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Abstract—The problem of view clustering is concerned with
finding connected sets of overlapping views in a collection of
photographs. The view clusters can be used to organize a photo
collection, traverse through a collection, or for 3D structure
estimation. For large datasets, geometric matching of all image
pairs via pose estimation to decide on content overlap is not
viable. The problem becomes even more acute if the views in
the collection are separated by wide baselines, i.e. we do not
have a dense view sampling of the 3D scene that leads to
increase in computational cost of epipolar geometry estimation
and matching. We propose an efficient algorithm for clustering
of such many weakly overlapping views, based on opportunistic
use of epipolar geometry estimation for only a limited number
of image pairs. We cast the problem of view clustering as finding
a tree structure graph over the views, whose weighted links
denote likelihood of view overlap. The optimization is done in an
iterative fashion starting from an minimum spanning tree based
on photometric distances between image pairs. At each iteration
step, we rule out edges with low confidence of overlap between
the respective views, based on epipolar geometry estimates. The
minimum spanning tree is recomputed and the process is repeated
until there is no further change in the link structure. We show
results on the images in the 2010 Nokia Grand Challenge Dataset
that contains images with low overlap with each other.

Keywords-Computer Vision, Image Collection, Epipolar Geom-
etry, Photo Organization

I. INTRODUCTION

Community photos on web have been the subject of com-

puter vision research lately. These datasets usually contain

images of a monument or geographical region sometimes

on city scale or even at world scale. The focus of current

vision algorithms has been to use densely sampled scene

photo collections, with high overlap with each other, for

large scale reconstruction, camera pose estimation, and 2D

panorama stitching [1], [2], [3], [4], [5], [6], [7], [8], [9].

Works on 2D panoramic stitching assume the scene to be far

from the camera, or to have essentially negligible translations

between camera centers. While multi-view 3D reconstruction

algorithms assume that we have more than two views of the

same scene content for reconstruction via bundle-adjustment.

Bundle adjustment is a well known final refinement step in

almost all shape-from-motion problems and can work with two

views, but in practice it works the best if each scene point is

seen by more than two cameras. For instance, Snavely [2] in

his work on photo-tourism uses tracks of more than 20 key-

points across multiple images that are consistent with pairwise

epipolar geometries between consecutive views in the track.

These kind of algorithms typically exploit the high overlap

in scene content between closely spaced views and can have

problems when the images are widely spaced in 3D space, i.e.

camera positions are widely separated. In such collections it is

rare to have more than two views of the same scene content.

In this work, we address the problem of finding connected

clusters of views in a photo collection of weakly connected

photos. We exclusively focused on the Nokia Grand Challenge

Dataset [10] (see Fig. 1 for samples). No result on this dataset

has been reported so far, although the dataset has been open for

research for more than 2 years now. This dataset is relatively

much harder than those already handled in the state-of-the-

art vision research. It covers very large geographical area as

much as covered by much larger datasets in the state-of-the-art

research works making it an even harder problem for vision

based research. To locate connected cluster of views, we need

to compute similarity between two views. This can be done in

two ways: photometrically and geometrically. Photometric dis-

tance between images can be computed based on appearance

of image features, without considering geometric consistency.

Geometric similarity can be computed by using the epipolar

geometry between two views to constrain the matches between

image features. Most current approaches to epipolar geometry

estimation, especially for widely varying view points, typically

rely on some variation of random sampling and hence tend

to be computationally expensive. Once the clusters have been

identified, they can be used either for photo tourism or as input

to bundle adjustment for scene reconstruction.

Given the sparse nature of the views in the dataset, we

structure our search for connected sets of views as a search for

tree structures connecting the views. The nodes are the views

and the links denote view overlap capable of estimating pose

with some minimum confidence. We are looking for minimum

number of such tree structures over the views. Ideally we want

a single spanning tree but it might not be always possible.

Snavely [1] also proposed similar skeletal graphs for efficient

structure from motion but for photo collection with significant

overlap, unlike our case. In another work by Schaffalitzky [11]

results of graph based connectivity in images have been shown
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Fig. 1. Image pairs from the Demoset in Nokia Grand Challenge Dataset used to demonstrate the accuracy of our photometric distance measure. Notice the
significant viewpoint changes for some pairs.

on small datasets, but again for densely spaced images. Heath

et al. [12] also built a graph structure over a large collection

of images, but the goal was different – linking was sought

between image subregions across images, and not matching

of entire images. Li et al. [13] has a similar philosophy to

organizing large image datasets as ours. Like them, we also

view the task of finding view clusters as a precursor to other

possible tasks such as 3D reconstruction or browsing through

collections. 3D reconstruction might not be needed for many

tasks. Li et al. [13] has a similar approach as ours, however, the

problems considered are of different flavors. They start with a

large collection of images that are then grouped into clusters.

Iconic images that represent the clusters are then selected.

Our starting point is more like these iconic images. The

views we consider also have large viewpoint and appearance

changes. Their approach requires a training step to restrict

costly geometric matching only to visually similar subset of

iconic images, ours do not require any such training.

In our work, we use both the photometric and geometric

similarities to decide on image similarities. Just photomet-

ric distance is not sufficient in identifying pairs of images

that have common scene content. Two different scenes can

have low photometric distance. For instance, see Fig. 2 that

shows image pairs that were judged to have low-photometric

distances but clearly not do not have overlap. And, it does

not make sense to compute geometric consistency measures

between pairs of images that do not have common scene

content. The pure geometric approach is actually as accurate

as we can get as it uses the strongest constraint (the epipolar

constraint) on two-view geometry known in vision. The pho-

tometric method uses weak constraints like appearance and

uniqueness. However, exhaustive geometry estimation is very

time consuming while exhaustive photometry estimation is

faster, but less accurate. We attempt to get the benefits of both

the methods by photometric estimation based initialization

and geometry based verification to perform an iterative search

for the optimally connected tree structure. We start with

a minimum spanning tree based on photometric distances

between all pairs of views. Tree edges are tested for geometric

consistency and are removed if found to be inconsistent. Some

views with low computed photometric distances might not be

geometrically consistent. The minimal spanning tree(s) are

computed again on the modified graph, which might have

multiple connected components. The process is repeated. The

process stops when there is no further change in the spanning

tree.

In this paper, we compared our algorithm with the ex-

haustive geometric method that allows us to measure our

relative performance in terms of speed gain and accuracy loss,

independent of the coding platform. However, other known

algorithms have shown scalability of their algorithm without

reporting similar metrics as we do. While exhaustive geometric

algorithm is O(n2) in terms of geometric estimations, our

algorithm needs O(n) geometric estimates. This answers the

scalability issue theoretically in our case.

II. OBJECTIVE AND SEARCH MECHANISM

The goal is to construct a tree structure, τ , connecting the

camera nodes, where the links between two nodes denote

overlap between the corresponding views. We want the tree

structure with the largest total overlap between image pairs.

Camera views are not calibrated nor do we use any GPS

information. This is unlike [14] which uses GPS information

for geo-clustering. We will use the concept of photometric

distance constrained by epipolar geometry estimates to search

for the optimal tree structure.

A. Photometric Distance

Photometric distance between two images Ii and Ij is de-

fined based on the similarity between the sets of the point fea-

tures found in these images. We used the SIFT [15] features in



Fig. 2. Few image pairs corresponding to the geometrically rejected edges. These pairs were photometrically similar based on local similarity
in appearance around the putative correspondence but their geometric consistences were low.

this work, but other features could also work. Let the features

found in Ii and Ij be denoted by the sets {u1, · · · , uM} and

{v1, · · · , vN}, respectively. A correspondence (ui, vj) will be

denoted by xk. We take the similarity of a correspondence

to be the reciprocal of the distance between SIFT features.

We have an M by N similarity matrix, ρ, computed for all

possible correspondences.

The accepted putative correspondences, {x1, · · · , xn}, are

those that have highest similarity along both row and column

in the photometric feature similarity matrix, ρ. For these

putative correspondences, one feature of the pair is the best

match for the other and vice-versa. Let the similarity of the k-

th such putative match be denoted by ρk. And, ρkr and ρkc be

the second highest values in the row and column of this match,

respectively. The confidence in a putative correspondences

could be related to how different these second maximums are

from the similarity of the putative correspondences, which is

the maximum along the corresponding row and the column.

The more the difference, more the confidence in the match

being correct. We use the following combination to result in

a normalized similarity for the k-th putative match.

wij(k) = (1− exp−ρk)2(1− ρk
ρkr

)(1− ρkc
ρk

) (1)

The combination results in high values for putative matches

with high similarities and those for which the next best

matches have low similarities. This photometric weight is same

as that used in [16]. Using these weights over the K putative

matches, we define the photometric distance between the two

images.

G(i, j) = exp

(
−κ logK

∑K
k=i wij(k)

K

)
(2)

where the photometric distance between two images are ex-

ponentially related to the average similarity over the putative

matches,

∑K

k=i
wij(k)

K , and the number of putative matches,

the logK, term. This distance decreases with the increase

in number of putative correspondences and their average

similarity. The constant term κ is fixed based on training data.

In the experiments, we present some results with alternative

combination forms. The above form resulted in the best

performance.

B. Vision Based Geometric Consistency

Given a set of putative correspondences between two views,

identified as described in the previous section, consistency of

these correspondences with respect to the epipolar geometry

can be used as a geometric measure. There are many such

epipolar geometry estimation algorithms [17], [18], [16], [19].

Some require high overlap between views and others can work

with widely varying views, with little overlap [16]. We use the

latter since many view pairs in our problem could be widely

separated.



Given an estimate of the epipolar geometry in terms of

the fundamental matrix (F), we take its fits to the putative

correspondence set X as the geometric consistency measure

between the two images. Let uk and vk be the homogeneous

coordinates of the k-th putative correspondence. We denote

by δij(F,xk) the Sampson’s distance of the k-th putative

correspondence, which is an excellent approximation of the

re-projection geometric error – the gold standard [20].

δij(F,xk) =
(vk

TFuk)
2

||Fuk||2 + ||FTvk||2 (3)

These individual errors of the putative correspondences need

to combined into one overall error measure. However, instead

of simply summing them, we consider an robust combination

form that allows us to weigh down outliers. We choose

Welsh’s [21] weight function as our robust combination kernel

to arrive at the overall geometric consistency between images

Ii and Ij .

γij =

K∑
k=1

exp

(
−δij(F,xk)

σ

)
(4)

The negative exponential in the Welsh’s weight function

suppresses the effect of outliers on the evaluation of the

quality of the fundamental matrix. Correspondences with

very large Sampson errors will not contribute to the overall

geometric consistency between the two images. The sum of

such exponentials gives an M-estimate of the fundamental

matrix fitting quality. In our experiments, we have fixed

σ = 10−4. It must be noted here that we do not multiply

probability measures obtained from residual errors as done

by others [22] because a multiplicative cost function would

primarily be determined by the low probabilities associated

with the outliers. Even one outlier would weigh down the

multiplicative form value. Additive cost function would instead

allow for suppressed fitting values of outlier correspondences

without getting effected by them.

C. Algorithm

The algorithm to search for the tree structure is based on a

greedy approach that uses the expensive geometric consistency

computation in an opportunistic manner. It starts from a

spanning tree of a complete graph structure, weighted by

photometric similarities, and gradually refines it based on

geometric consistency. The specific steps of the algorithm are

shown in Algorithm 1.

Note that the final tree could be disconnected. Geometric

consistency is computed only for the pairs of images with

low photometric distance, i.e. high similarity. In practice the

total number of iterations needed are small around 10 to

15 for a dataset of around 400 images. So, the number of

times geometric consistency is computed is determined by the

number of links in the spanning tree, which is proportional to

the total number of images in the dataset.

Although, theoretically our work does not depend on a

specific kind of feature, but we relied on SIFT point features

in our work. This might be a possible limitation of our work.

Algorithm 1 CLUSTER-VIEWS (I1, · · · , IN )

Require: : N images

Ensure: : N ≥ 2
Preprocessing:

1) Downsample images to about 200 by 200 pixels

2) Compute starting graph G(i, j) based on photometric

distances (Eq. 2)

3) τ0 = Minimum spanning tree of G, n = 0

Iterative Optimization:

4) ∀(i, j) ∈ τn estimate geometric consistency using γij
(Eq. 4)

5) ∀(i, j) ∈ τn with γij < tγ set G(i, j) = ∞, i.e.

remove the edge.

6) τn+1 = Minimum spanning tree(s) of G. Note G
might get disconnected.

7) If (τn+1 �= τn) then n = n+ 1 and goto step 4.

Also, the upper limit of the accuracy of our algorithm (or any

possible vision based algorithm for this problem) is defined

by the exhaustive geometry estimation.

D. Convergence of our optimization strategy

First of all, it is worth noticing in our work that our

photometric initialization is very good (see Fig. 6) and so

we do not need many iterative geometric optimization steps.

However, the quality of the results would improve with the

number of consecutive iterations we would continue to wait

for a change even after no change in the MST (Minimum

Spanning Tree) occurs for those iterations. If we continue till

all edges are exhausted, this would clearly converge to the

result of the exhaustive geometric approach but would not save

time.

E. Time Complexity

The time-complexity is measured in terms of the number

of time most expensive sub-step involved in the algorithm is

performed for a given input size. The most expensive sub-step

in our algorithm is epipolar geometry estimation. The number

of epipolar geometry estimations done in our case is O(n) in

the average case, since the estimations are done only along the

spanning tree and is initially restricted using the photometric

similarity matrix. We can ignore matches below a threshold on

photometric similarity leaving a sparse photometric similarity

matrix.

III. EXPERIMENTS

The Nokia Grand Challenge dataset consists of widely

spaced images over a large geographic area. It also has GPS

tags with each image, which we use only to visualize the

results. GPS information is not used to compute the view

clusters. The dataset has two sub-datasets - the Demoset and

the Lausanne set. The Demoset has 105 images, which we

use for training. And, the Lausanne dataset has 243 images

on which we show the clustering results.
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Fig. 3. Tree computation for the Nokia Challenge Dataset. Each image is represented by a point at the corresponding GPS tagged locations,
in local ENU (East North Up) coordinates, with negative Y-axis as north and positive X-axis as east. The reference camera at origin is
encircled. We use the GPS tags just for visualization of the results. They are not used in the computation of the tree. (a) Initial photometry
based minimum spanning tree. (b) Geometrically rejected edges from initial photometric MST. (c) Final tree structure with our approach.
(d) Final tree structure with a purely geometric approach – the standard to compare against.

A. Training

We used as training set 16 image pairs from the Demoset

(shown in Fig. 1) and 4 image pairs from images used in [16]

for diversity. This training data was used to train the value of

κ in Eq. 2 and the geometric consistency threshold tγ used in

step 5 of the Algorithm 1. We also used this training dataset

to experiment with other forms of the photometric distance

functions shown below.

G1(i, j) = exp

(
−
∑K

k=i wij(k)

K

)
(5)

G2(i, j) = exp (− logK) (6)

G3(i, j) = exp

(
− logK

∑K
k=i wij(k)

K

)
(7)

G4(i, j) = exp

(
−3 logK

∑K
k=i wij(k)

K

)
(8)

We used each of functions to select the inliers from a set

of putative correspondence and compared the inlier rate with

the ground truth inlier rate, which was computed manually

for the training image set. The inlier rate is the fraction of

the putative correspondences that are deemed to be correct

correspondences based on the chosen distance function. In

Fig. 4, we show the correlation of the computed inlier rates

using the four forms with the ground truth inlier rate. We see

that the fourth form is the best correlated one with the ground

truth rates. It lies closest to the diagonal. This is the form we

pick for our experiments.
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Fig. 4. Correlation between the inlier rate computed by each of the
four photometric distance functions, G1,G2,G3, and G4, with the
ground truth inlier rate on a set of 20 training images. The fourth
similarity function, G4, is most correlated with actual rates and is
the one we use in our research.

B. Test Results

In the Lausanne dataset, we had 242 edges in the initial

MST. Many of these initial edges based on photometric sim-

ilarities were wrong as they connected views that are widely

separated. Out of 242 initial edges, 45 were rejected by initial

pose estimate verification, leaving us with 197 well connected

edges. In the next iteration, 6 edges with good geometric

consistency were added and so on until we do no better in

subsequent iterations. Fig. 6 shows this progress in the number

of edges in the tree with iteration.

In order to give an idea of the timing benefit we achieved

from our algorithm, we show a wall-clock timing comparison

of our method compared to the exhaustive geometric method

in Table I. The actual running time of our algorithm executed

in MATLAB for the ’Lausanne’ dataset of 243 images on a

single machine with Intel Dual Core processor @1.80 GHz

for the exhaustive method and our algorithm are shown in

Table I. We achieved 45 times speed-up compared to the

exhaustive geometric case. Our algorithm takes around 15

minutes to generate the photometric similarity matrix and

then takes another 15 minutes for geometric verification and

updation of the similarity matrix for the ’Lausanne’ data in

the Nokia Grand Challenge dataset.

TABLE I
COMPARISON OF THE TIME TAKEN BY THE EXHAUSTIVE GEOMETRY VERIFICATION

METHOD AND OUR ALGORITHM. THE TIME TAKEN BY PHOTOMETRIC

PRE-PROCESSING AND GEOMETRIC PROCESSING HAS ALSO BEEN SHOWN FOR OUR

ALGORITHM

Vs Hours Minutes Seconds

Exhaustive Geometric Case 21 38 25
Our Algorithm
a. Photometric Preprocessing 14 42
b. Geometric Processing 14 12
c. Total 28 54

In Fig. 3(a), we visualize the initial MST τ0 using East

North Up (ENU) coordinates present in the associated GPS

tags. We use the GPS tags just for visualization of the results.

They were not used in the computation of the tree. In the

figure, East is along X-axis, North is along the negative Y-

axis, and Z-axis points upwards. The code for this display was

available as a toolkit in Nokia Grand Challenge website [10],

but was modified to display a spanning tree through the camera

nodes. In Fig. 3 (b), we show the edges that were rejected

by the geometric consistency measure. In Fig. 2, we show

6 examples of such image pairs. These were photometrically

similar but were rejected due to low geometric confidence.

We had 213 edges in the final tree, whose edges are shown

in Fig. 3(c). The tree appears connected, but on careful

observation it can be noticed that it is disconnected. Our results

are consistent with the GPS information in the images. Views

that are close in the GPS are also connected in the final

tree structure. This shows that our algorithm performs well

in clustering the views.

As comparison, in Fig. 3(d) we show the tree structure based

on using purely geometric consistency measures instead of

photometric distances. The tree structures in Fig. 3(c) and (d)

are similar. Purely geometric method resulted in 219 edges in

the final tree, which is just marginally more than 213 edges

that we got using our fast method.

In Fig. 5, we show an example of our tree cluster of images.

There are several aspects that are worth pointing out. First,

notice how widely different viewpoints of the same scene

structures are associated. For instance, on first glance it is

not obvious why 1 and 3 linked, however, on closer scrutiny

we see that the building in 1 is actually seen in the middle

of image 3, viewed at a distance. The geometric consistency

measure is able to account for such drastic scale changes.

Similarly, images 3 and 4 both have the right building in image

3 as common content. We also see the significant rotation

between images 1 and 38, 14 an 16, and 16 and 17. Images

38, 39, 40, 41, and 42 all are views of the building in 1 viewed

from different locations and angles. There are other instance

of significant viewpoint change, e.g. notice 26 and 27, and

also 35 and 20, both have only small portion of the common

scene.

Second, depth first traversal through this view clustering tree

do result in meaningful path through the scene. For instance,

consider the path 1, 3, 4, 5, 10, 13, 14, 16, 17, 18. It represents

path around the circular structure with step. Whereas the

branch 1, 3, 4, 5, 6, 7, 8, and 9, is a path that diverges away

from this structure. The path 1, 3, 4, 19, 20, 21, 22, 25, 26, 27,

28, 29, 30, 31, 32, 33 take you through a different route. We

are able to recover these meaningful paths through the dataset

without the use of any GPS information.

Third, notice that we are able establish matches even in the

presence of some amount of scene content motion between

views. For instance, between 20 and 21, or between 29 and

34.
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Iterations

Growth of connectivity with increasing iterations

Fig. 6. Figure showing the number of good edges in the tree structure after
every iteration till convergence

IV. CONCLUSION

In this paper, we have considered the problem of establish-

ing vision-based connectivity between widely spaced views

with low overlaps. We found the Nokia Grand Challenge

dataset suitable for this research. This dataset is much difficult

in terms of 3D spacing and view-overlapping than other

commonly used datasets in large scale view organization

research. We model the vision-based connectivity between

images as a search for a tree structure over the images and

define the best tree as the one with maximum edges connecting

image pairs that are photometrically similar and geometrically

consistent. In this paper, there are two main contributions.

One is the photometric distance measure and another is the

iterative optimization technique that we have used. Both these

strategies are fairly simple, yet powerful, and potentially

scalable to very large collections. The initial MST found using

the photometric distance measure is a good initialization to

the iterative optimization as shown in the paper. We found

that most of the edges were correctly initialized and there

were reasonable number of edges replaced during iterative

optimization as well. Both of these methods together have

shown good results on dataset with widely spaced images.

The computed tree structure matched well with the GPS

information in the images. GPS information was not used

in the algorithm. It was only used for visualization. For the

’Lausanne’ data in the Nokia dataset, we achieved a speed

up of about 45 with respect to the exhaustive algorithm. Our

algorithm took less than 30 minutes to generate view clusters

for the ’Lausanne’ dataset, while the exhaustive algorithm

takes about 22 hours. The computed visual clusters of images

could be used for photo tourism to organize and to navigate

through a large collection of photos. It could also be used to

refine magnetometer and GPS information in the images [23].

3D scene reconstruction by bundle adjustment would benefit

for the identification of image subsets with common scene

content, as captured in the view clusters.
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