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Fig. 1. Given a training set consisting of videos of valid accesses, video-based spoofs, and a video for testing, first we extract a noise signature
of every video (training and testing) and calculate the Fourier Spectrum on logarithmic scale for each video frame. Thereafter, we create visual
rhythms for each video and train a machine learning classifier using either the pixel intensities directly as features or a summarized version
of the visual rhythms using gray level co-occurrence matrices. With a trained classifier, we are able to test a visual rhythm for a given video
under investigation and point out whether it is a valid access or a video-based spoof.

Abstract—Recent advances on biometrics, information foren-
sics, and security have improved the accuracy of biometric
systems, mainly those based on facial information. However, an
ever-growing challenge is the vulnerability of such systems to
impostor attacks, in which users without access privileges try to
authenticate themselves as valid users. In this work, we present a
solution to video-based face spoofing to biometric systems. Such
type of attack is characterized by presenting a video of a real
user to the biometric system. To the best of our knowledge, this
is the first attempt of dealing with video-based face spoofing
based in the analysis of global information that is invariant to
video content. Our approach takes advantage of noise signatures
generated by the recaptured video to distinguish between fake
and valid access. To capture the noise and obtain a compact
representation, we use the Fourier spectrum followed by the
computation of the visual rhythm and extraction of the gray-
level co-occurrence matrices, used as feature descriptors. Results
show the effectiveness of the proposed approach to distinguish
between valid and fake users for video-based spoofing with near-
perfect classification results.
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Rhythm, Gray-Level Co-occurrence Matrix.

I. INTRODUCTION

Biometrics provide tools and techniques based on behavior,
physical and chemical traits to recognize humans in an au-
tomatic and a unique manner. The most common cues are
fingerprint, face, iris, hand geometry, hand vein, signature,
voice and DNA [1]. Due to recent pattern recognition advances
applied to face recognition, biometric systems based on facial
characteristics have been largely applied to problems, includ-
ing access control, surveillance and criminal identification [1],
[2], [3].

At the same time that significant advances have been
achieved in biometrics, several spoofing techniques have been
developed to deceive the biometric systems, and the security of
such systems against attacks is still an open problem. Spoofing
attacks occur when a person tries to masquerade as someone
else falsifying the biometrics data that are captured by the
acquisition sensor in an attempt to circumvent a biometric
system [4], [5]. Therefore, there is an increasing need to detect
such attempts of attacks to biometric systems.

In addition to spoofing attacks, there are other ways to



(a) Frame of a valid video. (b) Frame of an attack video.

Fig. 2. Frames illustrating the video-based face spoofing attack to a biometric
system using an LCD technology monitor. (a) example of a real access; (b)
attempt of attack.

attack a system [6], [7]. If an impostor (user that does not
have permission to access the system) has access to scores
of the recognition system, the user can easily circumvent the
system [8]. However, this type of attack is more difficult to be
performed. Since the acquisition sensor is the most vulnerable
part (any user has easy access to this part of the system),
spoofing attack techniques have become more attractive for
impostor users. Moreover, unlike the authentication systems
based on passwords and smart cards, some of our biometric
data such as faces are widely available in social networks,
personal web sites, and can be easily sampled directly with a
digital camera.

In the context of face biometrics, an impostor tries to access
the system as a valid user with three approaches [9]: (1)
showing a photography of a valid user; (2) showing a video
of a valid user, or (3) showing a 3D facial model of a valid
user. If any of these approaches succeeds, the uniqueness
characteristic of the biometric system will be violated and the
system will become fragile [1].

In this context, this work presents a solution to detect
attempts of video-based face spoofing. Such attacks can be
accomplished presenting a video of a valid user through any
display device. Fig. 2 shows a frame of an attack video and a
valid (non-attack) video. To the best of our knowledge, this is
the first attempt of dealing with video-based face spoofing in
the literature based on the analysis of global information that is
invariant to the video content. We explore the artifacts added
to the biometric samples during the viewing process of the
videos in the display devices and noise signatures added during
the recapture process performed by the acquisition sensor of
the biometric system. Our hypothesis is that both noise and
artifacts are sufficient to detect the face liveness.

The difficulty in spoofing detection based on video lies on
the fact that with a video it is much easier to circumvent
the authentication system compared to an image, once the
dynamics of the video (e.g., small head movements or blink
of eyes) makes the fake biometrics data more real. Also, the
ease of incorporating other biometrics data on a single media
(e.g., face and voice) allows attacks in multi-modal systems.

We organize this paper into six sections. Section II discusses
the current state-of-the-art in anti-spoofing for face biometrics.
Section III presents the proposed method. Section IV shows

the experimental setup. Section V presents the results and
discussion. Finally, Section VI concludes the paper with final
remarks and future work.

II. RELATED WORK

There are four major categories of anti-spoofing methods:
data-driven characterization, user behavior modeling, user
interaction need, and the presence of additional devices [4].
In this section, we review the literature on non-intrusive
methods without extra devices and human interaction, since
such methods are preferable in practice because they are easily
integrated to existing face recognition systems.

Regarding the data-driven characterization, some methods
are based on the analysis of skin properties such as texture and
reflectance. Li et al. [10] proposed an anti-spoofing solution to
photo attacks under the assumption that the size of photos is
smaller than a live face and the expressions and poses of the
face contained in photos are invariant. These characteristics
are detected by analyzing the 2D Fourier spectrum, because
photos certainly contain fewer high frequency components,
and a threshold is used to detect a spoofing attack. Although
the reported results have been satisfactory, in practice these
assumptions do not hold. Movements are easy to simulate
rotating or bending the photos. Furthermore, the method will
probably fail for photos with high quality.

In [11], Tan et al. proposed a solution based on the Lam-
bertian reflectance properties to distinguish between valid and
fake users under the assumption that the surface roughness
of both classes is different. The authors use two methods
for extracting latent reflectance features: variational retinex-
based and difference-of-Gaussian (DoG). The authors reported
promising results on a publicly available database (NUAA
Database) composed of true accesses and attacks of 15 sub-
jects using both photo-quality and laser-quality prints.

In a recent work, Peixoto et al. [12] extended the technique
proposed in [11] to an image-based spoofing detection based
on the fact that the brightness of the LCD screen affects
the recaptured image, which makes the image edges more
susceptible to a blurring effect. To capture this information,
the authors propose an intermediate step before extracting
latent reflectance features that consists in applying an adaptive
histogram equalization to the images. The reported results on
the publicly available NUAA Database and Yale Face Database
show that the proposed extension reduced the classification
error in more than 50% for high-quality printing spoofs in the
NUAA database and 65% for images recaptured from an LCD
monitor for the Yale Face Database.

Inspired by image quality assessment, characterization of
printing artifacts and by differences in light reflection, Määttä
et al. [5] proposed an anti-spoofing solution based on micro-
texture analysis. The authors use the Local Binary Patterns
(LBP) texture analysis operator for describing the micro-
textures and use the feature vectors in a Support Vector
Machine classifier which determines whether an extracted
micro-texture pattern belongs to a fake person (non-live) or
a live person.



Tronci et al. [13] proposed a method that is based on
multiple cue analysis to detect photo-based spoofing. For
that, two techniques are considered: static- and video-based
analysis. Static analysis is based on the fundamental idea that
during the manufacturing process of a photo attack a certain
loss of information occurs and also peculiar noise is intro-
duced. Some used descriptors are color and edge directivity,
fuzzy color and texture histogram, MPEG-7 descriptors, RGB
and HSV histograms. The video analysis is performed as a
combination of simple measures of movements such as eye
blinks, mouth alterations and changes in facial expression.
With these descriptors in hand, a classifier is trained to each
feature descriptor and then a fusion is made to decide whether
the biometric data is fake or real.

In order to incorporate temporal information from videos
captured from an image, Schwartz et al. [14] presented a
holistic method for describing faces combining several feature
descriptors. Considering only the facial region, the authors
extract several features using descriptors that capture different
characteristics of the images, such as shape, color and texture.
They reported improved results, but the combination of these
descriptors generated high dimension feature spaces that may
not be suitable for standard classification methods.

Optical flow analysis has also been considered in the
literature. Bao et al. [15] obtained a reference field from the
actual flow field data on fake and valid images to estimate
their differences. Kollreider et al. [16] presented a method
based on the optical flow algorithm for capturing and tracking
subtle movements of different facial parts, assuming that facial
parts on real faces move differently than on photos.

Considering behavior modeling, some works have focused
on eye blinking [17], [18] and small movements of parts
of the head and face [9] to detect specifically photo-based
spoofing. Considering that a person blinks approximately once
every two to four seconds, Pan et al. [17] proposed the
use of an undirected conditional random field framework to
represent eye blinking from hidden Markov models that relax
the independence assumption of generative modeling, with the
advantage that the method allows to relax the assumption of
conditional independence of the observed data.

In [19], Pan et al. extended upon the work in [17] by
adding counter-measures to include a scene context matching
in stationary face-recognition systems. For this, the authors
analyze inside face cues such as eye blinking and outside face
cues, since the background scene is known by the recognition
system. The authors reported that their method works well to
photo-based, video-based and 3D-based spoofing techniques,
because inside-face clues of spontaneous eye blinks can be
employed to detect photo-based spoofing and 3D models
and outside-face clues of scene context to detect video-based
spoofing. However, since a video or image background can
be easily changed, their method may fail and a 3D model
can incorporate the action of blinking similar to a real eye
blinking. A private dataset, in which they obtained almost
perfect results, was created but not released to the public.

Even though the described approaches present interesting

results, they do have some weaknesses. Small facial move-
ments may be easily simulated by tilting a photography used
in the attack, therefore, methods assuming static images will
fail. In addition, such approaches are not suitable for attacks
performed using videos of a valid user due to movements
present in both valid and fake accesses. The method proposed
in this work aims at overcoming such difficulties by capturing
noise information features generated by the recapturing of
videos in such a way that it is independent of their content.

III. PROPOSED METHOD

The first task performed on any facial biometric system is
the data acquisition to authenticate the user. This acquisition is
performed by a camera that has an imaging sensor with thou-
sands of photosensitive transducers capable of converting light
energy into electrical charges. The camera lenses allow light
reflected by the objects in the scene to focus on the imaging
sensor, transforming light energy into electrical charges, which
are converted into digital signals by an A/D converter [20].

During this process of transforming an analog signal into a
digital signal, the appearance of noise in the resulting image
is inevitable. The analysis of noise in images has been widely
explored in the digital document forensic analysis area, more
specifically, the problem of identifying the specific camera that
acquired a document. In this case, the main goal is to estimate
the type and manufacturer of the cameras with just one image.
Lukas et al. [21] discuss two types of noise present in images:
the fixed pattern noise (FPN) and the noise resulting from
the photo-responsiveness of non-uniform light-sensitive cells
(PRNU).

FPN noise is caused by the presence of dark currents that
can be defined by accumulated electrons in the inverse joints
of the light-sensitive cell pins of the imaging sensor. This
accumulation of electrons occurs mainly due to a thermal
action and is independent of the amount of light incident on
the sensor [20]. On the other hand, PRNU noise is defined
by the difference in sensitivity of the light sensitive cells
caused by the non-homogeneity of the silicon wafer and other
imperfections inserted during the manufacturing process of the
sensor [20].

Another noticeable fact is the appearance of artifacts gener-
ated by means of videos captured from other videos, which do
not exist in videos generated from the capture of real scenes.
These artifacts, addressed in this paper as noise, are generated
mainly during the process of creation and exhibition of the
frames on monitor screens, producing undesirable effects such
as distortion, flickering, moiring, among others [22]. Thus,
the biometric samples extracted from videos submitted to the
biometric system (referred to as attack videos) will likely have
more noise than the biometric samples captured directly from
live people (referred to as valid videos). Fig. 3 shows the effect
of moiring due to the screen capture of three different monitors
with a digital camera.

The first step of the proposed method for capturing such
differences and solving the problem is to isolate the noise



Fig. 3. Moiring effects in videos shown on three different monitors and
captured with a digital camera.

information contained in the videos generated during the data
acquisition.

A video V in the domain 2D + t can be defined as a
sequence of frames t , each frame as a function f(x, y) ∈ N2

of the luminous intensity of each pixel at position (x, y) of the
scene. To isolate the noise of the t-th frame in a video V , a
copy of this frame is submitted to a filtering process in order
to eliminate noise. Then, a subtraction is performed between
the original and the filtered frame, generating a new frame
containing only the noise, as formalized in Equation 1. The
collection of the new frames is called noise residual video

V
(t)
noise = V (t) − f(V (t)

copy) ∀ t ∈ T = {1, 2, . . . , t}, (1)

where V (t) ∈ N2 is the t-th frame of V and f a filtering
operation.

We can analyze the noise pattern and possible artifacts
contained in the video by applying a 2D discrete Fourier
transform on each frame of the noise residual video V

(t)
noise

and calculating its spectrum in the logarithmic range and with
origin at the center of the frame using Equations 2 and 3,
respectively. As a result of this process, we end up with a
video of the spectra. Fig. 4(a) shows the logarithm of the
Fourier spectrum for a video frame obtained from a valid
video, and Fig. 4(b-c) show the logarithm of the Fourier
spectrum for an attack video using the Gaussian and Median
filter, respectively.

F(υ, ν) =
M−1∑
x=0

N−1∑
y=0

V(noise)(x, y)e
−j2π[(υx/M)+(νy/N)] (2)

|F(υ, ν)| =
√
R(υ, ν)2 + I(υ, ν)2

S(υ, ν) = log(1 + |F(υ, ν)|) (3)

Note that the logarithm of the Fourier spectrum, shown
in Fig. 4(b-c), contains the highest responses concentrated in
the abscissa and ordinate axes, whose origin is at the center
of the frame, unlike the logarithm of Fourier spectrum shown
in Fig. 4(a). This situation occurs in practically every frame.
This is an important fact, since the occurrence or not of these
components in the axes allows us to decide whether the video
is fake or valid. To have this decision made automatically, we
design a space-time descriptor that captures this information
used in a classification algorithm for associating input patterns

(a)

(b) (c)

Fig. 4. Example of video frame of the spectra generated from (a) a valid
video and (b)-(c) an attack video considering a Gaussian and Median filter,
respectively.

in certain classes or categories. In this work, we consider the
Support Vector Machine [23] (SVM) and the Partial Least
Squares regression [24] (PLS) to classify the patterns that are
extracted from the visual rhythm of the video. We shall define
visual rhythms shortly.

A. Video Characterization

The construction of the descriptors used in the classification
process is done using the concept of visual rhythms [25],
which can efficiently capture temporal information and sum-
marize the video contents in a single image. The application
of the visual rhythm can be found on the works including the
one by Chun et al. [26] for fast text caption localization on
videos and by Guimarães et al. [27] for identifying cut and
gradual transitions on videos.

Considering a video V in the domain 2D + t with t
frames of dimension M × N pixels, the visual rhythm < is
a simplification of the video V , in which lines or columns
of each frame t are sampled and concatenated to form a new
image, called visual rhythm. Fig. 5 illustrates a visual rhythm
and its sampled 2D image acquired from a video.

Given that the highest responses for our problem are con-
centrated on the abscissa and ordinate axes of the logarithm of
the Fourier spectrum, we consider two regions of interest of
the frames that form the spectrum video in the construction of
two types of visual rhythms: (i) the horizontal visual rhythm
formed by central horizontal lines; and (ii) the vertical visual
rhythm formed by central vertical lines. In both cases, we can
summarize relevant content of the spectrum video in a single
image. Fig. 6 depicts the visual rhythms generated by two
regions of interest considering a valid (Fig. 6(a) and Fig. 6(c))
and an attack video (Fig. 6(b) and Fig. 6(d)).



Fig. 5. Example of a simplification of a video by means of the visual rhythm
using vertical blocks.

(a) Valid video. (b) Attack video.

(c) Valid video. (d) Attack video.

Fig. 6. Examples of visual rhythms constructed from (a)-(b) central horizontal
lines and from (c)-(d) central vertical lines. Note that the visual rhythm
obtained from horizontal lines has been rotated 90 degrees.

Once the visual rhythms are computed, we can employ a
machine learning classifier to automate the process. However,
if the intensity of the pixels composing the visual rhythms are
directly considered, the dimensionality of the feature space
will be extremely high and most of the classification methods
to date will not work properly. Therefore, we need to extract
a compact set of feature descriptors that best discriminate the
visual rhythms generated from the fake and valid videos.

In our work, we consider the visual rhythms as a tex-
ture map, such that we can apply the well-known gray-
level co-occurrence matrices (GLCM) [28] to extract textural
information from them, since this descriptor provides spatial
distribution and brightness variation of the image regions [14].
A GLCM is a structure that describes the frequency of occur-

rence of gray levels between pairs of pixels. When normalized,
the co-occurrence matrix becomes the estimation of joint
probabilities between pairs of pixels at a distance d in a given
orientation θ. After calculating the co-occurrence matrices for
four orientations, we extract 12 measures summarizing textural
information from each matrix: angular second moment, con-
trast, correlation, sum of squares, inverse difference moment,
sum average, sum variance, sum entropy, entropy, difference
variance, difference entropy, and directionality [28].

Finally, we use either SVM or PLS regression method
to classify the patterns that are extracted from the visual
rhythms and GLCM. The SVM algorithm [29] uses a linear or
non-linear mapping, depending on the type of space used to
transform the original data onto a higher dimensional. Within
this new space, the SVM finds an optimal hyperplane that
separates the input data into classes. The algorithm finds this
hyperplane of separation through support vectors and a margin.
The support vectors are essentially training tuples that are
close to the decision boundary of the classes and the margin
is defined as the perpendicular distance between the decision
boundary and the closest tuple for each class.

PLS regression method [30], [31] is based on the linear
transformation of a large number of descriptors to a new space
based on a small number of orthogonal projection vectors. In
other words, the projection vectors are mutually independent
linear combinations of the original descriptors. These vectors
are chosen to provide maximum correlation with the dependent
variables, that are the labels of the training classes. Fig. 1
summarizes the main steps of the proposed method.

IV. EXPERIMENTAL SETUP

In this section, we describe the details of the experiments
performed to validate the proposed method for detecting
video-based spoof attacks. We created a dataset comprising
valid access and video-based spoof videos given that the
benchmarks publicly available, such as NUAA Database [11]
and the Print-Attack Database [32], are meant only for photo-
based spoofing attacks.

All experiments were conducted on an Intel Xeon 5160,
3GHz dual core processor with 8GB of RAM running Win-
dows 7 operating system.

A. Dataset Creation

The dataset created in this paper expands upon the Print-
Attack Database [32], which consists of 200 videos of valid
accesses of 50 different users and 200 videos of spoof attacks
using printed photographs in 320×240 pixel resolution, which
were constructed by presenting printed photographs without
movement to the acquisition sensor. Therefore, such videos
are indicated to evaluate photo-based anti-spoofing solutions.
Given that our goal is to deal with video-based spoofs, we
only consider the 200 valid access videos and expand upon
them to create a video-based dataset.

First, we upsample the 200 valid access videos to 640×480
pixels in resolution. Thereafter, we play 100 valid access
videos in six monitors in a controlled environment to minimize



the illumination changes between a valid and attack video.
Finally, we recapture them using a Sony CyberShot camera
also in 640×480 pixel resolution that represents the acquisition
sensor of a biometric system. The 100 selected videos were
used only to create the attack videos and were therefore
discarded. Table I summarizes some characteristics of the
monitors considered in the experiments. We encode all the
videos with YV12 codec at 30 frames per second. The final
dataset, which we will publicly upon acceptance 1, comprises
700 videos (100 valid accesses and 600 spoofs).

TABLE I
CHARACTERISTICS OF THE MONITORS CONSIDERED IN THE EXPERIMENTS

FOR CREATING THE VIDEO SPOOFING SAMPLES.

ID Manufacturer Technology used in
an image formation Screen type

Monitor 1 Itautec LCD Glossy

Monitor 2 LG LCD Matte

Monitor 3 Samsung LCD Matte

Monitor 4 LG LCD Matte

Monitor 5 AOC LED Matte

Monitor 6 LG LCD Matte

B. Analysis of the Filtering Process and Visual Rhythm

To extract noise of the videos as shown in Equation 1,
we consider a linear and non-linear spatial filter: a Gaussian
with µ = 0, σ = 2, and size 7 × 7 and a Median filter of
size 7× 7. All this parameters were obtained empirically.

After computing noise signatures using Equations 2 and 3,
we extract the visual rhythm of each video (horizontal and
vertical) using the first 50 frames and a block of either 30
rows (for horizontal) or 30 columns (for vertical) of pixels.
The horizontal visual rhythms are in a 640 × 1, 500-d while
the vertical ones are in 480× 1, 500-d space.

From the calculated visual rhythms, we can work directly
on this high dimensional space, which we call pixel intensity
analysis, or we can consider visual rhythms as texture maps
and calculate the textural patterns from them using the GLCM.

Given that the horizontal and vertical visual rhythms ex-
tracted from each video form different texture maps, we
can assess the two types of visual rhythms as well their
combination.

C. Discriminating Power and Classification Techniques

With this experiment, our objective is to assess the discrim-
inability power of the visual rhythms for classifying spoof
attempts in videos. We evaluate two different sets of features:
the direct pixel intensities in the visual rhythms and a compact
representation of the visual rhythms using the gray level co-
occurrence matrix, with orientations θ ∈ {0◦, 45◦, 90◦, 135◦},
distance d = 1 and 16 bins. In this work, 12 measures of
texture were extracted from the generated four co-occurrence

1http://www.ic.unicamp.br/∼rocha/pub/communications.html

matrices. Table II shows the dimensionality of each type of
features (individually and combined).

In order to evaluate the extracted features, we can use
them to train a machine learning classifier and generate a
model capable of distinguishing valid and attack videos, and
test the effectiveness of the model. In this paper, we use
two classification techniques: SVM and PLS. For SVM, we
analyze two different kernels: linear and radial basis function
kernels using the LibSVM [33] implementation.

TABLE II
NUMBER OF FEATURES (DIMENSIONS) USING EITHER THE DIRECT PIXEL

INTENSITIES AS FEATURES OR THE GLCM-BASED TEXTURE
INFORMATION FEATURES.

Nome Descriptor Dimensionality
Horizontal Vertical Horizontal + Vertical

Pixel Intensity 960,000 720,000 1,680,000
GLCM 48 48 96

D. Data Set Partitioning

The dataset was divided into four sets: (1) Valid #1, compris-
ing 50 valid access videos; (2) Valid #2, comprising 50 valid
access videos; (3) Attack #1, with 300 attack videos created by
using the monitors 1, 2 and 3; (4) Attack #2, comprising 300
attack videos created by using the monitors 4, 5 and 6. The
partitioning considering different monitors for both Attack sets
has been chosen to avoid the classifier to take conclusions
over images coming from monitors it already had seen during
training. In the protocol we devised, a classifier is trained
with images from a set of monitors and tested with images
of monitors it never had access to.

Therefore, we design two configurations for the experi-
ments. In the first configuration, we use Valid #1 and Attack #1
groups to train the classifiers and Valid #2 and Attack #2
groups to evaluate the model found by the classifiers. In the
second configuration, we use Valid #2 and Attack #2 groups
to train the classifiers and Valid #1 and Attack #1 to test. The
results reported in the Tables III, IV, V and VI are in terms
of average and standard deviation of the two configurations.
We do not show the ROC curve because the obtained results
are near-perfect.

V. RESULTS AND DISCUSSION

Tables III and IV show the experimental results considering
the SVM classification technique for Gaussian and Median
filters. Similarly, Tables V and VI show the experimental
results for the PLS classification technique.

The results show that visual rhythms calculated on a loga-
rithmic scale Fourier Spectrum represent an effective alterna-
tive to summarize videos and an important forensic signature
for detecting video-based spoofs.

The results allow us to assert that the filtering process does
not have influence on our method, since that the obtained
results using the Median and Gaussian filters, using either the
SVM or PLS classifiers, are statistically comparable. Although



the standard deviations showed in the Tables III are 1.60%
and 0.50% using the vertical and horizontal visual rhythms,
respectively, with the combination these features, we obtained
an AUC with 100.0% and standard deviation of 0.0%.

In addition, we notice that visual rhythms can be interpreted
as texture maps that can be summarized using simple texture
descriptors, such as the gray level co-occurrence matrices.
This result is important since many classification techniques
(e.g., SVM) have memory allocation problems when dealing
with high-dimensional feature spaces. Finally, it is important
to mention that combining the horizontal and vertical visual
rhythms indeed represent a boost in the classification, provid-
ing better results than each individual set of features.

TABLE III
OBTAINED RESULTS IN TERMS OF AREA UNDER THE RECEIVER

OPERATING CHARACTERISTIC CURVE (AUC) CONSIDERING THE SVM
CLASSIFICATION TECHNIQUE AND GAUSSIAN FILTER. SVM WAS NOT
ABLE TO CALCULATE A CLASSIFICATION HYPERPLANE WHEN USING

DIRECT PIXEL INTENSITIES AS FEATURES.

Visual
Rhythms

SVM Linear SVM RBF

Intensity GLCM Intensity GLCM

Vertical
– x = 98.4% – x = 99.9%

– σ = 1.60% – σ = 0.10%

Horizontal
– x = 99.6% – x = 99.7%

– σ = 0.50% – σ = 0.10%

Horiz.+Vert.
– x = 100.0% – x = 100.0%

– σ = 0.0% – σ = 0.0%

TABLE IV
OBTAINED RESULTS IN TERMS OF AREA UNDER THE RECEIVER

OPERATING CHARACTERISTIC CURVE (AUC) CONSIDERING THE SVM
CLASSIFICATION TECHNIQUE AND MEDIAN FILTER. SVM WAS NOT ABLE

TO CALCULATE A CLASSIFICATION HYPERPLANE WHEN USING DIRECT
PIXEL INTENSITIES AS FEATURES.

Visual
Rhythms

SVM Linear SVM RBF

Intensity GLCM Intensity GLCM

Vertical
– x = 99.7% – x = 99.6%

– σ = 0.20% – σ = 0.10%

Horizontal
– x = 99.9% – x = 100.0%

– σ = 0.10% – σ = 0.0%

Horiz.+Vert.
– x = 100.0% – x = 100.0%

– σ = 0.0% – σ = 0.0%

VI. CONCLUSIONS AND FUTURE WORK

Due to the importance of providing secure biometric sys-
tems based on facial traits, in this paper we investigated
the characteristics of the problem and presented a method
for detecting video-based face spoofing by analyzing noise
signatures generated by the video recapturing process through
analysis of visual rhythms and textural information.

We believe that video-based spoofing attacks refer to a
problem more realistic than photo-based spoofing attacks,
since the algorithms based on movements and eye blinking
might not be suitable for detecting such attacks.

TABLE V
OBTAINED RESULTS IN TERMS OF AREA UNDER THE RECEIVER

OPERATING CHARACTERISTIC CURVE (AUC) CONSIDERING THE PLS
CLASSIFICATION TECHNIQUE AND GAUSSIAN FILTER.

Visual
Rhythm

PLS

Intensity GLCM

Vertical
x = 99.9% x = 98.2%

σ = 0.20% σ = 0.40%

Horizontal
x = 100.0% x = 98.9%

σ = 0.0% σ = 1.50%

Horiz. +
Vert.

x = 100.0% x = 99.9%

σ = 0.0% σ = 0.10%

TABLE VI
OBTAINED RESULTS IN TERMS OF AREA UNDER THE RECEIVER

OPERATING CHARACTERISTIC CURVE (AUC) CONSIDERING THE PLS
CLASSIFICATION TECHNIQUE AND MEDIAN FILTER.

Visual Rhythm
PLS

Intensity GLCM

Vertical
x = 100.0% x = 99.5%

σ = 0.0% σ = 0.70%

Horizontal
x = 100.0% x = 99.9%

σ = 0.0% σ = 0.10%

Horiz. + Vert.
x = 100.0% x = 100.0%

σ = 0.0% σ = 0.0%

The experiments we carried out demonstrate that the Fourier
spectrum of video noise signatures and the use of visual
rhythms are able to properly capture discriminative informa-
tion to distinguish between valid and fake users for video-
based spoofing. In addition, the extraction of feature descrip-
tors with GLCM provided a compact representation while
keeping the method discriminability.

The compact representation achieved by using visual
rhythms as texture maps has positive impacts on the
implementation of the method for a real biometric system
that needs to respond to inputs fast, allowing the use of
our method in small and medium computational systems.
Furthermore, the reduced dimensionality of the method allows
the use of our method in large video databases.

Finally, directions for future work include the exploration
of new video summarization approaches as well the use of
more monitors and real videos. As we employed monitors
with different image formation technologies (LCD and LED),
additional tests could be performed considering tablets and
smart phones as well as the investigation of illumination
influences on the proposed method.
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