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Abstract—In this paper we propose a new and efficient tex-
ture feature extraction method: the Segmentation-based Fractal
Texture Analysis, or SFTA. The extraction algorithm consists
in decomposing the input image into a set of binary images
from which the fractal dimensions of the resulting regions are
computed in order to describe segmented texture patterns. The
decomposition of the input image is achieved by the Two-
Threshold Binary Decomposition (TTBD) algorithm, which we
also propose in this work. We evaluated SFTA for the tasks of
content-based image retrieval (CBIR) and image classification,
comparing its performance to that of other widely employed
feature extraction methods such as Haralick and Gabor filter
banks. SFTA achieved higher precision and accuracy for CBIR
and image classification. Additionally, SFTA was at least 3.7 times
faster than Gabor and 1.6 times faster than Haralick with respect
to feature extraction time.

Keywords-Fractal analysis; texture; feature extraction; content
based image retrieval; image classification; image processing;

I. INTRODUCTION

Automated analysis of images has many applications, rang-
ing from image classification to image retrieval. For instance,
features automatically extracted from images are used in
content-based image retrieval (CBIR) to find and organize
visual information [1].

Due to the semantic gap problem [2], which corresponds
to the difference between the human user image perception
and what automatically extracted features convey, an important
aspect of the feature extraction task is to obtain a set of features
(i.e. a feature vector) that is able to succinctly and efficiently
represent the visual content of an image.

In many applications, texture features can be used to address
the semantic gap problem. For example, it can be employed
to describe terrain surfaces in satellite images and organ’s
tissues in the medical imaging domain. As a result, most of
the research in texture analysis area is dedicated to improve
the discriminatory ability of the features extracted from the
image [3].

Texture analysis, however, is usually a very time-consuming
process. For instance, in order to accurately capture the textural
characteristics of an image, algorithms that rely on filter banks
[4] or co-occurrence gray level matrices (GLCMs) [5] have to
consider multiple orientations and scales. In scenarios where
a big volume of images is involved, the computation cost
problem can be critical.

In order to deal with the computational cost problem in tex-
ture analysis, we propose a new and efficient feature extraction
algorithm: the Segmentation-based Fractal Texture Analysis
(SFTA). The extraction algorithm consists in decomposing
the input image into a set of binary images from which
the fractal dimensions of the regions’ borders are computed
from to describe the segmented texture patterns. In order to
decompose the input image, a new algorithm, named Two-
Threshold Binary Decomposition (TTBD) is also proposed.

We evaluated the proposed SFTA feature extraction method
for three different datasets. The first dataset corresponds to
regions of interest (ROIs) of lung computed tomography (CT)
scans. The two remaining datasets, KTH-TIPS [6] and Textured
Surfaces [7] are publicly available and widely employed to
evaluate texture analysis methods [8], [9], [10].

We compared SFTA to widely employed texture extraction
methods, such as Haralick descriptors [5], Gabor filter banks
[4] and others. In our experiments SFTA has shown superior
performance with respect to image classification accuracy and
CBIR precision. Furthermore, SFTA is at least 3.7 times faster
than Gabor and 1.6 times faster than Haralick with respect to
feature extraction time.

This paper is organized as follows. Section II discusses
related works and previous researches in texture analysis.
Section III details our proposed feature extraction method.
Experiments, discussions and interpretation are presented in
section IV. Finally, conclusions are provided in section V.
The symbols used throughout the paper are listed in Table I.

II. RELATED WORK

Texture plays an important role in image analysis and
understanding. Its role in domain-specific applications, such
as in remote sensing, quality control and medical imaging is
particularly vital due to its close relation to the underlying
semantics in these cases [1]. Additionally, texture information
can be employed in image segmentation, by classifying image
pixels with basis on surrounding texture information.

Texture features are intended to capture the granularity
and repetitive patterns of regions within an image. From a
statistical point of view, textures can be seen as complicated
pictorial patterns from which sets of statistics can be obtained
for characterization purposes [11]. Examples of such statistics



TABLE I
TABLE OF SYMBOLS

Symbol Definition

I Grayscale image.
Ib Binary image.
∆ Border image.
nl Gray level range.

T Set of threshold values.
nt Number of thresholds.
D Fractal dimension.
D0 Haussdorf fractal dimension.
ε Box size in the box counting algorithm.
VSFTA SFTA Feature vector.

than can be extracted from an image or image region are mean
gray level, standard deviation and entropy, among others.

Another widely employed approach to characterize tex-
ture consists in computing gray level co-occurrence matrices
(GLCM) by counting the number of occurrences of gray
levels at a given displacement and angle. Statistics such as
contrast, energy, entropy are computed from the GLCM to
obtain texture features as proposed by Haralick et al. in [5].

Filter bank-based methods provide another approach for
texture analysis, and are employed both in classification and
segmentation [8], [9]. Gabor filters [4], [12] is a popular
example of a filter bank-based method for its invariance with
respect to scale, rotation and displacement. Each Gabor filter
is represented as a Gaussian function modulated by a complex
sinusoidal signal. Considering that θ is the filter orientation, σ
the standard deviation and λ the wavelength of the sinusoid,
Equation 1 shows the formal representation of a Gabor filter:
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The pixel position in the filter is represented as (x, y).
In the image analysis paradigm, fractal dimension measure-

ments can be used to estimate and quantify the complexity
of the shape or texture of objects [13], [14]. Fractal geometry
involves various approaches to define fractional dimensions,
where the most common is the Hausdorff’s dimension. Con-
sidering an object that possesses an Euclidean dimension E,
the Hausdorff’s fractal dimension D0 can be computed by the
following expression:

D0 = lim
ε→0

logN(ε)

log ε−1
(3)

where N(ε) is the counting of hyper-cubes of dimension E
and length ε that fill the object.

If we consider an object represented by a binary image
Ib, an approximation D for D0 can be obtained through the
box counting algorithm [15]. Without loss of generality, the
algorithm for the 2D case can be described as follows. Initially,
the image is divided into a grid composed of squares of size
ε × ε. The next step consists in counting the number N̄(ε)
of squares of size ε × ε that contains at least one pixel of
the object. By varying the value ε, it is possible to create a
log N̄(ε) vs log ε−1 curve. Finally, this curve is approximated
by a straight line using a line fitting method (e.g. least squares
fitting). The fractal dimension D corresponds to the slope of
this line.

In [16] a feature extraction method termed Fast Fractal
Stack (FFS) is proposed. FFS has shown to be effective for
the task of lung disease classification in computed tomography
(CT) scans, that are images in which texture information has a
close relation to the application semantics. The FFS extraction
algorithm computes fractal measurements from a set of binary
images obtained from the input grayscale image using the
binary stack decomposition algorithm [11].

The binary stack decomposition algorithm models the input
grayscale image I as a 2D function I(x, y), where I(x, y) ∈
{1, 2, · · · , nl}. I(x, y) is called the grayscale value or intensity
of the pixel at position (x, y). This input image is decomposed
by applying successive thresholding operations. When an
image I(x, y) is thresholded by a value t ∈ {1, · · · , nl}, a
corresponding binary image is obtained. That is:

Ib(x, y) =

{
1 if I(x, y) ≥ t
0, otherwise.

(4)

where Ib(x, y) denotes the binary image obtained with the
threshold t.

For a given original image, there are nl potentially different
binary images. This set of binary images is referred to as a
binary image stack. However, to avoid extracting redundant
information, FFS algorithm does not employ all possible
values of thresholds to obtain the set of binary images. Rather,
the strategy of selecting equally spaced thresholds is adopted:

ti =

⌊
nl

nt + 1
· i
⌋
, i = 1, 2, · · · , nt (5)

where nt is a user defined parameter that corresponds to
the number of threshold values. In the experiments, FFS
empirically set nt equal to 8.

The disadvantage of FFS approach is that information about
the input image, such as the gray level distribution, is not
considered for selecting the set of thresholds. Additionally,
despite FFS being able to describe texture information in
lung CT images, our experiments have shown that it does
not perform well for texture datasets such KTH-TIPS [6] and
Textured Surfaces, [7].

III. PROPOSED METHOD

Our SFTA extraction algorithm can be divided into two
main parts: first we decompose the input grayscale image



into a set of binary images. To decompose the input image
we employ a new technique named Two-Threshold Binary
Decomposition (TTBD) that we also propose in this work.
Then, for each resulting binary image, we compute the fractal
dimension from its regions’ boundaries. Additionally, we com-
pute the regions’ mean gray level and size (pixel counting).

A. Two-Threshold Binary Decomposition
The Two-Threshold Binary Decomposition (TTBD) takes

as input a grayscale image I(x, y) and returns a set of binary
images. The first step of TTBD consists in computing a set
T of threshold values. In the binary stack decomposition
described in section II, the set of threshold values is obtained
by selecting equally spaced gray level values. TTBD adopts
a different strategy that uses the input image gray level
distribution information to compute the set of thresholds. This
is achieved by employing the multi-level Otsu algorithm [17].

The multi-level Otsu algorithm consists in finding the
threshold that minimizes the input image intra-class variance.
Then, recursively, the Otsu algorithm is applied to each image
region until the desired number of thresholds nt is obtained,
where nt is a user defined parameter.

The next step of the TTBD algorithm consists in decom-
posing the input grayscale image I(x, y) into a set of binary
images. This is achieved by selecting pairs of thresholds from
T and applying a two-threshold segmentation as follows:

Ib(x, y) =

{
1 if t` < I(x, y) ≤ tu
0, otherwise.

(6)

where t` and tu denote, respectively, lower and upper threshold
values.

The set of binary images is obtained by applying the two-
threshold segmentation (Equation 6) to the input image using
all pairs of contiguous thresholds from T ∪ {nl} and all pairs
of thresholds {t, nl}, t ∈ T , where nl corresponds to the
maximum possible gray level in I(x, y). Thus, the number
of resulting binary images is 2nt. Figure 1 illustrates the
decomposition of a region taken from a satellite image using
the TTBD algorithm. The resulting set of binary images was
obtained using nt = 8.

An important property of the TTBD is that the set the
binary images obtained is a superset of all binary images that
would be obtained by applying a one threshold segmentation
(Equation 4) using the thresholds computed with the multi-
level Otsu algorithm.

The rationale for using pairs of thresholds to compute the
set of binary images is to segment objects that otherwise would
not be segmented by regular threshold segmentation. This is
especially true for objects and structures whose gray level
lies in the middle ranges of the input image histogram. This
is illustrated using a terrazzo floor texture in Figure 2. The
chips (stones) that compose the surface can be roughly divided
into three classes with respect to brightness: light, medium
and dark. By using pairs of threshold values it is possible to
extract region information from the medium brightness chips
that would not be segmented by a single threshold value.

Input Image

Two-Threshold 
Binary Decomposition

Fig. 1. Decomposition of a region taken from a satellite image using the
TTBD algorithm. The resulting set of binary images was obtained using
nt = 8.

Grayscale Image

Dark Regions
lower threshold = 0.06
upper threshold = 0.15

Medium Regions
lower threshold = 0.15
upper threshold = 0.22

Light Regions
lower threshold = 0.25
upper threshold = 1.00

Fig. 2. Texture and the corresponding binary images obtained by two-
threshold segmentation as described in Equation 6. Gray level values are in
interval [0, 1]. By using pairs of thresholds, the TTBD algorithm is able to
extract region information from the medium brightness chips that would not
be segmented by a single threshold value. Texture surface photography from
the Textured Surfaces dataset [7].



B. SFTA extraction algorithm

After applying the Two Threshold Binary Decomposition
to the input gray level image, the SFTA feature vector is con-
structed as the resulting binary images’ size, mean gray level
and boundaries’ fractal dimension. The fractal measurements
are employed to describe the boundary complexity of objects
and structures segmented in the input image. The regions’
boundaries of a binary image Ib(x, y) are represented as a
border image denoted by ∆(x, y) and computed as follows:

∆(x, y) =


1 if ∃(x′, y′) ∈ N8[(x, y)] :

Ib(x
′, y′) = 0 ∧

Ib(x, y) = 1,

0, otherwise.

(7)

where N8[(x, y)] is the set of pixels that are 8-connected to
(x, y). ∆(x, y) takes the value 1 if the pixel at position (x, y)
in the corresponding binary image Ib(x, y) has the value 1 and
having at least one neighboring pixel with value 0. Otherwise,
∆(x, y) takes the value 0. Hence, one can realize that the
resulting borders are one-pixel wide. The fractal dimension D
is computed from each border image using the box counting
algorithm described in section II.

The mean gray level and size (pixel count) complement
the information extracted from each binary image without
significantly increasing the computation time. Thus, the SFTA
feature vector dimensionality corresponds to the number of
binary images obtained by TTBD multiplied by three, since
the following measurements are computed from each binary
image: fractal dimension, mean gray level and size. Figure 3
illustrates SFTA extraction algorithm. Figure 4 illustrates the
three measurements that are extracted from each binary image.

Algorithm 1 summarizes SFTA feature extraction process.
VSFTA denotes the resulting feature vector. In line 1 the set of
thresholds is computed using the multi-level Otsu algorithm.
In line 2 all pairs of contiguous thresholds in T are added
to TA. In line 3 the pairs of thresholds {ti, nl}, where nl
corresponds to the maximum gray level in I(x, y), are added
to TB . Line 5 iterates over all pairs of threholds in TA ∪ TB .
Each pair of thresholds is used in line 6 to compute the two
threshold segmentation as described in Equation 6. Lines 7-10
corresponds to fractal dimension, mean gray level and region
area computation.

Since fractal dimension can be efficiently computed in linear
time by the box counting algorithm proposed in [18], SFTA
extraction algorithm asymptotic complexity is O(N · |T |),
where N is the number of pixels in the grayscale image I ,
and |T | is the number of different thresholds resulting from
the multi-level Otsu algorithm.

IV. EXPERIMENTS

We evaluated our proposed method (SFTA) for the tasks of
CBIR and image classification using three different datasets,
Lung CT ROIs, KTH-TIPS and Textured Surfaces. The SFTA
performance was compared to that of the following feature
vectors: FFS, Haralick, Gabor, Histogram, Basic Texture and

Enhanced Binary Stack Decomposition

Features

Feature Vector

...

...D1 v1 A1 D2 v2 2A Dn vn nA

Input 
Image

IB1 IB2 IBn

Fig. 3. SFTA extraction diagram taking as input a grayscale image. First the
input image is decomposed into a set of binary image by the TTBD algorithm.
Then, the SFTA feature vector is constructed as the resulting binary images’
size, mean gray level and boundaries’ fractal dimension.

Fractal
Dimension

Area

Mean

Border
Finding

D1

v1

A1 =

=

=

Binary Image IB

Fig. 4. Features extracted from each binary image resulting from the TTBD.
Area and mean gray level are computed directly from the binary image. Fractal
dimension is computed from the border image (Equation 7).

Combined. The extraction process for each feature vector
is summarized in Table II. All extraction algorithms were
implemented in Matlab.

SFTA requires the user to set the parameter nt that defines
the number of thresholds that will be employed in the input
image decomposition. In section IV-E we provide an analy-
sis showing how SFTA performance for image classification
changes for different number of thresholds. Considering ex-
perimental results, we have set the nt parameter to 8.

To evaluate the extraction algorithms for the task of CBIR,
we employed precision and recall (P&R) curves. A rule of



TABLE II
FEATURE EXTRACTION METHODS USED IN THE EXPERIMENTS.

Method
Name

Description Number of
Components

SFTA SFTA feature vector using 8 thresholds. 48

FFS FFS feature vector using 8 thresholds. 8

Haralick
Variance, entropy, uniformity, homogeneity, 3rd order moment, inverse of
variance and step statistics from the image’s GLCMs. The GLCMs are computed
using 4 angles, 5 displacements and 8 gray levels.

140

Gabor Mean and standard deviation of the response of each filter from Gabor filter
bank. The Gabor filter bank is generated using 6 orientations and 4 scales. 48

Histogram 16 bin histogram computed by re-quantizing the input image to 16 gray levels. 16

Basic Texture Mean, contrast, skewness, kurtosis, entropy and standard deviation of the input
image’s gray level distribution. 6

Combined Combination of Haralick, Histogram, Basic Texture and Zernike moments [19]. 418

Algorithm 1 SFTA extraction algorithm.
Require: Grayscale image I and number of thresholds nt.
Ensure: Feature vector VSFTA.

1: T ←MultiLevelOtsu(I, nt)
2: TA ← {{ti, ti+1} : ti, ti+1 ∈ T, i ∈ [1..|T | − 1]}
3: TB ← {{ti, nl} : ti ∈ T, i ∈ [1..|T |]}
4: i← 0
5: for {{t`, tu} : {t`, tu} ∈ TA ∪ TB} do
6: Ib ← TwoThresholdSegmentation(I, t`, tu)
7: ∆(x, y)← FindBorders(Ib)
8: VSFTA[i]← BoxCounting(∆)
9: VSFTA[i+ 1]←MeanGrayLevel(I, Ib)

10: VSFTA[i+ 2]← PixelCount(Ib)
11: i← i+ 3
12: end for
13: return VSFTA

thumb to understand P&R curves is: the closer the curve is
to the top of the graph, the better the technique’s retrieval
performance is [20]. In P&R curves, precision and recall are
defined as follows:

precision =
number of relevant images retrieved

number of images retrieved
(8)

recall =
number of relevant images retrieved
number of relevant images in dataset

(9)

Each image was used as query center, returning the k most
similar images using k-nearest neighbor (kNN) queries and the
Euclidean distance function. An image was considered relevant
when its class was the same as that of the query image. P&R
curves were built by averaging the resulting curve of each
query.

As for the classification experiments, we make use of an
SVM (Support Vector Machine) classifier, built on a polyno-
mial kernel using the SMO (Sequential Minimal Optimization)

algorithm [21] We chose SVM due to its effectiveness and
wide exploitation in texture classification [8], [9].

A. CBIR, Lung CT ROIs Dataset

The Lung CT ROIs dataset is composed of 3258 ROIs from
lung computed tomography (CT) scans. Each ROI corresponds
to an image of size 64 × 64 pixels classified either as normal
or as one of the following lung disease patterns: consolidation,
emphysema, thickening, honeycombing and ground glass. This
dataset was used in [16] to evaluate the FFS extraction
algorithm. Figure 6 shows a sample ROI from each class of
the Lung CT ROIs dataset.

Consolidation Emphysema Thickening

Normal Honeycombing Ground Glass

Fig. 5. Sample ROI from each class of the Lung CT ROIs dataset

Figure 6 shows the precision and recall graph obtained for
the Lung CT ROIs dataset. SFTA corresponds to the black
curve with ∗ marks, presenting the highest image retrieval
precision for all recall levels. Gabor starts as the second
best feature vector but its precision degrades for recall levels
higher than 0.15 and is surpassed by Histogram. A possible
explanation for this result is the problem of the curse of
dimensionality. That is, the high dimensionality of the Gabor
feature vector contributes to reduce its precision.



Fig. 6. Precision and recall curves obtained for the Lung CT ROIs dataset.
SFTA corresponds to the black curve with ∗ marks, presenting the highest
image retrieval precision for all recall levels.

B. CBIR, KTH-TIPS Dataset

The KTH-TIPS (Textures under varying Illumination, Pose
and Scale) is a publicly available dataset1 composed of 810
grayscale images [6]. The dataset is divided into 10 texture
classes captured at different scales, illumination directions and
poses. Examples of texture classes from this dataset include
aluminum foil, brown bread, corduroy, cotton and sponge.
Figure 7 shows an image sample from each texture class.

Figure 8 shows the precision and recall curves obtained
for the dataset KTH-TIPS. SFTA and Gabor presented similar
precision. For recall levels below 0.3 Gabor has slightly higher
precision while SFTA is superior for higher recall levels. The
Combined feature vector starts the curve with competitive
performance when compared to SFTA and Gabor, but its
precision rapidly decreases for recall higher than 0.15.

Fig. 7. Sample images from the KTH-TIPS dataset.

C. CBIR, Textured Surfaces Dataset

The Textured Surfaces Dataset [7] includes surfaces com-
posed of materials such as wood, marble and fur under varying
viewpoints, scales and illumination conditions. The dataset is
publicly available2 and consists of 1,000 images of size 640
× 480 pixels comprising 40 samples of 25 different textures.
Figure 9 shows images samples from the dataset.

The precision and recall graph obtained for the Textured
Surfaces dataset is shown in Figure 10. SFTA presented the

1http://www.nada.kth.se/cvap/databases/kth-tips
2http://www-cvr.ai.uiuc.edu/ponce_grp/data

Fig. 8. Precision and recall curves obtained for the KTH-TIPS dataset.

highest precision except for recall levels higher than 0.75,
when Combined showed slightly higher performance. Gabor
precision was similar to that of SFTA for recall bellow 0.1 but
then presented a sharp decrease.

Fig. 9. Sample images from the Textured Surfaces Dataset.

Fig. 10. Precision and recall curves obtained for the Textured Surfaces
dataset. SFTA (black curve with ∗ marks) presented the highest precision
except for recall levels higher than 0.75.

D. Image Classification and Feature Extraction Time

In this section we describe experiments performed to evalu-
ate SFTA for the task of image classification. For this purpose,
we employed the datasets described in sections IV-A to IV-C.
We applied an SVM classifier with a polynomial kernel using
the SMO algorithm to compare SFTA accuracy with the other
extractors. The best SVM parameters for each dataset were
established by 10-fold cross validation.



Table III shows classification accuracy with standard de-
viation values indicated between parentheses. The symbol ∗
highlights methods that obtained the best results for each
dataset using a two-tailed t-Student test with p = 0.05. For the
datasets Lung CT ROIs and Textured Surfaces SFTA presented
the highest classification accuracy. SFTA also obtained the best
classification accuracy for the dataset KTH-TIPS tying with
Haralick, Combined and Gabor.

TABLE III
IMAGE CLASSIFICATION ACCURACY (%).

Extractor
Dataset

Lung CT KTH-TIPS Textured
ROIs Surfaces

SFTA ∗ 88.83 (1.2) ∗ 95.19 (2.4) ∗ 90.80 (3.3)
FFS 84.36 (2.3) 73.46 (4.1) 75.30 (3.9)
Haralick 83.03 (2.2) ∗ 93.83 (3.6) 82.40 (4.1)
Histogram 77.72 (1.9) 70.00 (5.7) 75.60 (3.6)
Combined 78.24 (2.3) ∗ 94.57 (3.2) 86.90 (4.3)
Gabor 86.43 (1.4) ∗ 95.19 (2.3) 87.70 (3.4)
Basic Texture 67.65 (3.0) 72.83 (5.3) 13.20 (2.9)

The symbol ∗ highlights methods that obtained the best results
for each dataset using a two-tailed t-Student test with p = 0.05.

In Figure 11 we show a plot of extraction time (vertical axis,
log scale) versus classification accuracy (horizontal axis) for
each dataset. Extraction time was obtained by running each
extraction method in a computer with an Intel i7 2.66GHz
processor, 8GB of RAM running Windows 7 64-bit OS. All
extraction algorithms were implemented in Matlab.

For all datasets SFTA achieved the highest classification
accuracy. Additionally, SFTA extraction time was always
lower than Haralick, Gabor and Combined. FFS, Histogram
and Basic Texture had lower extraction times when compared
to SFTA but presented a significantly inferior classification
accuracy. Combined presented the highest extraction time
which can be attributed to the Zernike moments’ extraction.
Hence, we can conclude that the Combined feature vector is
unsuitable for texture description.

When compared to Haralick, SFTA was 6.5, 1.6, 2.2
times faster for the datasets Lung CT ROIs, KTH-TIPS
and Textured Surfaces, respectively. Haralick’s high extraction
time for dataset Lung CT ROIs can be regarded to the fact that
the GLCMs dimensions from which the statistics described in
Table II were computed are significantly higher than the ROIs’
dimensions (64×64 pixels). Results from Figure 11 also show
that SFTA was at least 3.7 times faster than Gabor (dataset
Textured Surfaces) and up to 17 times faster for dataset Lung
CT ROIs.

E. Analysis of SFTA performance for different number of
thresholds

A central part of the SFTA algorithm is the decomposition
of the input image into a set of binary images. This is achieved
by the Two Threshold Binary Decomposition (TTBD) tech-
nique, presented in section III-A. TTBD algorithm takes

as input parameter the number of thresholds employed to
decompose the image. In this section we provide an analysis
showing how SFTA performance changes for different number
of thresholds.

In Figure 12 we show a plot of the classification accuracy
(vertical axis) of the SFTA feature vector obtained employing
different number of thresholds (horizontal axis). Each curve
corresponds to one of the three datasets discussed in sections
IV-A to IV-C. As for section IV-D, classification accuracy was
obtained using an SVM classifier.
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Fig. 12. Classification accuracy of the SFTA feature vector obtained
employing different number of threshold values. Each curve corresponds to
one of the three datasets presented in sections IV-A to IV-C.

For all datasets, classification accuracy increases until the
number of thresholds is 8 or 9. After this point, we did
not observe any significant increase in accuracy. A possible
explanation for this behavior is that after the number of
thresholds is higher than 8 or 9, no additional texture patterns
are identified by the TTBD algorithm. Additionally, for dataset
Lung CT ROIs we observed a decline in accuracy when the
number of thresholds is higher than 14.

V. CONCLUSIONS

In this paper, we proposed a new feature extraction al-
gorithm, the Segmentation based Fractal Texture Analisys
(SFTA). The SFTA is aimed both at medical imaging and
general domain texture feature extraction. We also proposed
the Two-Threshold Binary Decomposition algorithm, that is
employed by SFTA to partition the input grayscale image into
a set of binary images that are used to characterize textural
patterns.

We have evaluated SFTA both for the task of content-
based image retrieval (CBIR) and image classification. We
compared SFTA performance against other texture feature
extraction methods such as Haralick and Gabor filter banks.
Three datasets were considered in our experiments. The first
consisted of regions of interest taken from lung computed
tomography scans. The two remaining datasets are publicly
available and widely used for evaluating texture analysis al-
gorithms. Experimental results showed that SFTA performance
was superior to that of Gabor and Haralick, achieving higher



(a) (b) (c)

Fig. 11. Classification accuracy versus extraction time (log scale) for each extraction algorithm for datasets (a) Lung CT ROIs (b) KTH-TIPS and (c) Textured
Surfaces. The proposed method (SFTA) is indicated by a boldface font and the symbol �.

precision and accuracy for the task of CBIR and image
classification.

Another important aspect of SFTA is that it is efficient. In
our experiments, described in section IV-D, SFTA was at least
3.7 times faster than Gabor and 1.6 faster than Haralick with
respect to extraction time, while always presenting equal or
superior classification accuracy. This result can be attributed
to the simple yet effective SFTA algorithm.
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