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Abstract—In this paper, we present an OPF-LA (Optimal
Path Forest–Local Analysis), a new learning model proposal.
OPF-LA is a heuristic that uses local information for selecting
prototypes that, in turn, will be used to classify new data.
It employs the main ideas of an OPF classifier, suggesting
a new procedure in the data training phase. Experimental
results show the advantages in efficiency and accuracy over
classical learning algorithms in areas such as Support Vector
Machines (SVM), Artificial Neural Networks using Multilayer
Perceptrons (MP), and Optimal Path Forest (OPF), in several
applications.
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I. INTRODUCTION

Pattern recognition is a research area which aims to
classify patterns into categories or classes. Given a set
of c classes, ω1, ω2, · · · , ωc, and a pattern, x, a pattern
recognition system associates the pattern x to the label i
of one of the classes ωi. The pattern classification problem
is divided into the following classes: (i) supervised, where
each input pattern is identified as a member of a predefined
class, (ii) unsupervised, where each input pattern is assigned
to a class as yet unknown, and (iii) semi-supervised, where
part of the input set has a predefined class [1].

The main approaches to learning and pattern classification
are based on statistical analysis. Simple statistical techniques
can easily handle linearly separable classes, as shown in
Figure 1(a), but piecewise representations, as shown in Fig-
ure 1(b), require more robust techniques, such as Artificial
Neural Networks. Unfortunately, many applications involve
non linearly-separable classes, as shown in Figure 1(c). Pos-
sible solutions in these cases are Support Vector Machines
(SVM) [2] and the classic k-nearest neighbours algorithm
[3].

One of the most important features of sample spaces,
which has not received much attention in supervised classifi-
cation, is the relation of distance between samples (specially
along sequence of samples). A recent research that explores
this relationship has obtained promising results for super-
vised and unsupervised learning using the OPF (Optimal
Path Forest) classifier [4][5].

OPF is a supervised pattern classification framework, par-
ticularly effective in image classification, which reduces the
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Figure 1. Examples of feature spaces: (a) Linearly separable. (b) Piecewise
linearly separable. (c) Non separable.

pattern classification problem to the problem of partitioning
the vertices of a graph.

The problem of pattern recognition can be modeled as
a complete graph with positive weights on its arcs, where
the nodes are the samples, represented by their respective
feature vectors, and the arcs are defined by an adjacency
relation between samples [6], [7], [8]. The vertices of the
graph can thus be partitioned into optimal-path trees rooted
at their respective prototypes (seeds) obtained in the training
phase. The label of the most closely connected prototype
gives the classification of a new input sample.

The calculation of the Optimal Paths for new samples
is performed using the Image Forest Transform (IFT) al-
gorithm [8]. The IFT technique is essentially Dijkstra’s
algorithm, modified to receive various sources and more
general cost functions. It initially assigns the minimum cost
function to the source nodes and propagates it to the other
nodes in nondecreasing order, partitioning the graph into
an Optimal-Paths Forest where the roots are the prototypes.
In this paper, we present OPF-LA (Optimal Path Forest–
Local Analysis), a new model of supervised classifier. It
employs the main ideas of OPF classifiers, suggesting a
new procedure in the training phase. We also present a
generalization of the OPF-LA technique, which expands the
number of prototypes representing each class, increasing the
space of possibilities to control data sorting.

The results show that OPF-LA outperforms Support Vec-
tor Machines (SVM), Artificial Neural Networks using Mul-
tilayer Perceptrons (MP), and Optimal Path Forest (OPF),
in the majority of applications, in accuracy, precision, and



recall metrics. We use the T-Student hypothesis test applied
to the accuracy rate, recall and precision to assess the perfor-
mance of the classifiers and analyze if there are differences
in the application of the techniques. This paper is organized
as follows: The OPF Classifier is presented in Section II,
and the OPF-LA Classifier is presented in Section III. In
Section IV, the experimental results are presented. Finally,
in Section V, the conclusions are drawn.

II. THE OPF CLASSIFIER

The OPF [6], [7] technique allows to create pattern
classifiers from a training set, a subset of prototypes, and
a path-cost function in the training graph, and seeks to
group samples with similar attributes. The objective is to
partition the training graph into a forest of minimum cost
paths, where each tree is rooted at a prototype and all
samples of the tree are labeled with the same label of the
root. The classification of a new sample is given by finding
the prototype that offers the optimal path among the paths
offered by all prototypes, i.e., the classification is based
on the strength of connectedness between the sample and
the most closely connected prototype or the most strongly
connected prototype. We shall present here both OPF and
OPF-LA techniques.

Let Z1 be the training set, let Z2 be the evaluating data set,
and let Z3 be the data used for classifying the samples. The
set Z1 is used to create the learning model, and Z3 is used to
measure the accuracy of the classified data from the learning
model generated by Z1. A pseudo-test on Z2 is used to teach
the classifier by randomly interchanging samples of Z1 with
misclassified samples of Z2. After learning, an improvement
is expected in the accuracy on Z3. The reason for dividing
the data set is to improve, if necessary, the learning from
the errors found.

Let Z = (Z1 ∪ Z2 ∪ Z3), and let λ(s) be the function
that assigns the correct label i, i = 1, 2, ..., c, of class i
to any sample s ∈ Z. Let S ⊂ Z1 be a set of prototypes
of all classes, and let v be an algorithm which extracts n
attributes, such as texture, colour, geometric shape, etc., from
any sample s ∈ Z and returns a vector ~v(s).

The distance d(s, t) ≥ 0, between two samples, s and t,
is that between their feature vectors ~v(s) and ~v(t). One can
use any distance function suitable for the extracted features.
The most common is the Euclidean norm || ~v(t) - ~v(s) ||
used by Papa et al.[4]. The goal is to produce a classifier
that has the capacity to predict the label λ(s) for any sample
s ∈ Z3.

The training data determines a subset S∗ ⊂ Z1 of
prototypes and a discrete optimal partition of Z1 into the
feature space, with an optimum-path forest rooted in S∗. The
classification of any sample s ∈ Z3 is made by evaluating
the optimum paths incrementally, as though it were part of
the forest, and assigning to it the label of the most strongly
connected prototype.
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Figure 2. (a) An MST graph referring to some complete training
graph. (b) Prototypes selected from the heuristic of adjacent elements in
different classes. (c) An optimum-path forest rooted at the prototypes (the
numbers indicate cost and label, respectively), a test sample, and its possible
connections with all elements in the training graph. (d) Optimum path to
the most closely connected prototype.

A. Training Phase

Let (Z1, A) be a complete graph whose nodes are the
training samples and where any pair of samples defines an
arc in A = Z1 × Z1. The training consists of finding a set
S∗ of prototypes, considered the most representative. Several
heuristics can be adopted. However, the selected model can
affect the performance of the classifier.

Papa et al.[4] suggests selecting the prototypes by exploit-
ing the theoretical relation between the minimum-spanning



tree (MST) and the optimum-path tree.
Consider a complete graph whose nodes are all samples

of Z1, and whose arcs are undirected and weighted by the
distances between adjacent samples. Now, compute an MST
in this graph. Figure 2(a) illustrates the result of this process.
In the MST, every pair of samples is connected by a single
path which is optimum according to a function fmax [4].
That is, the minimum-spanning tree contains one optimum-
path tree for any selected root node. The selected prototypes
are the closest elements of the MST in different classes, as
illustrated in Figure 2(b). By removing the arcs between
different classes, the prototypes will be adjacent samples in
S∗. A class may contain several prototypes, but we must
always ensure that every class has at least one prototype.

Algorithm 1: Algorithm OPF
Input: Set Z1, prototypes S∗ ⊂ Z1 and a pair of

values (v, d) for feature extraction and
calculation of distances.

Result: Optimal-Path Forest P, map of optimum
values V, and map labels L.

Data: Priority queue Q and variable tmp

foreach s ∈ Z/ S∗ do1

V (s)←− +∞,2

foreach s ∈ S∗ do3

V (s)←− 0, P (s)←− nil, L(s)←− λ(s), and4

insert s in Q.
while Q is not empty do5

Remove from Q a sample s such that V (s) is6

minimal.
foreach t ∈ Z such that t 6= s and V (t) > V (s)7

do
Calculate tmp ←− max{V (s), d(s, t)}.8

if tmp < V (t) then9

if V(t) 6= +∞ then10

Remove t of Q.11

P (t)←− s12

L(t)←− L(s)13

V (t)←− tmp14

Insert t in Q.15

return P,L,V16

Once we know the set S∗, Algorithm 1, the Optimal-Path
Forest (OPF), propagates the labels of the prototypes for
all the samples of their optimal paths trees, forming a map
of labels L(s) ∈ {1, 2, ..., c}. Lines 1–4 initialize the maps
and insert prototypes in Q. The main loop starts at line 5
and calculates optimal paths from S∗ to all samples s in a
non-decreasing order of minimum cost. At each iteration, a
minimum cost path πs with optimal value V (s) is obtained
in P when we remove its last node s from Q (line 6). Draws

are resolved by FIFO policy in Q, that is, when two optimal
paths reach the same sample s, this sample is associated with
the first path that reached it. In line 7, V (t) > V (s) is false
when s can not modify the attributes of t and V (t) 6= +∞
in lines 10 and 11, when only t ∈ Q. The other lines check
if the path πs.〈s, t〉 is better than the current path πt ∈ P .
If so, update Q, V (t), L(t) and P (t).

B. Classification Phase

For classifying a new sample t, consider all nodes in the
training set connected to t, as though t were part of the
training graph (Figure 2(c)). From all possible paths S∗ to t,
the goal is to find the optimum path P ∗(t) from S∗ to t, and
label t with the class λ(R(t)) of its most strongly connected
prototype R(t) ∈ S∗. The path can be found incrementally
by evaluating the optimum cost V (t) as in Equation 1.

V (t) = min{max{V (s), d(s, t)}}. (1)

Let s∗ ∈ Z1 be a node that satisfies Equation 1 (predecessor
P (t) = s∗). Since L(s∗) = λ(R(t)), the classification
assigns the label L(s∗) as the class of t (Figure 2(d)).

III. THE OPF-LA CLASSIFIER

The new approach differs the OPF technique in the
training phase. The OPF training phase uses a complete
graph to estimate the frontier prototypes of classes. The
OPF-LA estimates the prototypes at the points of high con-
centration samples. The main motivation of this paper is to
demonstrate that regions of higher concentration of samples
per class can offer better candidates to prototypes, besides
being a new methodology for supervised classifiers based
on Optimum-path Forest using other adjacency relationships
and a different way to find prototypes.

We propose a change in the training phase of the
Optimum-path forest (OPF) classifier by analysing the data
locally in each class, fixing a number k > 0, and selecting
k prototypes which have the smallest shortest-path accu-
mulated distance to the other vertices of the graph. More
precisely, the k selected prototypes of each class will be
those that have the k smallest average shortest-path distances
to the other vertices of the class. The aim of this technique
is to select the k most ‘central’ samples of each class as
prototypes.

In order to perform a local analysis of each class, we
modify the data representation format suggested by OPF [4],
by using an adjacency relation for each pair of samples,
providing a complete graph. The cumulative shortest-path
distance between a vertex and other vertices in the graph
is obtained by using Dijkstras algorithm (i.e., the IFT
algorithm with additive path-cost function), well known in
graph theory. The proposed technique is called optimum-
path forest local analysis (OPF-LA).



The training process starts by fixing a number k > 0 and
selecting k prototypes from each class using the following
procedure:

1) Fix a class C and consider the (complete) graph G
induced by the vertices of C;

2) For each vertex v in C, use the Dijkstra algorithm
to calculate the sum of the shortest-path distances
between v and all other vertices in its class;

3) The k prototypes selected are those that have the k
shortest-path accumulated distances;

4) Add a new vertex x (dummy node) to the graph and
add k edges of weight 0 connecting x to the k selected
prototypes;

5) Apply Dijkstra’s algorithm again, starting with the new
vertex x, to determine the distance from x to all the
other vertices in its class. The application of Dijkstra
returns a tree, T , containing the shortest paths from x
to any other vertex of its class;

6) Remove x from T . As a result, we have k trees for
each class, whose roots are the prototypes.

We define the best value of k∗ as the value that maximizes
the classification accuracy of the Z3 data on Z1 until it
stabilizes at best value, given by Equation 2. The evaluating
data set Z2 is not used. The classification phase is the same
as the OPF classifier.

k∗ = max(accuracy(Z1, k)), (2)

and k = 1, 2, ..., Cmin. The value Cmin is the sample size
of the smaller class.

IV. EXPERIMENTAL RESULTS

We evaluate the effectiveness of OPF-LA using some
combinations of public datasets, such as MPEG-7 (using
shapes-contours of images, illustrated in Figure 3) and public
datasets that use the (x,y) coordinates of 2D points: CONES-
TORUS (Figure 4(a)), SATURN (Figure 4(b)), PETALS
(Figure 4(c)) and BOAT (Figure 4(d)) [9]. More details
about the MPEG-7 feature extraction algorithm can be
found in [10]. We also use the problem of classification
of defects in cowhide. These databases allow us to evaluate
the performance of classifiers in accordance with descriptors
of shape, color and texture. The main reason for selecting
samples of defects is the great complexity of evaluation,
especially in areas close to the vicinity of different defects.
A set of five types of regions of interest in the Wet-Blue1

processing stage were selected, namely scabies, ticks, hot-
iron, cut, and regions without defect (Figure 5). The images
were obtained in real leather classification in Brazil, and
experts performed their classifications.

1Wet-Blue leather is an intermediate stage between untanned and finished
leather.

(a) (b) (c)

(d) (e) (f)

Figure 3. Examples of shapes of MPEG-7 with classes (a)-(c) fishes and
(d)-(f) camels.

(a) (b)

(c) (d)

Figure 4. Datasets of 2D points: (a) Cones-torus, (b) Saturn, (c) Petals,
and (d) Boat.

(a) (b) (c) (d) (e)

Figure 5. Images of a defect in wet-blue. (a) Scabies, (b) Tick, (c) Hot-
iron, (d) Cut, (e) without defect.

The defects were manually segmented with the help of
the tool DTCOURO2. The segmentation process generated
samples proportional to the area of each defect in the range
of 40x40 pixels, and resulted in 1,690 samples: 369 ticks,
338 hot-iron, 400 cut, 369 scabies, and 214 samples without
defect. For each sample, 160 attributes were extracted as
follows: 12 colour attributes (HSB and RGB space), 7 from
Interaction Maps, 126 from co-occurrence matrices, and
15 from Gabor Filter Banks. Table I contains the number
of samples and classes of the six datasets used in the
experiments.

2Automatic classification system of leather defects – http://trac.gpec.
ucdb.br/wiki/site dtcouro.

http://trac.gpec.ucdb.br/wiki/site_dtcouro
http://trac.gpec.ucdb.br/wiki/site_dtcouro


Table I
NUMBER OF SAMPLES AND CLASSES OF THE DATASETS

Dataset Samples Classes
COWHIDE 1690 5

MPEG-7 1400 70
CONES-TORUS 400 3

SATURN 200 2
PETALS 100 4
BOAT 100 3

A. Experimental Setup
WEKA3 was used to perform the experiments. WEKA is

open source software that presents a collection of machine
learning algorithms for data mining tasks. We implemented
both OPF and OPF-LA in the WEKA classification format4.
The implementation of both approaches in this format will
facilitate the generation of new experiments and dissemina-
tion of the work presented here. For analysis of each algo-
rithm, we use fivefold cross validation and two validations
to get better time statistics. From the total samples, 80%
were taken for learning, and the remaining 20% were used
for the validation tests. This was repeated twice for each of
the five validation groups. From these ten results, an average
was then evaluated to obtain a hit ratio percentage.

The experiment session of WEKA was used to measure
the OPF and OPF-LA classifiers performance compared with
other supervised learning classifiers available in WEKA:
SVM and MP. Configuration used for SVM: complexity
parameter (1.0), epsilon for round-off error (1.0E-12), filter
type (Normalize traning data) and kernel (Polynomial ker-
nel). Configuration used for MP: backpropagation, hidden
layers of the neural network ((attribs + classes)/2), value
of updating the weights (0.3), momentum applied to the
weights during updating (0.2) and normalize attributes.

We evaluated accuracy (classification rate) in the format
x ± y(z), where x, y and z are, respectively, the mean
accuracy, its standard deviation, and the mean execution time
(efficiency in training and classification) in seconds. We also
measured precision (capturing the effect of the high number
of negative examples in the performance of algorithms),
recall (representing the rate of true positives) and application
of hypothesis testing T-students with significance level 5%.
The WEKA tool calculates the T-Students. So, when the
result of an experiment is obtained, a circle can be present
next to the result of the classifier. This circle shows that the
classifier won or lost the OPF-LA classifier of the tables of
results. Empty circle says that the classifier won the OPF-
LA.

B. Numerical Results
To choose the number of prototypes for OPF-LA for

each problem, an experiment was performed, varying k,

3http://www.cs.waikato.ac.nz/ml/weka
4http://code.google.com/p/opf-weka

starting from 1 to the total number of samples of the lower
class. As the value was stabilized, the value of k with the
first measurement found with better classification rate was
selected. Table II presents the values of k∗ for each problem.

Table II
BEST VALUE OF k FOR EACH PROBLEM

Dataset k∗

COWHIDE 200
MPEG-7 10

CONES-TORUS 50
SATURN 40
PETALS 11
BOAT 13

Table III presents the mean accuracy and the standard
deviation. Figure 6 presents a graph of the normalized
execution times for each problem, comparing the SVM
algorithms, MP, OPF, and OPF-LA with the best value of
k. Precision and recall metrics vary from 0 to 1, with 0
meaning the worst and 1 the best performance. The results
for these metrics are shown in Tables IV and V.

Figure 6. Execution Times in seconds (normalized value)

We consider the overall performance of the OPF-LA
classifier satisfactory. Only in the problem of classification
of cowhide did the MP technique achieved better results,

Table IV
PRECISION (◦, • STATISTICALLY SIGNIFICANT IMPROVEMENT OR

DEGRADATION).

Dataset OPF OPF-LA MP SVM
COWHIDE 0.999 0.999 1.000 0.840

CONES-TORUS 0.908 0.871 0.707 • 0.706 •
SATURN 0.905 0.829 0.739 0.393
PETALS 0.981 1.000 0.981 1.000
BOAT 0.949 0.949 0.715 0.682 •

MPEG-7 0.810 0.810 0.834 0.834



Table III
MEAN ACCURACY (◦, • STATISTICALLY SIGNIFICANT IMPROVEMENT OR DEGRADATION).

Dataset OPF OPF-LA MP SVM
COWHIDE 95.74± 1.04(7.78) 96.30± 1.02(12.01) 99.97±0.06(89.60) 94.53± 0.57(1.02)

CONES-TORUS 83.38± 0.48(0.33) 83.88±0.85(4.31) 70.75± 1.44(4.57) • 73.88± 1.80(0.34) •
SATURN 87.50±5.57(0.06) 84.50± 4.20(0.70) 81.00± 4.08(1.09) 46.25± 9.07(0.36)
PETALS 99.50± 1.00(0.08) 100.00±0.00(0.05) 99.50± 1.00(0.88) 98.50± 1.91(1.49)
BOAT 97.00±2.58(0.02) 96.50± 3.00(0.05) 75.50± 4.43(0.91) 70.50± 5.26(0.20) •

MPEG-7 78.43± 0.84(110.4) 78.64±0.86(2.95) 71.39± 1.10(652.23) • 73.82± 0.62(201.62) •

Table V
RECALL (◦, • STATISTICALLY SIGNIFICANT IMPROVEMENT OR

DEGRADATION).

Dataset OPF OPF-LA MP SVM
COWHIDE 0.958 0.962 1.000 0.996

CONES-TORUS 0.913 0.984 0.924 • 0.978 •
SATURN 0.850 0.880 0.965 0.415
PETALS 1.000 1.000 1.000 0.960
BOAT 1.000 1.000 1.000 1.000

MPEG-7 0.825 0.825 0.850 0.925

with a classification rate of 99.97%. For the other five
problems, the OPF and the new proposed OPF-LA obtained
better results.

The precision and recall values demonstrate the con-
venience of using supervised learning algorithms to deal
with the problem of classification. The OPF-LA and OPF
runtimes was much lower than those of the MP and SVM al-
gorithms. However, we believe that further optimizations and
simplifications of the algorithm can accelerate even more the
learning and classification processes. We also affirm by T-
Students hypothesis test that OPF and OPF-LA classifiers do
not show statistical difference in the classification of data in
the presented problems.

V. CONCLUSIONS

In this paper, we presented a new heuristic, OPF-LA,
for supervised learning in pattern recognition. We also
presented data classification results comparing OPF-LA with
OPF and other techniques for the problems of analysis and
classification of defects in cowhide and classifications and
combinations of public datasets. The results showed that the
new proposed OPF-LA, with adjustments to the parameter
k, can obtain satisfactory classification results compared to
classical algorithms in the area. A major advantage of using
optimal-path forest techniques in the learning process is that
it explores the relation of connectedness between samples,
which might give an optimization gain on the generated
learning space, and thus yields better results.

We have also developed a WEKA-OPF library containing
the OPF classifiers with complete graph and the new pro-
posed OPF-LA in order to disseminate the use of Optimal-
Path Forest in the learning process and data classification.
We are currently conducting experiments in biotechnology,

in applications such as the monitoring of larvae, the counting
and classification of yeast in the generation of ethanol, the
classification of pollen grains, and face recognition, to better
assess the effectiveness of OPF-LA in different contexts.
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