the analysis of tissue
regions or clusters. The method proposed in this section aims
to define these clusters. Within this context, from the DT (V )
the regions of the tissue can be modeled based on adjacency
and similarity criterion as described next.

To generate the clusters a new graph G′(V ′, E′) was defined
over DT (V ), where V ′, the new set of vertices, is now
represented by the set of all the triangles belonging to DT (V )
and E′ is defined by grouping and adjacency criteria between
the pairs of triangles. Two triangles are adjacent if they present
at least one vertex in common.

A cluster is defined as a subgraph of G′, i.e., the set of
vertices V ′′ of this cluster is a subset of V ′. A grouping
criterion defines a threshold δ from which a triangle ti will
belong to a subgraph G′′. The Euclidean distance was used to
define the grouping criterion:
• Triangle Similarity (δ): two triangles ti e tj will be in

the same cluster if: dist(ti, tj) < δ

Where dist is the euclidean distance calculated between the
vectors formed by the length of the edges of ti and tj , and
δ ∈ [0, 1]. The vector generated for each triangle is sorted in
ascending order.

Grouping Algorithm: The algorithm described next
groups the elements of V ′′ using the adjacency and the
grouping criteria defined above. This algorithm allows the
mapping of the DT in clusters that provide a representation of
regions of interest in the image under analysis. The grouping
criterion (δ) is represented by a percentage of the maximum
distance between any two triangles of the network.

The algorithm starts with a reference triangle ti for which
the adjacency and grouping criteria are checked. If true, tj
is stacked on P and added to a cluster Ci. As long as P is
not empty the same process is repeated analyzing the adjacent
triangles to the elements of P , i.e., while there are elements
in P , more triangles can be added to the cluster Ci. When
the stack is empty the cluster Ci will no longer receive more
triangles and a new cluster Cj is created. Then, the process
described above is repeated for the remaining triangles until
all of them be grouped. Each triangle is visited only once. It is
important to note that the checking of adjacency and grouping
criteria are always made relatively to the reference triangle ti.
The error rate is a function of δ. By controlling this parameter,
it is possible to reduce the variability of the elements in the
cluster given the reference triangle.

IV. AUTOMATIC ANALYSIS OF THE CERVIX EPITHELIA

The proposed method aims to identify primary lesions
related to cervical cancer. For this purpose, an image database
was created, followed by the application of a segmentation
algorithm in order to identify the cell nuclei. Then, the Region-
Based analysis is applied considering the cell nuclei as nodes.
These steps are discussed in the next subsections.

A. Image Acquisition

This work was developed in collaboration with the Cy-
topathology Laboratory team of the Department of Pathology

at Ribeiro Preto School of Medicine, which provided mate-
rial from cervical uterine histological exams. The digitized
microscopic images were acquired from histological sections
previously stained with hematoxylin and eosin, containing
samples of biopsy exams, using a camera connected to a
microscope. The image database was standardized using a
20x objective lens, with an additional increase of 1.6x. The
resolution of the digitized images is 1388 x 1040 pixels. The
database contains 160 images representing different types of
CINs and normal regions.

The images obtained were evaluated with a senior patholo-
gist. This evaluation consisted of the removal of samples that
did not present sufficient quality to be classified or not allow
a visualization of all layers of the epithelial tissue. Thus, we
performed an initial filtering in the data to eliminate possible
noises. The expert also determined the CIN classification of
each selected image.

B. Segmentation

The process of segmentation aims to separate the cell nuclei
in the histological images. For this purpose, a pipeline of mor-
phological operators was applied, followed by the watershed
transform (using markers). A specific section of this algorithm
concerns the identification of the markers, since they depend
on the application context. The next morphological operators
were applied in order to obtain the markers for the nuclei:
• close-by-reconstruction top-hat: morphological operator

defined by the subtraction of the original image by its
morphological closing

• open / closing: operators applied over a thresholded
image.

• area open: ensures that the markers will be connected
components.

In a second step, the Voronoi Diagram was generated
from the internal markers obtained previously. The boundaries
defined in this step were used as external markers. Finally, the
watershed is applied on the gradient of the original image,
using both internal and external markers.

The images were processed in gray scale. This approach
leads to a segmentation process less dependent on the acquisi-
tion variability of the histological data. Two libraries were used
to support the implementation of the segmentation pipeline and
the generation of the DT : SDC Morphology Toolbox for C++
and OpenCV (Open Computer Vision) library, also written in
C/C++.

C. Identification of the epithelial tissue layers

The structural organization of the epithelial tissue is evalu-
ated over each layer by the pathologist. The layer affected
by the lesion defines the malignancy level. The automatic
identification of these layers was performed in two steps. In
the first one, the boundaries between them were defined by
applying the Grouping Algorithm. The adjacency and grouping
criteria were evaluated in order to find an optimal δ. For this
task, an experiment was performed to adjust this parameter.



In the second step, the clusters were labeled following a
supervised approach as described next.

For a normal epithelial image, it is expected to find a
large amount of small triangles in the basal layer, triangles
of average area in the intermediate layer and, finally, large
triangles in the superficial layer. The presence of tissue lesions
tends to break this rule, regard the type of triangle. For
example, in the presence of CIN3 lesions it is expected to
find a large amount of small triangles convering the whole
tissue, and, therefore a smaller number of clusters are obtained
applying the grouping algorithm.

In this way, three classes of triangles were defined con-
sidering their area values: Basal (B), Intermediate (I) and
Superficial (S). To obtain the intervals of area values that rep-
resent each of these classes, a supervised approach was used:
a pathologist was asked to identify manually the boundaries
between histological layers in a set of normal images.

After the pathologist segmentation, each image was frag-
mented into three layers defined according to the boundaries
drawn by the pathologist and a DT was generated on each
layer. This procedure was performed only once, as a training
process. Then, for each image in the training set, three
parameters were estimated: the average area of the triangles of
the basal layer (ÂB), the average area of the triangles of the
intermediate layer (ÂI ) and the average area of the triangles
of the superficial layer (ÂS). In this way, the classification
criterion of a cluster with mean area Am is:

• basal, if Am ≤ ÂB+ÂI

2

• intermediate, if ÂB+ÂI

2 ≤ Am ≤ ÂI+ÂS

2

• superficial, if Am ≥ ÂI+ÂS

2

The application of the Region-Based analysis, presented in
the last section, generates n clusters. After this step, each
cluster is classified in one of the labels listed above. This
process tends to decrease the number of clusters and can yield
one to three clusters. Therefore, the clustering algorithm is
important to find similar structures in the network given a
grouping criterion (δ) and the labeling of the clusters provides
a better representaion of the theoretical model for the CINs
grading as described in Figure Fig. 1(b).

D. Feature Extraction

The metrics adopted to compose the feature vectors were
chosen based on the structural differences that they provided,
such as the occupancy rate (OR) characterized by the sum of
the areas of the triangles belonging to a particular layer (ACi)
divided by the sum of the areas of all the triangles in the
network (AC). Also, the mean degree (kmed) and the entropy
(H) were evaluated.

• Occupancy Rate: OR = ACi
/AC

• Mean Degree: kmed = 1/N
∑

i ki, where ki is the degree
of i-node

• Entropy: H = −
∑

k P (k)logP (k), where P (k) is the
relative frequency of node degree of value k

E. Classifier

Based on the theoretical model adopted in this work
(Fig. 1(b)), a number of possible combinations of clusters were
identified. For example, it was found that vectors containing
only metrics of basal clusters would be acceptable, since
high-grade lesions tend to produce more homogeneous DTs.
Differently, the feature vectors obtained from normal images
usually present metrics related to the three layers. Finally, for
vectors obtained from CIN1 and CIN2 it is expected to find
an intermediate number of clusters.

Due to this variation in the number of clusters obtained for
each image, four partitions were defined which allowed only
vectors of the same size to be compared:

1) B cluster: ~X = [XB ]
2) B and I clusters: ~X = [XB , XI ]
3) B, I and S clusters: ~X = [XB , XI , XS ]
4) any vector containing different metric combinations
The last partition includes, for example, vectors presenting

basal and superficial clusters ~X = [XB , XS ] or intermediate
and superficial clusters ~X = [XI , XS ]. These vectors are
not representative of the CINs grading as they contain metric
combinations that could not represent real situations, therefore
they are considered noise and are not classified.

As described in Fig. 4, partitions 1 and 2 lead to CIN3 due
to the examples used in the training phase. However, these
examples represented only 1.72% of the dataset and the great
majority is in partition 3. For this partition, a representative
vector ( ~Xry ) for each class of interest was estimated as
follows:

Let Y be the variable that describes the classes of interest
and Ê[Xj ] the sample mean for the attribute (Xj) considering
all the instances associated with class y. For y ∈ Y , a
representative vector ( ~Xry ) is estimated as follows:

( ~Xry ) = [Ê[X1], Ê[X2], ..., Ê[Xj ], ..., Ê[XA]] (6)

Where A is the number of attributes. Then, the euclidean
distance is calculated between the representative feature vec-
tors for each class ( ~Xry ) and the feature vectors of the
instances to be labeled (Xi). These representative vectors were
obtained by training. The class adopted for a new instance is
the class that presents the shortest distance between its repre-
sentative vector and the vector of (Xi): dmin = d( ~Xry ,

~Xi).

V. RESULTS AND DISCUSSION

A. Image and Network Segmentation

Fig. 5 shows the results obtained with the application of
the pipeline of morphological operators to a normal epithelial
tissue image (Fig. 5(a)). Fig. 5(b) shows the same image in
gray level and Fig. 5(c) shows the result of the operator close
top-hat by reconstruction, highlighting the differences between
the nuclei (clusters of darker pixels) and the cytoplasm (clus-
ters of lighter pixels). In Fig. 5(d) is possible to visualize the
markers within each nucleus resulting from the application of
the following operators: opening, closing and area open. Each



Fig. 4. Classifier

nucleus has only one marker, which is a connected component.
This image was thresholded before the application of these
operators. Fig. 5(e) shows the Voronoi diagram generated
from the internal markers. The boundaries defined in this step
characterize the external markers, which were also used in
the implementation of the Watershed. Finally, Fig. 5(f) shows
the final result of the application of the Watershed, using the
Fig. 5(e) as marker.

(a) Reference image (b) Reference image in gray-level

(c) close-by-reconstruction top-hat (d) Threshold, Closing and Open

(e) Internal and external markers (f) Watershed

Fig. 5. Steps of the segmentation process

Fig. 6 shows the result obtained by applying the Region-
Based analysis over the segmented image. In this figure is
possible to analyze the grading of the CINs regarding the
network changes. The yellow clusters represent the basal

layers, the green ones represent the intermediate layers and
the blue clusters represent the superficial layers.

Fig. 6. Resulting clusters for (a) Normal, (b) CIN1, (c) CIN2 and (d) CIN3
images: basal (yellow), intermediate (green) and superficial (blue)

B. Characterization of the CINs

The experiments were carried out considering each metric
alone and, also, different combinations of metrics, in order to
evaluate the classification accuracy of CINs for different sets
of attributes.

Normal vs Lesion: The proposed method was evaluated
concerning the detection of lesions in the tissue. For this
purpose, the CINs were grouped in the same class. In this
experiment, 60 images were used for training: 30 representing
normal cases and 30 representing at least one kind of CIN.
Finally, 15 images (10 representing normal images and 5
representing the presence of CINs) were used for test.

To evaluate the metrics, different feature vectors were
created by extracting measures of the tissue layers. Sets of
attributes were defined by combining the following metrics:
OR, kmed and H . These metrics were applied to each cluster:
basal (B), intermediate (I) and superficial (S). The sets
representing the combination metric/cluster are described next:

a) = [OR B,OR S]
b) = [kmed B, kmed I, kmed S]
c) = [kmed B, kmed S]
d) = [H B,H I,H S]
e) = [H B,H S]
f) = [OR B,OR S, kmed B, kmed S]
g) = [OR B,OR S,H B,H S]
h) = [kmed B, kmed S,H B,H S]
i) = [OR B,OR S, kmed B, kmed S,H B,H S]

For each vector combination, a 5-fold cross-validation was
performed alternating images from training and testing. The
values presented in Table I are average values of accuracy after
cross-validation. The “attributes” column corresponds to the
sets of combinations shown above. In this context, accuracy



represents the number of correct classified instances. Besides
the mean accuracy (ACm), Table I also shows the values of the
average sensitivity (SSm) and the average specificity (SPm)
and their respective standard deviations (sd). The values in
bold represent the highest values of accuracy, sensitivity and
specificity. The best results in the task of detecting abnormali-
ties were obtained using the first set of attributes: (a). For this
set, the values of mean accuracy, sensitivity and specificity
were 88%, 98% and 68% respectively.

We can observe that the same values of accuracy was
obtained for sets (b) and (c) that evaluate the average degree.
It shows that the use of measures of the intermediate layer
did not alter the accuracy obtained for this data set. A similar
analysis can be performed to SSm and SPm, especially for
the entropy (d and e) and the occupancy rate (a).

TABLE I
EVALUATION OF THE ACCURACY IN DETECTING THE PRESENCE OF

LESIONS.

~X ACm sd(ACm) SSm sd(SSm) SPm sd(SPm)
~Xa 0,88 0,09 0,98 0,04 0,68 0,3
~Xb 0,85 0,09 0,96 0,09 0,64 0,33
~Xc 0,85 0,09 0,96 0,09 0,64 0,33
~Xd 0,83 0,11 1,00 0,00 0,48 0,33
~Xe 0,85 0,13 1,00 0,00 0,56 0,38
~Xf 0,85 0,09 0,96 0,09 0,64 0,33
~Xg 0,84 0,13 1,00 0,00 0,52 0,39
~Xh 0,87 0,09 0,98 0,04 0,64 0,33
~Xi 0,87 0,09 0,98 0,04 0,64 0,33

Normal vs CIN1: The classes analyzed in this experiment
show very similar visual patterns, since CIN1 is characterized
by structural changes only in the basal layer of the epithelium.
The highest accuracy in the comparison between these two
classes was obtained also using the first set or attributes
(vector Xa) as shown in Table II. The structural changes of
CIN1 increase the number of connections between the cells
and therefore the mean degree (kmed) of the basal layer.
When analyzing the sensitivity rates, the entropy (H) provided
better identification of true positives. However, the vectors that
provided sensitivity rates of 1.0, also provided the lowest rates
of specificity.

Similar to the previous experiment, similar values of ac-
curacy were found for the sets of attributes analyzed, due to
the high values of standard deviation. In this experiment, 60
images were used during the training, being 30 of each class,
and 9 images for test.

CIN1 vs CIN2: The ORs of basal and superficial layers
also provided the highest accuracy values when comparing
CIN1 and CIN2 (Table III), as well as the average sensitivity
and specificity. These classes differ by the tissue layer affected
by the lesion which explains why the attribute OR have been
highlighted in this experiment for all combination of metrics
tested. Also, the ORs presented the best relation between
sensitivity and specificity. The analysis of Table III also shows
that the use of the entropy of the intermediate layer enhances
the absolute accuracy when comparing the vectors Xd and Xe.

TABLE II
EVALUATION OF ACCURACY IN DISTINGUISHING BETWEEN NORMAL AND

CIN1 IMAGES.

~X ACm sd(ACm) SSm sd(SSm) SPm sd(SPm)
~Xa 0,73 0,23 0,90 0,14 0,60 0,47
~Xb 0,67 0,27 0,80 0,27 0,56 0,46
~Xc 0,67 0,27 0,80 0,27 0,56 0,46
~Xd 0,65 0,18 0,95 0,11 0,40 0,40
~Xe 0,67 0,22 1,00 0,00 0,40 0,40
~Xf 0,67 0,27 0,80 0,27 0,56 0,46
~Xg 0,67 0,22 1,00 0,00 0,40 0,40
~Xh 0,69 0,25 0,90 0,14 0,52 0,46
~Xi 0,69 0,25 0,90 0,14 0,52 0,46

The best rates of sensitivity were also obtained using measures
related to the entropy of the three layers. In this experiment,
44 images were used for training being 22 of each class and
15 images were used for test.

TABLE III
EVALUATION OF ACCURACY IN DISTINGUISHING BETWEEN CIN1 AND

CIN2 IMAGES.

~X ACm sd(ACm) SSm sd(SSm) SPm sd(SPm)
~Xa 0,77 0,14 0,80 0,18 0,77 0,14
~Xb 0,65 0,06 0,60 0,28 0,67 0,06
~Xc 0,64 0,08 0,60 0,28 0,65 0,07
~Xd 0,65 0,08 0,73 0,13 0,63 0,10
~Xe 0,60 0,11 0,80 0,18 0,55 0,11
~Xf 0,65 0,09 0,60 0,28 0,67 0,08
~Xg 0,61 0,09 0,80 0,18 0,57 0,09
~Xh 0,67 0,08 0,60 0,28 0,68 0,07
~Xi 0,67 0,08 0,60 0,28 0,68 0,07

CIN2 vs CIN3: The differences between CIN2 and CIN3
can be identified by the layers affected by the lesion. The OR
also excelled in this experiment which were carried out to
compare these two classes, as outlined in Table IV. Further-
more, the OR also presented the best values of specificity. In
this experiment, 40 images were used for training being 20 of
each class and 7 images were used for test.

TABLE IV
EVALUATION OF ACCURACY IN DISTINGUISHING BETWEEN CIN2 AND

CIN3 IMAGES.

~X ACm sd(ACm) SSm sd(SSm) SPm sd(SPm)
~Xa 0,86 0,20 0,70 0,45 0,92 0,20
~Xb 0,80 0,31 0,60 0,55 0,88 0,27
~Xc 0,83 0,26 0,70 0,45 0,88 0,27
~Xd 0,77 0,22 0,60 0,42 0,84 0,26
~Xe 0,83 0,23 0,80 0,27 0,84 0,26
~Xe 0,83 0,26 0,70 0,45 0,88 0,27
~Xf 0,80 0,24 0,70 0,45 0,84 0,26
~Xh 0,83 0,26 0,70 0,45 0,88 0,27
~Xi 0,83 0,26 0,70 0,45 0,88 0,27

C. Evaluation of the identification of the CINs

In the experiments presented in the previous section, the
OR attribute allowed a good separation between the analyzed



classes, providing accuracy values always greater than 73%.
This result can be compared to other sets of attributes, showing
better results in some cases. However, in general, in all the
experiments, the dp values indicate that all sets of attributes
tested provided very similar results regarding the values of
accuracy, sensitivity and specificity.

The analysis of the values of sensitivity showed that the
entropy (H) presented the best results, however, H also
presented a very low specificity. Although it is interesting
to obtain high rates of sensitivity to the problem under
consideration, a low specificity may lead to more aggressive
diagnostic conducts in cases that could be applied simpler
treatments. For example, a false positive exemplified in Table
III could lead to a surgical intervention in a case that would
require only a non-intrusive treatment.

VI. CONCLUSION

This paper has presented a method for automatic analysis
of cervical histological images based on the analysis of topo-
logical features in order to identify the presence of CINs. This
method relies on the characterization of cell clusters or layers
with similar characteristics supporting the feature extraction
by regions.

This work differs from the work described in Keenan et
al [11] in three aspects: the process of identification of the
epithelial tissue layers; the use of the properties of the DT ;
and the classification of the CINs. In the work of Keenan, the
epithelial tissue is indistinctly divided into three equal parts
and the average area of the triangles presented in the network
was used to classify the CINs. In this paper, a new method
for automatic identification of the tissue layers was proposed
based on the structural organization of its components. In
addition, the presented approach is independent of image scale
and angular position of histological structures. Furthermore,
the area of the triangles of DT was used to identify the clusters
and not to classify the CINs. For this task, a specific classifier
was designed.

As seen in the results, the relationship between the different
types of CINs and the different layers was well represented
by the OR metric, showing the gradual transition of the
CINs. Accuracy values higher than 70% were obtained when
comparing the following classes: Normal x CIN1, CIN1 x
CIN2, and, CIN2 x CIN3. When comparing the four classes
(Normal x CIN1 x CIN2 x CIN3), the maximun accuracy
obtained was 64%. The method described by Keenan et al.
provided an accuracy rate of 62% when comparing the three
CINs (CIN1 x CIN2 x CIN3). The work of Landini et al.
also evaluated the accuracy in classification of premalignant
lesions (in this case, related to oral carcinoma), reaching a
maximum of 52%, using only samples of high and low degree
of malignancy.

Although the presented method was specifically applied in
the automatic detection of CINs, we consider it could also
be applied in other problems involving structural analysis
of histological tissue, covering a more general family of

applications. This task is part of future work as well as the
evaluation of the clinical applicability of the method.
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