
Illustrative volume visualization for unstructured
meshes based on photic extremum lines

Allan Rocha Fábio Markus Miranda Waldemar Celes
Tecgraf/PUC-Rio – Computer Science Department

Pontifical Catholic University of Rio de Janeiro, Brazil
Email: {acr, fmiranda, celes}@tecgraf.puc-rio.br

Abstract—Scientific visualization techniques create images at-
tempting to reveal complex structures and phenomena. Illustra-
tive techniques have been incorporated to scientific visualization
systems in order to improve the expressiveness of such images.
The rendering of feature lines is an important technique for
better conveying surface shapes. In this paper, we propose to
combine volume visualization of unstructured meshes with direct
rendering of illustrated isosurfaces. This is accomplished by
extending a GPU-based ray-casting algorithm to incorporate
illustration with photic extremum lines, a type of feature lines
that captures sudden change of luminance, conveying shapes in
a perceptually correct way.

Keywords-Illustrative Volume Visualization ; Photic Extremum
Lines

I. INTRODUCTION

Throughout history, artists have used illustration to em-
phasize model features, improving image understanding with
simplicity. In computer graphics, non-photorealistic rendering
(NPR) [1] tries to mimic illustration techniques, producing
images inspired by the way artists work on illustrations. Non-
photorealistic rendering techniques do not faithfully represent
the models as they really are, but enhance their features to
ease shape understanding [2]. Illustration techniques go beyond
NPR techniques and use abstraction as a key component to
reproduce images. Illustrations are effective because deliver
images that guide the observer to focus on the essential parts
of the model, without losing the context in which the model
is inserted [3].

Illustrative visualization then tries to combine the visual
abstraction from illustrations with NPR techniques in order
to achieve more expressive results. Illustrative visualization is
concerned to “what” to render and “how” to render, and then
uses both low-level and high-level abstraction techniques [4].
Drawing feature lines is one of the most effective low-level
abstraction technique, and is explored by traditional illustrators
[5]. Observing an illustration produced by an artist, one can
note, besides stippling and hatching, the use of a combination
of different line types. Based on this, several researches have
been conducted on feature line extraction and rendering for
three-dimensional computer generated models.

However, while designing their illustration, artists take into
account their visual perception of the model to choose the set
of lines to use, instead of relying on a pure geometry analysis.

(a) Conventional (b) Illustrated

Fig. 1. Image of an electrocardiography relating electric potential on the
body surface with activities in the heart. The proposed illustration technique
clearly depicts the interaction with the vertebral column.

One key ingredient for understanding the shape and features
of a model is its illumination. Based on lighting variation
(including shadows) artists draw lines to express the object.
Based on this, Xie et al. [6] presented a technique to extract
photic extremum lines (PELs), which emphasize significant
variations of illumination over 3D triangle surfaces. Also trying
to explore illumination variation on triangle surfaces, Zhang
et al. [7] defined Laplacian lines as the zero-crossing points
of the Laplacian of the surface illumination.

Ebert and Rheingans [8] introduced the concept of volume
illustration, combining line extraction with NPR techniques
for volume data. Volume illustration derives from the same
concepts of visual abstraction, integrated with the flexibility
to manipulate a transfer function, to achieve enhanced images.
Volume illustration techniques are effective for conveying the
structure of the data inside the volume and to reveal their
main features [9], [10], [11], [12], [13], [6], [14]. In this
context, researchers have extracted feature lines for emphasizing
isosurface rendering. In general, the isosurface is previously
extracted from the volume, and conventional techniques for
triangle meshes are applied.

In this paper, we propose to combine volume visualization
of unstructured tetrahedral meshes with illustrated isosurfaces.
This is accomplished by extending a GPU-based ray-casting

algorithm to incorporate illustration with photic extremum lines
(PELs) [6]. Instead of previously extracting the isosurface,
we propose a direct rendering technique, enhancing the
isosurface combined with the volume visualization. The PELs
are extracted without drastically impacting the performance of
the volume visualization algorithm. We show that the rendering
of these lines in fact delivers better understanding of the
data, revealing important structures and features otherwise
hidden. Figure 1 illustrates an achieved result. It shows a
torso electrocardiogram that relates electric potential on the
body surface with activities in the heart. As can be noted, our
illustration technique better reveals the interaction between the
electric potential with the vertebral column.

II. RELATED WORK

In this section, we briefly review works related to our
approach. We first review papers on line drawings and then on
volume illustration.

A. Line Drawing

A set of computer-generated lines has been used for
illustrative purpose, most inspired on the way artists enhance
their drawings. These line-generator algorithms can be classified
in two different groups: image space and object space. Object-
space algorithms compute geometric surface features to judge
the expressiveness of lines. As an example, we can mention
the extraction of ridges and valleys, which represent regions of
maximum and minimum curvatures [15]. Another example is
demarcating curves, which represent the loci of the strongest
inflections on the surface [16].

Other approaches consider geometric features with respect
to the point of view. These are the view-dependent lines. The
classical example is silhouette lines that define object contour
[17], but fail to reveal internal structures. Suggestive contours
try to overcome this limitation, drawing lines that reveal other
regions where the surface bends sharply away from the viewer
[18]. Highlight lines, as defined in [19], extend suggestive
contours for convex surfaces. Another method, apparent ridges
[20], generalizes ridges and valleys lines in a view-dependent
fashion.

Noting that illumination variations also reveal information
related to the geometry of objects, Xie et al. [6] proposed the
photic extremum lines (PELs). PELs are not based on curvature
variation, but on illumination variation. Different light sources
can be used to better reveal local object structures. Zhang et al.
[21] improved PEL extraction by incorporating an enhanced
shading technique and eliminating the use of different light
sources.

On the other hand, lines can be extracted in image space,
as a post-processing phase [22]. These techniques face the
challenges imposed by using a two-dimensional and discrete
representation of the model, such as occlusion and low
resolution. Lee et al. [23] proposed to process the image
understanding lines as an abstraction of a shaded image.
Jardim and de Figueiredo [24] presented a hybrid method

for computing apparent ridges, combining object-space and
image-space computations.

B. Volume illustration

Volume illustration represents a new paradigm for render-
ing volume data [8], [25]. The goal is to combine visual
abstraction, NPR, and volume visualization to better reveal
important features of the data inside the volume. Bruckner
[4] explored volume illustration for medical data. Semantic
layers, introduced in [26], allow the mapping of volumetric
attributes to one visual style, and Xie et al. [6] proposed
an effective illustrative visualization framework, combining
PELs and shading on isosurfaces previously extracted from the
volume.

As pointed out by Xie et al. [6], for methods that illustrate
isosurfaces after extraction, it is difficult to achieve real-time
interaction. One has to first extract the triangle mesh represent-
ing a given isosurface, perform differential computation on the
mesh, and then compose the final image by multiple-rendering
passes to combine isosurface and volume rendering. Kindlmann
et al. [9] avoided all this process by using curvature-based
transfer functions, enhancing the expressive and informative
power of direct volume rendering, revealing, for instance, ridges
and valleys in the volume. Interrante et al. [27] also proposed
a technique for drawing ridges and valleys on a transparent or
semi-transparent skin surface. The volumetric rendering system
proposed in [13] directly extracts silhouettes and suggestive
contours. Ma and Interrante [28] had already presented a
discussion on the motivation for extracting and displaying
perceptually relevant feature lines from unstructured grids.

In this paper, we propose to combine volume rendering
of unstructured meshes with direct rendering of illustrated
isosurfaces. We employ a GPU-based ray-casting algorithm
that directly extracts the PELs. Our choice for PELs is based
on their easiness of computation and their independence from
explicit computation of surface curvature. As a result, we are
able to illustrate isosurfaces with a small performance penalty.

III. DATA REPRESENTATION

In this work, the volume data are represented by unstructured
tetrahedral meshes. The scalar field is given at vertices of
the tetrahedra. We then assume a piecewise linear variation
of the scalar field inside the volume. The gradient of the
scalar field represents its variation. On an isosurface, the
gradient represents the surface normal. Therefore, to compute
the diffuse light on the surface, we need to compute the
scalar field gradient at arbitrary points in the volume. This is
accomplished by using a linear gradient reconstruction method.
Correa et al. [29] recently presented a comparison among linear
gradient estimation methods, classifying them in two groups:
averaging-based methods and regression-based methods. We
have opted for using the Green-Gauss average-based method,
which produces good results with a low computational cost
[29].

In a pre-processing phase, from the scalar field values
sampled at the vertices of the mesh, f(x), we estimate and

store the gradients as part of the volume data. Considering a
tetrahedral cell defined by its four vertices v0, v1, v2, and
v3, we can compute the constant gradient (∇f) associated to
the linear scalar field variation inside the cell, by solving the
following linear system [29]:(v1 − v0)T

(v2 − v0)T

(v3 − v0)T

∇f =

f(v1)− f(v0)
f(v2)− f(v0)
f(v3)− f(v0)

We assume that all tetrahedra defining the volume are non-

degenerated. From the constant gradients associated to the
cells, we need to compute smoothed gradients at the vertices;
otherwise, the isosurface illumination would have discontinuity
along cell interfaces.

Averaging-based methods express the gradient at a given
vertex x by averaging the gradients of neighboring tetrahedra:

∇f(x) =
∑
i

wi∇f(i)

where wi is a weighting factor, and ∇f(i) is the constant
gradient at the adjacent tetrahedron i. The Green-Gauss
approximation uses the volume of each tetrahedron (Vi) as the
weighting factor [29]

∇f(x) =
∑
i

Vi∇f(i)

Once we have the gradient at each vertex, during ray traversal
we can estimate the gradient at any point x inside a tetrahedron
using barycentric interpolation. The barycentric coordinate
associated to point x in a given tetrahedron is computed by: λ1

λ2

λ3

 = B (x− v0)

where:

B =
[

v1 − v0 v2 − v0 v3 − v0

]−1

We compute the matrix B and associate it to the correspond-
ing tetrahedron in a pre-processing phase. The fourth barycen-
tric coordinate is simply given by: λ0 = 1− (λ1 + λ2 + λ3).

During ray traversal, should the ray intersect the isosurface
of interest at point x, we compute the barycentric coordinate
and then compute the associated unit normal vector by:

~n =
∇f(x)
‖∇f(x)‖

with ∇f(x) given by:

∇f(x) = λ0∇f(v0) + λ1∇f(v1) + λ2∇f(v2) + λ3∇f(v3)

IV. RAY CASTING FOR TETRAHEDRAL MESHES

The light transportation through a volumetric cloud of scalar
values is given by [30]:

I(D) = I(0)e−(
∫ D

0
ρ(t)dt) +

∫ D

0

e
−(
∫ 0

t
ρ(u)du)

κ(t)ρ(t)dt

where D is the ray length inside the volume with ρ and κ
representing the attenuation coefficient and luminance, usually
mapped to RGBA values through a transfer function.

A major challenge of volume rendering is to evaluate such
integral in a fast and accurate way. One of the approaches is
based on ray casting. Given an unstructured mesh composed of
tetrahedral cells, a set of rays are casted from the eye position
to the model mesh boundary. Each ray is then traversed through
the cells using an adjacency data structure until the ray leaves
the model mesh.

In this work, we use a ray-casting algorithm implemented
in CUDA. At each cell traversal, the ray integral value is
calculated using an approach proposed by Moreland and Angel
[31] and Espinha and Celes [32]. Considering a piecewise linear
transfer function, it is possible to pre-calculate the integral and
store it on a 2D texture, and use the scalar values from the
front and the back of the tetrahedron as texture coordinates to
access the pre-computed values.

V. DIRECT PEL EXTRACTION

Photic extremum lines (PELs) capture sudden change of
luminance. As proposed by Xie et al. [6], PELs can be
extracted considering one or more light sources. For each
light source, they proposed to extract PELs considering only
diffuse illumination. The diffuse intensity at a given point on
a surface can be simply expressed by:

I = max (~n ·~l, 0)

where ~n is the unit normal at this point, and ~l is the unit
vector from the point on the surface toward the light source.
The extracted feature lines are directly related to the surface
shape, since variation of diffuse light is highly affected by the
variation of the normal [6].

Because we are rendering volume isosurfaces, both “back”
and “front” faces are relevant. We then compute the diffuse
contribution by:

I = |~n ·~l|
In their experiments, Xie et al. [6] used a main directional

light parallel to the view vector and optional auxiliary local
lights. In order to minimize performance penalty, we have
opted to use just one light for PEL extraction. We propose to
use a local light at the viewer position. We have concluded that
a positional light works better in our case, because it better
captures small normal variations. As we discretize the volume
by tetrahedra, and assume that the gradient varies linearly
inside each cell, a directional light would be less sensitive to
the diffuse light variation.

A. PEL definition
Photic extremum lines (PELs) are defined as the loci of

points on the surface where the variation of the absolute
value of the illumination, in the gradient direction, reaches the
local maximum [6]. The unit gradient direction of the diffuse
contribution is given by:

ŵ =
∇I
‖∇I‖

The points representing local maxima must satisfy:

Dŵ ‖∇I‖ = 0 and DŵDŵ ‖∇I‖ < 0

B. Computing PELs

In our algorithm, whenever a ray reaches an isosurface of
interest, we check if the intersection point belongs to a PEL
on the surface. We do that numerically, using finite difference.

Expressing the point on the surface by x, we first estimate
the gradient of the scalar field at this point by barycentric
interpolation as described. This gradient represents the normal
direction of the surface at this point. We then find a surface-
aligned basis, computing the tangential direction û and v̂
through cross products. The gradient of the illumination
function ∇I , on the isosurface, is then computed using central
difference:

∂I

∂u
(x) =

I(x + δû)− I(x− δû)
2δ

∂I

∂v
(x) =

I(x + δv̂)− I(x− δv̂)
2δ

where δ isto the spacing parameter to evaluate the derivative.
Note that the illumination gradient is expressed in tangential
coordinates. Points x ± δû and x ± δv̂ may fall outside the
current tetrahedron. In such a case, we employ a recursive
algorithm that uses the tetrahedron adjacency information to
traverse the mesh, until the containing tetrahedron is found, or
the external boundary of the model is reached (in which case,
we replace the central difference by forward or backward
difference). Once the containing tetrahedron is found, we
compute the corresponding illumination function.

This procedure allows us to compute the variation of the
illumination function at arbitrary points inside the volume.
We need to check if, at point x, the function ‖∇I‖ reaches
its local maximum, along the direction of ŵ (= ∇I/‖∇I‖).
This is accomplished by computing the absolute value of the
illumination gradient at points x + γŵ and x− γŵ, where γ
is another spacing parameter. We then compute three absolute
values of the illumination variation along ŵ:

v0 = ‖∇I(x− γŵ)‖
v1 = ‖∇I(x)‖
v2 = ‖∇I(x + γŵ)‖

Our goal is to evaluate if v1 is the maximum value of the
three. We do that just evaluating:

v1 −max(v0, v2) > ε

where ε is a tolerance needed due to noise and numerical
approximations.

VI. PARAMETER SETTINGS

In general, the effectiveness of algorithms to extract feature
lines relies on appropriate settings of parameter values. Our
algorithm is also subject to adequate parameter settings. As
described, we work with three parameters that must be adjusted

to better illustrate the isosurfaces in the volume. We use
the spacing parameter δ to evaluate the illumination function
gradient on tangential space; we use the spacing parameter γ to
sample the function that represents illumination variation along
the gradient direction; and we use the numerical tolerance
ε to compare maximum values. In this section, we discuss
how these parameters affect line extraction and propose re-
parameterization to ease the choice of appropriate settings.

A. Spacing parameter for gradient evaluation

The spacing parameter δ is used to evaluate the gradient
of the illumination function, which is directly related to the
surface normal, i.e., to the gradient of the scalar field. As
mentioned, the gradient of the scalar field varies linearly inside
a tetrahedral cell. As a consequence, if we use a small value for
δ, we will probably reach points inside the current tetrahedron,
ending up evaluating the illumination variation with a linear
variation of normals. This would reveals discontinuities along
cell interfaces. On the other hand, if we use a larger value for
δ, we smooth the gradient of the scalar field, and the use of
too large values would not capture important features.

It is clear that this parameter has to vary in accordance with
the size of the tetrahedron containing the point at which the
gradient is being evaluated. We have observed that we should
use a parameter value that forces the central difference to use
points in distinguish tetrahedra, but it should be as small as
possible to avoid losing features of the data. We then propose
to re-parameterize this spacing distance as follows:

δ = α r

where α represents the new parameter that replaces δ, and r
is the radius of the insphere of the tetrahedron that contains
the point, given by:

r =
6V

‖~a‖+ ‖~b‖+ ‖~c‖+ ‖~a+~b+ ~c‖
with:

~a = (v1 − v0)× (v2 − v0)
~b = (v2 − v0)× (v3 − v0)
~c = (v3 − v0)× (v1 − v0)

The value of α is not hard to set. In our experiments, a
value from 1 to 5 has worked. It depends on how smooth is
the scalar field.

B. Spacing parameter for maximum check

The spacing parameter γ is used to check if the current point
is a maximum of the function that represents illumination varia-
tion along the illumination gradient direction. This parameter is
related to the thickness of the extracted lines. If we set a large
value for γ, several pixels, across the line thickness direction,
will likely be associated to points of maximum values. This
happen because each point will be compared against distant
points; in a region of maximum values, all points will present
greater value than points outside the region.

We then propose the following re-parameterization:

γ = β dp

where β is the new parameter that replaces γ, and dp represents,
in object space, the distance proportional to one pixel on the
screen. This distance is approximated by:

dp = tan
θ

h
‖x− v‖

where θ corresponds to the vertical field of view of the camera,
h is the height of the viewing surface expressed in pixels, and
v is the position of the viewer. As a consequence, a β value
equal to 1 tends to reproduce lines with thickness value also
equal to 1. In our experiments, we have opted for using values
from 2 to 3. Too thin lines tend to present discontinuities due
to noise and numerical precision.

C. Numerical tolerance for filtering lines

The last parameter of our algorithm, ε, is used to filter only
“strong” maximum values. This is important to avoid capturing
all small variation of the illumination gradient, what would
result in polluted images. When illustrating surfaces, the goal
is to emphasize only the main feature lines. This parameter
plays this role. A value equal to zero would capture all the
small variations.

This parameter is hard to be re-parameterized. It depends
on the variation of the illumination gradient, which cannot be
pre-evaluated. We have observed though that this parameter is
not hard to set if we work with normalized coordinates. Prior
to rendering, we apply a scale to fit the geometry of the model
in the unit cube. With this normalization, we have found that
values in the interval from 0 to 1 produce good results.

VII. RESULTS

To demonstrate the effectiveness of our proposal, we have
tested our algorithm for direct rendering volume data with
illustrated isosurface for different models, including medical
and engineering data. In this section, we discuss the achieved
results.

A. Conventional vs. illustrated volume rendering

First, we show how the proposed technique does enhance
volume visualization by better revealing isosurface shapes. We
have already mentioned that our technique was capable of
better depicting the interaction between the electric potential
with the vertebral column in Figure 1.

We also tested our proposal for other models. Figure 2 shows
the achieved result for illustrating an isosurface of the well
known bluntfin model. The illustrated isosurface reveals small
scalar field oscillation along the surface that would be otherwise
unnoticed. Figure 3 compares the results of our algorithm with
conventional volume rendering for a black-oil reservoir model.
Again, the proposed algorithm better conveys isosurface shape.

(a) Conventional (b) Illustrated

Fig. 2. Volume rendering of the bluntfin model.

(a) Conventional

(b) Illustrated

Fig. 3. Volume rendering of a black oil reservoir model.

B. Correctness

In order to check the correctness of our proposal to direct
extract feature lines, we first apply our algorithm for rendering
the surface of a torus. The torus is represented by a synthetic
volume data, represented by a regular grid of points whose
scalar values were generated by evaluating the torus implicit
equation. Each regular grid cell was then subdivided into six
tetrahedra. Figure 4 shows the achieved shaded surface (on
the left) and the extracted lines rendered in isolation (on the
right). A similar experiment was also run by Xie et al. [6],
extracting the same PELs. Although PELs is not helpful to
convey the shape of a torus, this experiment shows that our
proposal correctly computes the PELs for this synthetic surface.

We then compared the lines extracted by our approach on
actual data with other different approaches: ridges, apparent
ridges, and suggestive contours. These other lines were ren-
dered by first extracting the corresponding isosurface using a

Fig. 4. Rendering of a synthetic volume data representing a torus surface.

marching-tetrahedron algorithm. We then used the software
RTSC (the Real-Time Suggestive Countor) from Princeton
University [33]. Because the extracted isosurfaces are too
coarse, we had to use the functionalities provided by the
software to smooth the surfaces. We first call the normal
smooth and then the mesh refinement functions; otherwise,
the lines were not adequately extracted. This, in fact, illustrates
an advantage of our method: smoothness can be achieved
by adjusting a single parameter; there is no need to perform
geometry computations. Figure 5 and Figure 6 illustrate the
results for the torso and the bluntfin models, respectively. As
can be noted, the PELs directly extracted by our proposal are
equivalent to the feature lines extracted from the previously
generated isosurface meshes.

C. Parameter settings

For testing parameter settings, we have run the following
experiment. We first chose appropriate parameters for visualiz-
ing the data from a torso electrocardiogram that relates electric
potential on the body surface with activities in the heart. The
lines drawn with our technique better reveal the interaction
between the electric potential with the vertebral column, as
illustrated in Figure 7b.

For this model, we have judged that the following parameters
produce good images: α = 4.0, β = 3.0, and ε = 0.65. We then
vary each one of these parameters to analyze its effect. Figure 7
illustrates the effect of varying the value of α. As stated, large
values smooth the scalar field and important features may be
lost. Small values capture discontinuities in the illumination
function and result in noisy images. Figure 8 illustrates the
effect of varying the value of β. As expected, larger values
produce thicker lines. Finally, Figure 9 illustrates the effect of
varying the value of ε. Again, as discussed, low values capture
small variation, resulting in polluted images. Too large value
may fail to capture important features.

VIII. CONCLUSION

In this paper, we have presented a new approach for direct
rendering of unstructured volume data combined with illustrated
isosurfaces. The illustration is done by extracting photic
extremum lines (PELs) during ray traversal. Our algorithm
is simple and relatively fast. With the current implementation,
we observed that the performance of our conventional volume
rendering algorithm was impacted in about 20 to 30%.

We showed that our proposal is helpful to convey isosurface
shapes for different models. We demonstrated the correctness
of our approach by comparing the achieved results with other
proposals for feature line rendering on triangle meshes, which

were previously extracted from the volume data. We have also
discussed the algorithm parametrization, and have presented
the influence of each parameter on the extracted lines.

ACKNOWLEDGMENT

We thank CNPq (Brazilian National Research and Develop-
ment Council) for the financial support to conduct this research.
This work was done in the Tecgraf laboratory at PUC-Rio,
which is mainly funded by the Brazilian oil company, Petrobras.

REFERENCES

[1] G. Winkenbach and D. H. Salesin, “Computer-generated pen-and-ink
illustration,” in Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, ser. SIGGRAPH ’94. New York,
NY, USA: ACM, 1994, pp. 91–100.

[2] Gooch, Bruce, Gooch, and Amy, Non-Photorealistic Rendering. Natick,
MA, USA: A. K. Peters, Ltd., 2001.

[3] P. Rautek, S. Bruckner, E. Gröller, and I. Viola, “Illustrative visualization:
new technology or useless tautology?” SIGGRAPH Comput. Graph.,
vol. 42, pp. 4:1–4:8, August 2008.

[4] S. Bruckner, “Interactive illustrative volume visualization,” Ph.D. disser-
tation, Institute of Computer Graphics and Algorithms, Vienna University
of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, 3
2008.

[5] F. Cole, “Line drawings of 3D models,” Ph.D. dissertation, Princeton
University, Jun. 2009.

[6] X. Xie, Y. He, F. Tian, H.-S. Seah, X. Gu, and H. Qin, “An effective
illustrative visualization framework based on photic extremum lines
(pels),” IEEE Transactions on Visualization and Computer Graphics,
vol. 13, pp. 1328–1335, November 2007.

[7] L. Zhang, Y. He, X. Xie, and W. Chen, “Laplacian lines for real-time
shape illustration,” in Proceedings of the 2009 Symposium on Interactive
3D graphics and games, ser. I3D ’09. New York, NY, USA: ACM,
2009, pp. 129–136.

[8] D. Ebert and P. Rheingans, “Volume illustration: non-photorealistic
rendering of volume models,” in Proceedings of the conference on
Visualization ’00, ser. VIS ’00. Los Alamitos, CA, USA: IEEE Computer
Society Press, 2000, pp. 195–202.

[9] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moller, “Curvature-based
transfer functions for direct volume rendering: Methods and applications,”
in Proceedings of the 14th IEEE Visualization Conference 2003 (VIS’03),
ser. VIS ’03. Washington, DC, USA: IEEE Computer Society, 2003,
pp. 513–520.

[10] S. Bruckner and M. E. Gröller, “Volumeshop: An interactive system for
direct volume illustration,” in Proceedings of IEEE Visualization 2005,
H. R. C. T. Silva, E. Gröller, Ed., Oct. 2005, pp. 671–678.

[11] S. Bruckner and M. E. Groller, “Enhancing depth-perception with flexible
volumetric halos,” Institute of Computer Graphics and Algorithms, Vienna
University of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna,
Austria, Tech. Rep. TR-186-2-07-04, Apr. 2007.

[12] ——, “Style transfer functions for illustrative volume rendering,” Com-
puter Graphics Forum, vol. 26, no. 3, pp. 715–724, Sep. 2007.

[13] M. Burns, J. Klawe, S. Rusinkiewicz, A. Finkelstein, and D. DeCarlo,
“Line drawings from volume data,” ACM Transactions on Graphics (Proc.
SIGGRAPH), vol. 24, no. 3, pp. 512–518, Aug. 2005.

[14] F. d. M. Pinto and C. M. D. S. Freitas, “Volume visualization and
exploration through flexible transfer function design,” Computers and
Graphics, vol. 32, no. 5, pp. 420–429, August 2008.

[15] Y. Ohtake, A. Belyaev, and H.-P. Seidel, “Ridge-valley lines on meshes
via implicit surface fitting,” ACM Trans. Graph., vol. 23, pp. 609–612,
August 2004.

[16] M. Kolomenkin, I. Shimshoni, and A. Tal, “Demarcating curves for shape
illustration,” ACM Trans. Graph., vol. 27, pp. 157:1–157:9, December
2008.

(a) Diffuse illumination (b) Rigdes (c) Apparent ridges (d) Suggestive contours (e) Our technique

Fig. 5. Comparison among different techniques to extract feature lines for the torso model.

(a) Diffuse illumination (b) Rigdes (c) Apparent ridges (d) Suggestive contours (e) Our technique

Fig. 6. Comparison among different techniques to extract feature lines for the bluntfin model.

[17] A. Hertzmann and D. Zorin, “Illustrating smooth surfaces,” in Pro-
ceedings of the 27th annual conference on Computer graphics and
interactive techniques, ser. SIGGRAPH ’00. New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co., 2000, pp. 517–526.

[18] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella, “Suggestive
contours for conveying shape,” ACM Trans. Graph., vol. 22, pp. 848–855,
July 2003.

[19] D. DeCarlo and S. Rusinkiewicz, “Highlight lines for conveying shape,” in
International Symposium on Non-Photorealistic Animation and Rendering
(NPAR), Aug. 2007.

[20] T. Judd, F. Durand, and E. Adelson, “Apparent ridges for line drawing,”
ACM Trans. Graph., vol. 26, July 2007.

[21] L. Zhang, Y. He, and H.-S. Seah, “Real-time computation of photic
extremum lines (pels),” Vis. Comput., vol. 26, pp. 399–407, June 2010.

[22] T. Saito and T. Takahashi, “Comprehensible rendering of 3-d shapes,”
SIGGRAPH Comput. Graph., vol. 24, pp. 197–206, September 1990.

[23] Y. Lee, L. Markosian, S. Lee, and J. F. Hughes, “Line drawings via
abstracted shading,” ACM Trans. Graph., vol. 26, July 2007.

[24] E. Jardim and L. de Figueiredo, “A hybrid method for computing
apparent ridges,” in Graphics, Patterns and Images (SIBGRAPI), 2010
23rd SIBGRAPI Conference on, 30 2010-sept. 3 2010, pp. 118 –125.

[25] F. de Moura Pinto and C. Freitas, “Importance-aware composition
for illustrative volume rendering,” in Graphics, Patterns and Images
(SIBGRAPI), 2010 23rd SIBGRAPI Conference on, September 2010, pp.
134 –141.

[26] P. Rautek, S. Bruckner, and M. E. Gröller, “Semantic layers for illustrative
volume rendering,” IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 6, pp. 1336–1343, Oct. 2007, to be presented at
IEEE Visualization 2007.

[27] V. Interrante, H. Fuchs, and S. Pizer, “Enhancing transparent skin
surfaces with ridge and valley lines,” in Proceedings of the 6th
conference on Visualization ’95, ser. VIS ’95. Washington, DC,
USA: IEEE Computer Society, 1995, pp. 52–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=832271.833836

[28] K.-L. Ma and V. Interrante, “Extracting feature lines from
3d unstructured grids,” in Proceedings of the 8th conference on

Visualization ’97, ser. VIS ’97. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1997, pp. 285–ff. [Online]. Available:
http://portal.acm.org/citation.cfm?id=266989.267085

[29] C. D. Correa, R. Hero, and K.-L. Ma, “A comparison of gradient
estimation methods for volume rendering on unstructured meshes,” IEEE
Transactions on Visualization and Computer Graphics, vol. 17, pp. 305–
319, May 2011.

[30] N. Max, “Optical models for direct volume rendering,” IEEE Transactions
on Visualization and Computer Graphics, vol. 1, pp. 99–108, June 1995.

[31] K. Moreland and E. Angel, “A fast high accuracy volume renderer for
unstructured data,” in Proceedings of the 2004 IEEE Symposium on
Volume Visualization and Graphics, ser. VV ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 9–16.

[32] R. Espinha and W. Celes, “High-quality hardware-based ray-casting
volume rendering using partial pre-integration,” in Proceedings of the
XVIII Brazilian Symposium on Computer Graphics and Image Processing.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 273–280.

[33] S. Rusinkiewicz. Rtsc, the real-time suggestive contour. [Online].
Available: http://www.cs.princeton.edu/gfx/proj/sugcon/

(a) α = 1.0 (b) α = 4.0 (c) α = 8.0

Fig. 7. Effects of varying the parameter α; other parameters are fixed: β = 3.0 and ε = 0.65

(a) β = 2.0 (b) β = 3.0 (c) β = 4.0

Fig. 8. Effects of varying the parameter β; other parameters are fixed: α = 4.0 and ε = 0.65

(a) ε = 0.05 (b) ε = 0.65 (c) ε = 1.30

Fig. 9. Effects of varying the parameter ε; other parameters are fixed: α = 4.0 and β = 3.0

