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Abstract—Recognizing different kinds of fruits and vegetables
is a common task in supermarkets. This task, however, poses
several challenges as it requires the identification of different
species of a particular produce and also its variety. Usually, ex-
isting computer-based recognition approaches are not automatic
and demand long-term and laborious prior training sessions. This
paper presents a novel framework for classifier fusion aiming at
supporting the automatic recognition of fruits and vegetables in a
supermarket environment. The objective is to provide an effective
mechanism for combining low-cost classifiers trained for specific
classes of interest. The experiments performed demonstrate that
the proposed framework yields better results than several related
work found in the literature and represents a step forward
automatic produce recognition in cashiers of supermarkets.

Keywords-Produce Recognition; Ensemble of Classifiers; Di-
versity Measures;

I. INTRODUCTION

Fruit and vegetable recognition is a recurrent task in super-
markets [1f], [2]. One common application is concerned with
the definition of the price of a produce, given its identification.
This is a challenging problem as it deals with both different
species of fruits and vegetables (e.g., apple, orange, potatoes)
and many varieties of a single produce species (for example,
Golden Delicious, Akane, Gala, and Fuji are different varieties
of apples) [2].

Usually, existing recognition approaches are not auto-
matic and demand long-term and laborious previous train-
ing sessions. One attempt to address that problem concerns
with the use of barcodes that are assigned to packages of
fruits/vegetables. A drawback of this solution relies on the
lack of freedom on choosing the produce of interest. An-
other solution consists in using booklets containing photos of
fruits/vegetables that are browsed to properly determine their
price. That solution, however, poses new challenges related
to the memorization and the subjectivity in the recognition
process.

The automatic recognition of fruits and vegetables based on
computer vision and image processing techniques represents
a suitable alternative for the problem. In these methods,
algorithms are used to encode visual properties (e.g., color,
texture, and shape) of produce images into feature vectors,

and machine learning techniques are employed to classify
those fruits/vegetables considering their features. Bolle et
al. [1f], for example, proposed the VeggieVision system, the first
supermarket produce recognition system that used different
visual properties (e.g., color, texture, density). The authors
reported a recognition rate of 95%, but considered the top
four responses of the recognition system. Rocha et al. [2],
in turn, proposed the use of fusion techniques that consider
classifiers associated with different image descriptors for auto-
matic produce recognition. Their fusion approach consisted in
dividing the recognition task into multiple two-class problems.
Good recognition rates (= 97%) are reported, but the solution
uses a fixed number of classifiers. It combines outcomes of
(];[) = O(N?) SVM classifiers, where N is the number of
classes. Arivazhagan et. al. [3] also addressed the produce
recognition problem by using a classifier based on a Minimum
Distance Criterion. They used the same dataset released by [2]],
but the reported results are worse.

The target application demands real-time and high recog-
nition rate. Usually, however, existing works fail to address
both requirements at the same time. Other challenges involving
automatic produce recognition using computer vision methods
rely on dealing with existing different appearance variations of
fruits and vegetables, as well as pose and illumination changes
during image acquisition. This paper aims at diminishing the
impact of such problems by presenting a novel framework
for non-linear fusion of classifiers aiming at supporting the
automatic recognition of fruits and vegetables. The objective
is to provide an effective mechanism for combining efficiently
low-cost base classifiers trained for specific classes of interest.

The novelty of the proposed work relies on the use of
diversity measures to automatically assess the correlation of
classifiers and then to determine the more appropriate ones to
be combined. The proposed framework fits well the fruits and
vegetables recognition task as it allows a continuous learning
of suitable classifiers over time. The performed experiments
demonstrate that the proposed framework yields better results
than several related works found in the literature.

The remainder of this paper is organized as follows. Sec-
tion presents related concepts necessary to understand
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this paper. Section describes the steps of the proposed
framework for fusion of classifiers and for selecting the most
appropriate classifiers based on diversity measures. Section
shows the experimental protocol we devised to validate our
work while Section [V|discusses the results. Finally, Section
states our conclusions and future research directions.

II. RELATED CONCEPTS

The following subsections describe related concepts neces-
sary to understand this paper.

A. Adaboost (BOOST)

The AdaBoost algorithm was proposed by Schapire [4].
It constructs a ensemble system (strong classifier) by repet-
itive evaluation of weak classifiers]] in a series of rounds
(t =1,...N). In this section we breafly describe the binary
AdaBoost proposed in [4]. The multiclass AdaBoost [5] is a
variation of this strategy.

Let A and B be the training and the validation sets (AUB =
T), and let = be a sample (image). The strategy consists in
keeping a set of weights W, (x) over T, where ¢ is the current
round. These weights can be interpreted as a measure of the
difficulty level to classify each training/validation sample. At
the beginning, all the samples have the same weight, but
in each round, the weights of the misclassified samples are
increased. Thus, in the next rounds the weak classifiers are
forced to classify the harder samples.

For each round, the algorithm selects the best weak classifier
h¢(z) and computes a coefficient «; that indicates the degree
of importance of h;(x) in the final strong classifier. It is given
by:

o 1l 1+ Tt
=3 ”(1 - rt)
where 7, =Y cT'(z)h(z).

In our implementation, the weak classifier is trained by
using the training set A. The best weak classifier is selected
based on the error on the validation set B. Therefore, the
weights Wy, are computed for both A and B sets based on

the current weights W;:

Wy(z) exp (—au T (x)hi(x))
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The classification error of classifier h is given by:
Err(h) = W) 3)

z|h(z)B(z)<0
At the end of NN rounds, the strong classifier is given by

a linear combination of N weak classifiers h:(z) and its
coefficient oy;:

T
Sroost(x) = sign( Z octht(x)) )
t=1

'A weak classifier is the one that produces classification results slightly
better than chance.

B. Bootstrap Aggregation (BAGG)

Bootstrap aggregation (Bagging) approach is a machine
learning ensemble algorithm which aims at evaluating the
predictions on a sampling collection (bootstrap samples).
Formally, let T" be an initial training set which is divided into
B equal parts Z¢,i = 1,2, ..., B [6]. Each sample set is used
on the training of B classifiers. After training, each classifier
obtains a coefficient («) that will be used in the classification
step. Given a new data point to test, each classifier coefficient
is used to assign a class to it, and the final class will be a
majority voting among the B classifiers [7]. For each element
x, a prediction f*(x) for each classifier is obtained and the
result is calculated:

- 1 E -
frag(2) = 5 > f(2) 5)
i=1

Figure [I] illustrates the training and the classification steps
of the Bagging approach.

training classification

> Classifier,

Fig. 1. Training and classification steps using a Bagging approach.

C. Support Vector Machine (SVM)

Support Vector Machine is a machine learning technique,
introduced by [8]. It requires data points previously annotated
to build a classification model. The goal is to construct an
optimum margin decision hyperplane, which can be used to
separate an m-dimensional space. The decision hyperplane
is calculated such that it maximizes the margin among two
classes (the standard SVM is a two-class classifier).

The margin can be seen as the minimum distance of one
point of one class to the other. It can be interpreted as a separa-
tion measure among two classes and represents the separability
degree among them (quality measure of classification). The
points on borders among the classes are called support vectors.

When it is not possible to find a linear separator among the
classes, the data are mapped on-the-fly onto higher dimen-
sional spaces through a non-linear mapping using the kernel
trick [9]. According to Cover [10], every data point which is
not separable in a space can be mapped onto other higher-
dimensional space and become linearly separable.

Figure 2] illustrates the use of SVM to separate two classes.
More details about this technique can be found in [8]], [11]—
[[14].
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Fig. 2. The SVM classifier builds a maximum margin decision hyperplane
to separate two classes (squares and circles).

III. CLASSIFIER FUSION FRAMEWORK

Section [[TI-A] presents an overview of the proposed frame-
work. Section presents our approach based on diversity
measures [15] for automatically selecting base classifiers that
are good candidates to be combined.

A. Overview

Let £ be a set of learning methods (e.g., Decision Tree,
Naive Bayes, kNN, SVM, etc.) and F be a set of image de-
scriptors (e.g., Color Histogram). Suppose that base classifiers
are created by combining each available learning method with
each image descriptor. For example, three classifiers could be
created by combining the learning methods Decision Tree,
Naive Bayes and kNN with the Color Histogram descriptor.
Let C be the set of classifiers created by that combination,
where |C| = |£]| x |F|.

In our problem, let S be a set of produce images, where the
class of s; € S (1 < < |S]|) is known. The set S is used to
construct both the training (7") and validation (V') sets, where
TUV =8 and TNV = (. As we consider a supervised
learning scenario, the actual classes for training and validation
data points are known a priori.

Initially, all base classifiers ¢; € C (1 < j < |C|) are
trained on set 7'. Next, the performance of each classifier on
the validation set V' is computed and stored into a matrix My,
where |[My| = |V]| x |C|.

In the following, My is used to select the set C* C C of
classifiers that are good candidates to be combined. In our
approach, diversity measures are employed to determine C*
(see Section [III-B)). Note that a new matrix My, C My can
be created by using the selected classifiers in C*.

Given a new produce image I, we use each classifier ¢ €
C* (1 < k < |C*]) to determine the class of I, producing
k responses. The k outcomes are used as input of a fusion
technique (e.g., majority voting, SVM, etc.) that takes the final
decision regarding the definition of the class of I. In the case
of a fusion technique that requires prior training (e.g., SVM),
M is used.

Figure [3] illustrates the proposed framework for combining
classifiers.

B. Diversity Measures for Selecting Base Classifiers

Diversity in classification tasks is related to the agreement
and disagreement of classifiers with regard to a same set of
inputs.

Consider the previously defined C (set of classifiers) and
My (a matrix where |My| = |V] x |C|), containing the
outcomes of classifiers ¢; € C on the validation set V. Let
D be a set of diversity measures.

Each diversity measure d; € D is used to compute the
agreement/disagreement between two classifiers c;, ,c;,, € C,
considering all possible combinations of classifiers. Let
Ra, = {(cj,,c¢j,.), scoreq,(c;,,¢cj,.)} be the ranked list of
pairs of classifiers defined by the score of the diversity measure
d;.

Let R = {Ra,,Ra, ---Rap } be the set of ranked lists
defined for each available diversity measure. Let R be a set
of ranked lists, where each ranked list contains the top ¢ pairs
of classifiers (¢ pairs of classifiers with the lowest diversity
scores) and H be a histogram that counts the number of
occurrences of a classifier in all ranked lists of R?. The set C*
of classifiers that are combined by our fusion approach is the
h = |C*| most frequent base classifiers in H (See Figure [4).

Algorithm |1| describes the proposed steps for selecting base
classifiers, by taking into account diversity measures.

Algorithm 1 Selection of base classifiers

Input: set D of diversity measures, set C of classifiers, and
the outcomes of classifiers on validation set V' encoded in
My, .

LR+ 0

2: for each d; € D do

3 R <0

4 for each pair (¢;,,c;j,,) € C x C do

5: scoreg, (¢;, 5 ¢,.) < di(c,, ¢j..)

6: Ra, < Ra, U {((Cjn ) ij)v SCOT€q, (Cjn 1 Cim )}
7. end for

8:  Sort R4, with regard to scoreg,

9: R+ RURy,

10: end for
11: R? + select the top t ranked pairs of classifiers for each

ranked list in R
12: for each ¢; € C do
13: H(cj) «0
14: end for
15: for each d; € D do
16:  for each ((cj,,cj,,), scoreq,(cj,,cj,,)) € Ry, do

17 H(C),)++
18: H(Cj ) ++
19:  end for

20: end for

21: C* < {¢;, € C, such as |C*| = h and V¢, € C\ C¥,
H(cs,) > H(ey,)}
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Proposed framework for classifier fusion.

build selection c*
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The five steps for classifiers selection are: (a) Validation matrix My ; (b) R lists sorted by diversity measures scores; (c) R? lists with top ¢; (d)

counts the number of occurrences of each classifier; (e) Selected classifiers |C*|.

IV. EXPERIMENTAL PROTOCOL

This section presents the used image dataset, image de-
scriptor, cross validation protocol, learning methods, diversity
measures, and baselines.

A. Supermarket Produce Dataset

We have used freely available supermarket produce dataseﬂ
proposed in [2]. That dataset comprises 2,633 images divided
into 15 different categories: Plum (264), Agata Potato (201),
Asterix Potato (182), Cashew (210), Onion (75), Orange (103),
Taiti Lime (106), Kiwi (171), Fuji Apple (212), Granny-Smith
Apple (155), Watermelon (192), Honeydew Melon (145),
Nectarine (247), Williams Pear (159), and Diamond Peach
(211). Figure [5] depicts some images of the dataset.

B. Cross validation protocol

In this paper, we consider a k-fold cross-validation protocol
for all experiments we perform. In this protocol, the original
dataset is randomly separated into k non-overlapping subsets.
A subset is chosen for testing set, and the k—1 subsets are used
for training a learning technique. The cross-validation process
is repeated k times (rounds) and each subset is used only once
as test set. The final result (the classification accuracy) from
this process can be the arithmetic mean among all subsets.
The main goal of this protocol is to test the entire dataset
and reduce the variability among rounds (result of each round
must be approximately equal). In our experiments, we have
considered a 5-fold cross-validation protocol. Each training

Zhttp://www.ic.unicamp.br/~rocha/pub/downloads/tropical- fruits-DB-
1024x768.tar.gz (As of May, 2012).
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Fig. 5. Supermarket Produce data set.

set (consisting of four rounds) can be further divided into
validation and actual training (for instance, three folds can be
used for training and the fourth for assessing the classifier
being developed). In this sense, we use the 5-fold cross-
validation protocol again to further divide the training set into
validation (one fold) and actual training (three folds).

C. Image Descriptors

Table |I| presents the color, texture, and shape descriptors we
considered in our experiments. Given the produce recognition
problem, the objective is to use the most complementary
features as possible and rely on an effective combination
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technique.

[ Descriptor [ Type ]
ACC [16] Color
BIC [[17] Color
CCV [18] Color
GCH [19] Color
LAS [20] Texture
QCCH |[21] | Texture
EOAC [22] Shape

TABLE 1

IMAGE DESCRIPTORS USED IN OUR EXPERIMENTS.

1) Color Autocorrelogram (ACC) [|16|]]: The role of this
descriptor is to map the spatial information of colors by pixel
correlations at different distances. It computes the probability
of finding in the image two pixels with color C' at distance
d from each other. For each distance d, m probabilities are
computed, where m represents the number of colors in the
quantized space. The implemented version quantized the color
space into 64 bins and considered 4 distance values (1, 3, 5,
and 7).

2) Border/Interior Pixel Classification (BIC) [|I7]: has
been successful in many applications. The first step of the
feature vector extraction process relies on the classification
of image pixels into border or interior ones. When a pixel
has the same spectral value in the quantized space as its four
neighbors (the ones which are above, below, on the right, and
on the left), it is classified as interior. Otherwise, the pixel
is classified as border. Two histograms are computed after
the classification: one for the interior pixels and another for
the border ones. Both histograms are merged to compose the
feature vector. The implemented version quantized the color
space into 64 bins.

3) Color Coherence Vector (CCV) [|I18]: like GCH, it is
recurrent in the literature. It uses an extraction algorithm
that classifies the image pixels as “coherent” or “incoherent”
pixels. This classification takes into consideration whether
the pixel belongs or not to a region with similar colors,
that is, coherent regions. Two color histograms are computed
after quantization: one for coherent pixels and another for
incoherent ones. Both histograms are merged to compose
the feature vector. In our experiments, the color space was
quantized into 64 bins.

4) Global Color Histogram (GCH) [|19]: is one of the most
commonly used descriptors, it uses an extraction algorithm
which quantizes the color space in a uniform way and it scans
the image computing the number of pixels belonging to each
bin. The size of the feature vector depends on the quantization
used. In the present work, the color space was split into 64
bins, thus, the feature vector has 64 values.

5) Local Activity Spectrum (LAS) [20]: this descriptor
captures textures spatial activity in four different directions
separately: horizontal, vertical, diagonal, and anti-diagonal.
The four activity measures are computed for a pixel (¢, j) by
considering the values of neighboring in the four directions.

The values obtained are used to compute a histogram that is
called local activity spectrum. Each component g; is quantized
independently. In our experiments, each component was non-
uniformly quantized into 4 bins, leading to a histogram with
256 bins.

6) Quantized Compound Change Histogram (QCCH) [21)]:
It uses the relation between pixels and their neighbors to
encode texture information. This descriptor generates a rep-
resentation invariant to rotation and translation. Its extraction
algorithm scans the image with a square window. For each
position in the image, the average gray value of the window
is computed. Four variation rates are then computed by taking
into consideration the average gray values in four directions:
horizontal, vertical, diagonal, and anti-diagonal directions. The
average of these four variations is calculated for each window
position, they are grouped into 40 bins and a histogram of
these values is computed.

7) Edge Orientation Autocorrelogram(EOAC) [22|]: This is
a shape descriptor. We chose this descriptor because it does
not depend on segmentation to extract features. Its strategy
is to classify the image edges according to two aspects: the
edge orientation and the correlation between neighbor edges.
The first step is to compute the image gradient from the input
image. Then, the algorithm computes an edge orientation auto-
correlogram. The feature vector is composed by the values
from this auto-correlogram. In this implementation, we use
angle quantization in 72 segments of 5° degrees each one;
four distance values (1, 3, 5, and 7); the Sobel operator to
compute the image gradient; and a gradient threshold equal to
25, as suggested in [22]]. The final vector is comprised by 288
values.

D. Learning Methods

We have used seven learning methods in our framework:
Naive Bayes (NB), Decision Tree (DT), Simple Logistic (SL),
Naive Bayes Tree (NBT), k-Nearest Neighbors (kNN), using
k =1,k = 3, and £k = 5. Such methods are simple and
fast, being suitable to be combined in a real time recognition
system. The idea of using different learning methods is that
some descriptor might be better with specific methods. In
this sense, a support vector machine was avoided here due
to its known slow training time. Even though SVMs have sub
linear time for testing, in a multi-class scenario it would need
several binary SVMs to perform the multi-class classification
as reported in [23[|-[25].

The proposed framework aims at automatically finding
suitable combinations of classifiers formed by descriptors and
learning methods. We have used the implementation of those
learning methods available in the WEKAE] data mining library.
All learning techniques were used with default parameters.

E. Diversity Measures

Let M be a matrix containing the relationship between a
pair of classifiers with percentage of concordance. Table

3http://www.cs.waikato.ac.nz/~ml/weka (As of May, 2012).


http://www.cs.waikato.ac.nz/~ml/weka

shows a relationship matrix M with percentage of hit and miss
for two classifiers ¢; and c;. The value a is the percentage of
images that both classifiers ¢; and c; classified correctly in
the validation set. Values b and c are the percentage of images
that ¢; hit and ¢; missed and vice-versa. The value d is the
percentage of images that both classifiers missed.

l [ Hit ¢; [ Miss ¢; |

Hit c; a b
Miss c; c d
TABLE II

RELATIONSHIP MATRIX M BETWEEN TWO CLASSIFIERS ¢; AND Cj.

In [15], Kuncheva et al. present several measures to assess
diversity, considering pairs of classifiers. Following their work,
in our experiments, we have used Double-Fault Measure
(DFM), Q-Statistic (QSTAT), and Interrater Agreement k
(I A). Those measures are defined as follows.

DFM,; = d, ©)
ad — bc
2Nac —
A (ac — bd) ®

YT e h)erd+ (@t obrd)

The diversity is greater if the measures Double-Fault Mea-
sure, Q-Statistic and Interrater Agreement k are lower among
pairs of classifiers ¢; and c; [15]].

F. Baselines

We have used seven different approaches as baselines:
BAGG-3, BAGG-17, SVM-PK, SVM-RBF, BOOST, MV-
BOOST-7, and OVA-BOOST. We describe each baseline in
the following.

BAGG-3 and BAGG-17 rely on the bagging approach
(Section [lI-B) using k¥ = 3 and k = 7 iterations, respectively.
Both are tested with BIC descriptor (Section [V-C). The
configuration of the bagging-based methods are the same used
in [2].

SVM-PK and SVM-RBF are classifiers based on support
vector machines (Section using one image descriptor.
SVM-PK uses polynomial kernels and SVM-RBF uses RBF
kernels. The parameters used can be found [2]].

BOOST and MV-BOOST-7 implement one multi-class ad-
aboost (Section for each descriptor. The weak learner
used is an SVM with polynomial kernel. In MV-BOOST-7, the
descriptor results are combined by using the majority voting
(MV) scheme. OVA-BOOST combines all descriptors using
one binary Adaboost (Section for each dataset class.
The binary Adaboost uses linear SVMs as weak learners. We
used the One-vs-All (OVA) strategy to combine the binary
classifiers. That strategy relies on training the i, classifier by

using all patterns of class ¢ as positive (+1) examples and the
remaining class patterns as negative (-1) examples. We classify
an input example x to the class with the highest response
between the binary Adaboost classifiers.

We also report the results of the methods described in [2]
and [3]], as they considered the same dataset in their exper-
iments. In the case of [2]], we consider two methods named
Rocha BLDA and Rocha SVM-Fusion that use, respectively,
Bagging of Linear Discriminant Analysis and SVM in the
classification process.

V. EXPERIMENTS

This section discusses the results regarding the effectiveness
and efficiency of the proposed framework.

In the experiments, three different fusion approaches were
conducted: SVM with RBF kernel considering h = 49
(FSVM-RBF-49) and h = 10 (FSVM-RBF-10) classifiers,
and majority voting (MV-49). Note that the use of h = 49
refers to the use of all available base classifiers in the fusion
process. We have used ¢ = 10 in our experiments (see Line
11 of Algorithm |1) as we impose a constraint to classify each
input as fast as possible for deployment of the system in a
supermarket scenario similar to the one imposed in [2].

A. Effectiveness

Table presents the results organized in three parts: (1)
Fusion Techniques; (2) Baselines form the literature which
used the same dataset in their experiments; and (3) Baselines
using just one image descriptor. All results consider the
average classification accuracy considering a 5-fold cross-
validation protocol.

As expected, FSVM-RBF-49 outperforms the baselines as it
uses all configurations of classifiers and available descriptors.
However, FSVM-RBF-10 performance is close to the one
observed for FSVM-RBF-49, which means that the proposed
selection framework based on diversity measures were able
to select the most suitable classifiers (in this case, only 10
classifiers) to be combined without sacrificing much of the
classification quality. Using less classifiers impacts the overall
efficiency of the recognition system as discussed in the next
section.

FSVM-RBF-49 also yields better results than MV-49. One
possible reason for that relies on its ability on producing a non-
linear combination of classifiers. For a better visualization,
Figure [6] shows all results sorted by classification accuracy.

B. Efficiency

We conducted experiments on a 2.4GHz virtual machine
with 1GB of RAM (running Linux) to assess the recognition
time of the proposed framework.

Our approach is composed by three steps: (1) extraction
of feature vectors for all image descriptors; (2) classification
using |C*| classifiers; and (3) combination of |C*| classifier
outcomes with SVM. The complexity of Step 1 depends on
the employed descriptors. In our case, that step takes = 0.5s.
Step 2 takes less than 1s on average, since it uses low-cost
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[ Recognition Technique [ Accuracy |
FSVM-RBF-49 98.8% + 0.9
FSVM-RBEF-10 98.0% + 0.9
MV-49 98.0% + 1.1
MV-BOOST-7 93.4% + 1.4
OVA-BOOST 77.3% + 0.8
Rocha BLDA [2] 97.0% + 0.6
Rocha SVM-Fusion [2] | 97.0% + 0.4
Arivazhagan [3] =~ 86.0%
BOOST-BIC 96.4% + 1.0
SVM-PK-BIC 96.1% + 1.8
BAGG-17-BIC 89.4% + 1.8
BAGG-3-BIC 87.3% + 1.7
SVM-RBF-ACC 84.3% + 2.7

TABLE III
CLASSIFICATION EFFECTIVENESS OF THE PROPOSED FRAMEWORK AND
BASELINES, WITH THEIR RESPECTIVE STANDARD DEVIATIONS.

classifiers. Step 3 takes less than 0.1s, since it combines a
few number of classifiers. Therefore, the average recognition
time is less than 2s, for the FSVM-RBF-10, which considers
h = |C*| = 10 selected base classifiers. Note that Rocha et
al. [2]] reported that their method takes = 5s to recognize a
new produce image, using a 2.1GHz machine with 2GB of
RAM.

VI. FINAL REMARKS AND FUTURE WORK

This paper presented a new framework to combine classi-
fiers aiming at supporting the deployment of produce recog-
nition systems. The novelty of this work relies on the use
of diversity measures to determine which base classifiers are
suitable to be combined.

The experiment results show that the proposed framework
yields high classification accuracy rates in a reduced time.
In fact, our framework is able to combine classifiers more
effectively than baselines. Different from other approaches,
our method is able to not only select classifiers, but also learn,
indirectly, which descriptors (and therefore visual properties)
are more appropriate for the target application. To keep the a
high recognition rate with the minimum computational effort,
our classifier selection strategy exploits the use of diversity

Recognition techniques sorted by classification accuracy.

measures, which allow the combination of non-correlated,
highly-effective, and low-cost base classifiers. Our approach is
suitable for real-time produce recognition due to two reasons:
first, all used base classifiers are of low cost in terms of
computational efforts; and second, only a reduced number of
effective classifiers are combined.

Future work includes the investigation of the use of other
diversity measures and fusion techniques, as well as the
development of an automatic way to find the final number of
base classifiers to combine based on classification quality and
time constraints imposed by the client. We have used part of
the proposed framework for classifying remote sensing images
and preliminary results are promising [26]. Therefore, we plan
to continue investigating the use of the framework in other
domains.
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