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Abstract—This paper presents a comparison between the k-
Nearest Neighbors, with an especial focus on the 1-Nearest
Neighbor, and the Optimum-Path Forest supervised classifiers.
The first was developed in the 1960s, while the second was
recently proposed in the 2000s. Although, they were developed
around 40 years apart, we can find many similarities between
them, especially between 1-Nearest Neighbor and Optimum-
Path Forest. This work shows that the Optimum-Path Forest
classifier is equivalent to the 1-Nearest Neighbor classifier when
all training samples are used as prototypes. The decision bound-
aries generated by the classifiers are analysed and also some
simulations results for both algorithms are presented to compare
their performances in real and synthetic data.

Keywords-k-Nearest Neighbors; Optimum-Path Forest; deci-
sion boundaries; classification;

I. INTRODUCTION

Classification problems are present in many fields of engi-
neering, for example, a medic may want to be able to tell from
patterns present in a brain image, if a patient has brain cancer
or not. Other example is a market research, where an enterprise
tries to segment the market aiming to increase their sells. The
first is an example of supervised classification, because the
medic can assign the patient to only one of two possible
classes: “He has brain cancer” or “he doesn’t have brain
cancer”. The second example is an unsupervised classification
problem, since the market research can group the market in
any arbitrary number of segments, which are not known a
priori.

In this context, the k-Nearest Neighbors (k-NN) and the
Optimum-Path Forest (OPF) supervised classifiers are simple
non-parametric classification methods presented in the litera-
ture, that often provide competitive results when compared
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with other classifiers [1]], [2]. The k-NN classifier was
proposed in the 1960s and it is still very used to this very
day. It can be shown that for a large number of samples in a
problem with M classes the 1-NN is bounded below by the
Bayes Error Rate (BER) and above by twice the BER, which is
the reason why it is said that half the classification information
in an infinite sample set is contained in the nearest neighbor
[3] . The OPF classifier was developed in the 2000s and it
has shown good results in many classification problems, but it
lacks a mathematical treatment to explain why it works well
in many problems and what are its limitations.

Contributions: The goal of this paper is to compare both
theoretically and with simulations the k-NN and the OPF
supervised classifiers and show that they share many common
aspects (OPF is equivalent to 1-NN when all training samples
are used as prototypes). This comparison tries to give some
intuition for the reason why such good results are achieved
by OPF and also propose possible research lines that may be
used to improve both methods.

Paper Organization: Section II formulates the supervised
classification problem. Section III and IV present the operation
of k-NN and OPF classifiers, respectively. Section V presents
some simulations results for both methods using synthetic
and real databases, for the bidimensional cases the decision
boundaries are also analysed. In Section VI the conclusions
are presented.

II. SUPERVISED CLASSIFICATION PROBLEM
FORMULATION

Let’s suppose that we have a classification problem in
which there are M possible classes and there are N
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ii.d. (independent and identically distributed) samples Z =
{(X1,9(X1))7 ()(2,0()(2))7 (XN,Q(XN))}, where Xz is a
vector in the feature space and 6 corresponds to the class
that sample belongs to, i.e. 8(X;) € {wi,wa,...,wars}. The
supervised classification problem consists in using that prior
knowledge to classify new samples Xs to one of the M
possible classes in a manner to minimize the classification
error, which is given by the following expression:

plerror) =
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Bayesian decision theory is able to find an optimum solution
to (). It starts from the principle that p(w;) and p(X | w;) are
known distributions. From Bayes” Theorem, p(w; | X) can be
written as:

plw; | X) = % .
where:
M
p(X) = p(X | wi) x p(wi). 3
i=1

Bayesian decision theory arrives to the conclusion that the
optimal decision rule, known as Bayes’ Decision Rule is given
by:

p(error | X) =1—mazx[p(w | X),...plwr | X)].  4)

Replacing in (I), we have what is known as the Bayes’
Error Rate (BER), which is a theoretical lower bound to
the minimum error that can be achieved in a supervised
classification problem. This BER is often used as a guideline
to determine if a classifier is good or not.

ITII. K-NEAREST NEIGHBORS CLASSIFIER

This section will first present the 1-NN, which is simpler
to understand, and then it will generalize to the k-NN case.

A. I-NN

The 1-Nearest Neighbor is a non-parametric, sub-optimum
classifier [4]], and it has an operational heuristic very simple
to implement and understand. It assigns each new sample
X to the class w; of its nearest labeled sample X;. There
are many metrics that can be used to calculate distance, like
the Manhattan distance and the Minkowski distance, but the
most commonly used is the Euclidean distance [4]. The 1-
NN classifier procedure is illustrated in Fig. There are
four labeled samples, X7, X2 represented by blue squares
belonging to Class 1, and X3, X4 represented by red circles
belonging to Class 2. The green triangle represents the test
sample to be classified. Its distance to each labeled sample
is calculated, in this example using the Euclidean distance,
and then this sample is assigned to the class of its closest
labeled sample. The test sample was assigned to Class 2,
because it was closer to X,. It is important to point out that
the 1-NN classifier does not update its initial set of labeled

samples, i.e. each new sample that arrives is classified based
solely on the initial set of labeled samples. The 1-NN classifier
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Fig. 2. Illustration of the 1-NN operation. There are 4 training samples, two
blue squares (X2, X4) belonging to Class 1 and two red circles (X7, X3)
belonging to Class 2. The test sample represented by the green triangle is
assigned to Class 2, because it is closer to X4.

can be formulated in terms of mathematical equations. The
label 8(X) of each new sample X is given by the following
equation:

0(X) =0(Xnn), ®)

where Xy is given by:
Xyn =arg vggiélz{dx (X))}, 6)

and dx (X;) is the distance between X and X; in the chosen
metric.

It was shown in [3] that as the number of labeled samples
N tends to infinity in a M-class classification problem, the
1-Nearest Neighbor Error Rate (INNER) is bounded by the
following expression:

BER<INNER< BER x (2— s* x BER). (1)

The lower bound of (7)) is the BER and can only be achieved
with the complete knowledge of the problem statistics, i.e.
p(X) and p(X | w;), and the upper bound is in its worst
case two times the BER, which is achieved when the BER
tends to zero [3]. This is an very interesting result, since the
worst INNER can only be achieved when the BER is made
arbitrarily small and the double of an arbitrarily small number
is often acceptable from a practical point of view.

The 1-NN classifier has some weaknesses. The first is
that it is sensible to noise and outliers. The second is that
although it is nice to determine lower and upper bounds to the
INNER, this result is only valid on an infinite labeled samples
space. The convergence of the method on a finite space can
be arbitrarily slow and the INNER may not even decrease
monotonically with the increase of N [4]. It is also important
to point out that the computational complexity of the method



increases with N, since you have to compute and find the
minimum distance between all possible distances dx (X;) for
each test sample. There are in the literature some alternative
methods to cope with these weaknesses cited [3], [6], [7].

B. k-NN

k-NN is a natural extension of the 1-NN classifier. k-
NN classifies X by assigning it to the label most frequently
present in the k nearest neighbors. k-NN takes into account
k neighbors, so it is less sensible to noise and outliers than
1-NN. It can be shown that for an infinite number of samples,
N, as k tends to infinity the k-NN Error Rate (kNNER) tends
to the BER [4]. Although it seems that k-NN for £ > 1 is a
better classifier than 1-NN, this may not always be true, since
the INNER and the KNNER bounds were developed based on
the hypothesis of an infinite number of samples.

An anomalous example comparing 1-NN and 3-NN occurs
when there are 4 equidistant training samples from 2 different
classes, as shown in Fig. [3[a). The decision boundaries result-
ing from 1-NN and 3-NN, Fig. [3(b) and Fig. [3[c), respectively,
are exactly the opposite of each other. Clearly the 3-NN
boundary does not seem to be a good decision boundary, this
occurred because the number of training samples used was too
small. To improve k-NN results, the nearest neighbors votes
are multiplied by weights. Although this technique makes
k-NN more robust for the cases where the number of test
samples are not so high, it also turns k-NN into a parametric
classifier, since we have to appropriately choose the values of
the weights. A more reasonable decision boundary for 3-NN in
this anomalous example is shown in Fig. [3(d), using weights
inversely proportional to their distances to the test sample, i.e.

1

dx (X:)*
IV. OPTIMUM-PATH FOREST CLASSIFIER

The Optimum-Path Forest is a graph based classifier that
was devleoped as a generalization of the Image Foresting
Transform (IFT) [8]]. OPF is simple, multi-class, parameter
independent, does not make any prior assumption about the
shapes of classes and can handle some degree of overlapping
[L]. Tt was developed in the years 2000s and it has shown
good results in many classification problems [, [2], [9].
Classification through the OPF consists of two steps: fit and
predict. In the fit step, OPF chooses what it considers to be
the most meaningful training samples to become prototypes.
The predict step consists in assigning to the test samples the
label of the prototype that offers the lower path cost, which is
given by a cost function, f.,s:, defined a priori.

A. OPF Fit

In the fit step a complete undirected graph A = (Z x Z)
is built. In this graph, the training samples X; represent the
nodes and the edges weights, d’s, are the distances between
training samples calculated using an appropriate metric. The
next step is to find the Minimun Spanning Tree (MST) of A
using one of the many algorithms available, such as Kruskal’s
and Prim’s algorithm. The K nodes connected in the MST that
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Fig. 3. Anomalous example comparing 1-NN and 3-NN.

belong to different classes w; are selected and together they
form what is called the prototypes set, Z,,. The L = N — K
non-prototypes nodes form the non-prototypes set, Z,,,,. These
sets will be represented as follows:

ZP = {(Xplva(Xpl))v--~7(XPK79(X;DK))}7 ()
an = {(anlv Q(anl))7 3 (anLv G(XRPL))}v )

and Z,U Z,, = Z.

A path, 75+ = (s,ai,Git1,...,t), between nodes s and ¢
is defined as a sequence of nodes, such that from each of its
nodes there is an edge to the next node and nodes s and ¢
are the extremes of the path. A path m,, = (¢) is said to
be a trivial path and its path cost is 0. The next step in the
fitting process is to calculate the path cost of every training
sample to every prototype and assign each training sample to
a tree rooted in the prototype that offered the minimum cost.
Suppose the path cost function is C(X), then the minimum
cost of a training sample X is:

C(Xl) = VvainZ {fcost(Ter-,Xpi)}'

pi€Zp

(10)

In case of ties the training sample is assigned to the tree with
the lower number of edges in the path. OPF cost function most
commonly used is given by:

(1)

fcost(ﬂ's,t) = vg%ift{dj}.

Replacing (TI) in (I0), the result is:



min
VX, €7,

max
Vi€mx,, x

C(X1) = {d;}}, (12)
which is the usual OPF classification problem formulation and
can be solved using Maximum Dijkstra’s algorithm adapted
for the multi-source case [8]], where the sources are the

prototypes.

B. OPF Predict

The predict phase of OPF’s algorithm consists in assigning
a label to every new sample X. This is done by assigning
the label of the root prototype of the tree this sample would
belong if it was added to the graph A, and can be formalized
by the following equations:

Xpi = arg me,-igz {feost(mx,x,:) 5 (13)
0(X) = 0(X,0). (14)

OPF operation is illustrated in Fig. [d There are five training
samples, Xy, X, Xo from class “circle” and X3, X4 from
class “hexagon”, represented as a complete undirected graph,
Fig. f[a). The MST of the graph is calculated and X, and X3
are chosen as prototypes, Fig. {[b). These steps correspond to
the fitting phase. A test sample X arrives and its distance is
calculated in relation to every sample in the train set, Fig. fc).
Then X is assigned to the tree rooted in X since it offered
the lower cost, therefore X was classified as class “circle”,
Fig. @[d). The last 2 steps corresponds to the prediction phase.
For this particular example shown, it is important to point out
that 1-NN would classify X as being from class “hexagon”,
since X4 is the nearest neighbor to X.

(b) MST calculation and proto-
types choosing

(c) New sample X arrives

(d) New sample X is classified as
class “circle”

Fig. 4. Tllustration of OPF operation. (a)-(b) OPF fit. (c)-(d) OPF predict.

OPF is also sensible to noise and outliers, since the proto-
types choosing based on the MST will choose noisy samples
or outliers to become prototypes and these samples have great
influence on OPF’s classification decision.

C. Equivalence between I-NN Classifier and OPF Classifier

OPF’s usual formulation using (TI) is equivalent to 1-NN
when all training samples are used as prototypes. This is
easily shown, since Z = Z, and all test samples are directly
connected to the prototypes, this implies that feos:(7x,x,;)
dx (Xpi) = dx (X;). Replacing this result in (13), leads to:

Xpi = Xi = arg _min {dx(X;)}, (15)

which is exactly the 1-NN mathematical formulation.

D. OPF and 1-NN Decision Boundaries

The 1-NN decision boundary is defined by the Voronoi
diagram, which divides the feature space in clusters where
the distances of all points in a given cluster defined by a
labeled sample are not greater than their distance to the
other labeled samples. A simple example of a 1-NN decision
boundary, where two labeled samples are from class blue and
a third sample is from class red, is shown in Fig. [5(a). This
decision boundary results from the composition of two lines,
the horizontal line displays the interaction between the red
sample and the blue sample right above it. The second line
results from the interaction between the red sample and the
blue sample on the top left of the image.

OPF’s decision boundary in its usual formulation divides the
feature space in clusters defined by trees where the distances
of all points in a given cluster to the prototype sample of
the tree are not greater than the cost to the other prototypes
samples of the other trees. OPF’s decision boundary for the
same simple example used before is shown in Fig. [5[b). In this
image the black lines joining the samples represent the MST
and the triangular samples represent the prototypes. Notice
that OPF and 1-NN have very similar decision boundaries,
differing only on a small portion of the decision space as
illustrated in Fig. [5]c).

OPF and 1-NN Decisions Boundaries Differences

=

1-NN Decision Boundary OPF Decision Boundary

(a) 1-NN decision (b) OPF decision bound- (c) OPF and 1-NN dif-
boundary ary ferences shown in green
Fig. 5. Simple comparison between 1-NN and OPF decision boundaries.

V. SIMULATIONS

In this section k-NN and OPF supervised classifiers are
compared through simulations. The k-NN was simulated using
k=1, 3,5 and 7, and the weights were set as m in all
tests. Experiments were made using synthetic data and real
data. In all tests the metric used was the Euclidean distance.
Table [I] summarizes the information concerning the datasets.



TABLE I
DESCRIPTION OF THE DATASETS.

Dataset Code | Dataset Name | Samples | Features | Classes
Do Boat 100 2 3
D1 Checkersboard 300 2 2
D2 Cone-Torus 400 2 3
D3 Petals 100 2 4
D4 Saturn 200 2 2
D5 Spirals 200 2 2
D6 Digits 1797 64 10
D7 Iris 150 4 3
D8 WBC 683 9 2

Datasets Dy to Dj5 are constituted of synthetic data and they
are available on professor Kuncheva, from Bangor University,
online repositoryﬂ The geometry of many of these synthetic
datasets are highly non-linear and with some superposition
like in sets Dy, Dy and D,. The bidimensional datasets are
depicted in Fig. [6] Datasets Dg, D7 and Dg correspond to
real data and are available on the UC Irvine Machine Learning
Repositoryﬂ

The datasets were normalized to perform the simulations.
The experiments were done varying the training sets from 20%
to 50% of the whole dataset with steps of 5%. For each training
percentual, it were performed 50 simulations with each one of
the classifiers, and at the end the mean accuracies and the
mean kappa coefficients were calculated.

(d) D3 - Petals
Fig. 6.

(e) D4 - Saturn (f) D5 - Spirals

Synthetics Datasets Do — Ds.

A. Synthetic Datasets Results

The mean accuracy and the mean kappa plots found for
each synthetic dataset are summarized in Fig. [7] and Fig. [§]
respectively. In most simulations, we can see that OPF and
1-NN accuracy and kappa curves are very similar with 1-NN
results being slightly better than OPF results. The only dataset
where their results diverge a little more is dataset D3, where
their kappa and accuracy curves start 0.015 apart and in the
transition from 30% to 35% OPF accuracy and kappa curves

Uhttp://pages.bangor.ac.uk/~mas00a/activities/artificial_data.htm
Zhttp://archive.ics.uci.edu/ml/datasets.html

have a little more accentuated drop, but then they start growing
again. 3-NN, 5-NN and 7-NN achieve worst results than 1-NN
and OPF in datasets Dy, D4 and D5 and a slightly better result
with dataset Ds. For the other datasets, their results become
very similar to 1-NN and OPF, when the percentual of data
used for training is increased.

Boat Dataset Checkersboard Dataset
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Fig. 7. Mean accuracies found for the synthetic datasets.

Fig. 0 through Fig. [T4]display the decison boundaries found
by the classifiers for one of the simulations using 40% of the
dataset for training. In OPF’s decision boundaries the black
lines joining the samples represent the MST and the triangular
samples represent the prototypes. The green regions represent
OPF and 1-NN decision differences. The images indicate that
1-NN and OPF produce very similar decision boundaries with
OPF’s boundaries being smoother due to its cost function.
The similarities between OPF and 1-NN decision boundaries
explain why they achieve very similar accuracy results. 3-NN,
5-NN and 7-NN also produce smoother decision boundaries
than 1-NN, but their shapes are very different from each other
and in many cases they present a few isolated decision regions.
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Fig. 9. Boundaries found for dataset Dg.

B. Real Datasets Results

The mean accuracy and the mean kappa plots found for
each real dataset are summarized in Fig. [I5] and Fig.
respectively. In all simulations 3-NN, 5-NN and 7-NN ob-
tained slightly better results than 1-NN and OPF. Proabably
because the larger the k£ from the k-NN classifier, less sensible
to noise and outliers it becomes. OPF and 1-NN still obtain
similar results but the behavior of their mean accuracy and
mean kappa curves differ in a few transistions, such as in the
transistion from 35% to 40% with dataset Dg, where the 1-NN
mean accuracy increases while OPF’s decreases.

(c) OPF and 1-NN differ-

(c) OPF and 1-NN differ-
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VI. CONCLUSIONS

This paper presented a brief theoretical description of k-
NN and OPF classifiers and a comparison through simulations.
During the theoretical description it was shown that 1-NN and
OPF are equivalent to each other when all test samples are used
as prototypes. Also, the simulation results and the decision
boundaries analysis showed a similar behavior between 1-
NN and OPF, buth with OPF boundaries being smoother. The
simulation results also showed that although k-NN, for & > 1,
is theoretically a better classifier than 1-NN, this may not be
true if the number of training samples is not large enough.
The results also comproved that in presence of noise k-NN
with k£ > 1 is less sensible than 1-NN and OPF.

The results obtained are not enough to achieve general

Fig. 14. Boundaries found for dataset Ds.
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Fig. 15. Mean accuracies found for the real datasets.

performance conclusions, but it indicates that OPF and 1-NN
are similar classifiers and when working with sparse training
sets they usually achieve better results than k-NN for & > 1.

OPF classifier introduced the notion of optimum path trees
rooted in prototypes and it has a structure that may support
improvements both in time and accuracy performance of the
classifier. Also, the method based on the MST for finding
meaningful labeled samples to become OPF prototypes may
be an alternative method for reducing samples in Condensed
Nearest Neighbors (CNN) methods. Another possible investi-
gation is implementing the k-OPF, where, instead of using only
the distance to the nearest prototype to perform a classification
decision, the distances to the k nearest prototypes are used,
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Fig. 16. Mean kappa coefficients found for the real datasets.

and analyze if k-OPF and k-NN with the same values of &

present similar behaviors such as 1-NN and OPF.
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