
Real-time Terrain Modeling using CPU–GPU
Coupled Computation

Adrien Bernhardt∗, André Maximo†, Luiz Velho†, Houssam Hnaidi‡ and Marie-Paule Cani∗

∗INRIA, Grenoble Univ., France
†IMPA, Brazil

‡LIRIS, CNRS, Univ. Lyon 1, France

Fig. 1. Sketch-based terrain modeling example in our tool: as each stroke is drawn (left) or manipulated (right), the terrain is tessellated in the GPU to
follow the stroke. In the CPU, the quadtree data structure (middle) controls the quadrilateral patches sent to the GPU.

Abstract—Motivated by the importance of having real-time
feedback in sketch-based modeling tools, we present a framework
for terrain edition capable of generating and displaying complex
and high-resolution terrains. Our system is efficient and fast
enough to allow the user to see the terrain morphing at the
same time the drawing editing occurs. We have two types of
editing interactions: the user can draw strokes creating elevations
and crevices; and previous strokes can be interactively moved to
different regions of the terrain. One interesting feature of our
tool is that terrain primitives can be interactively manipulated
similarly to primitives in vector-graphics tools. We achieve real-
time performance in both modeling and rendering using a hybrid
CPU–GPU coupled solution. We maintain a coarse version of the
terrain geometry in the CPU by using a quadtree, while a fine
version is produced in the GPU using tessellation shaders.

Keywords-coupled computation; sketch-based modeling; ter-
rain modeling; GPU tessellation.

I. I NTRODUCTION

Recent years have been marked with a striking evolution
of sketch-based modeling tools [1], [2], [3], [4], which have
the interesting property of benefiting greatly from real-time
feedback while editing. As the object to be modeled increases
in complexity, the modeling tool becomes more involving to
develop. In the special case of terrain modeling, exemplified in
figure 1, the challenge is to create in real-time realistic terrain
features with intuitive strokes and guided landscape design.

Synthetic terrains are applied in many applications, such
as: crowd and flight simulators, real movies using chroma-key
effects, film animations, and computer games. Regardless of
the application, synthetic terrains often have direct influence
in the visual and artistic aspects to be accomplished. The
common strategy to produce terrain models is by procedural

generation [5], [6] through texture synthesis and height-field
captured examples. The idea is to achieve a high level of
realism through Digital Elevation Models (DEMs) of real ter-
rains [7]. Although this strategy produces convincing results,
it lacks controllability and restricts the result to variations of
existing terrain primitives.

One way to improve controllability over the terrain gener-
ation is to use image samples from a procedural input [8].
The idea behind this technique is to allow the user to intu-
itively paint bumps at different resolution levels, enhancing
the terrain modeling tool while maintaining realistic results.
Another step further usability and control is to permit angles
different than90◦ when painting details on the terrain [9].
As the tool increases in controllability, the terrain modeling
tool becomes more user-controlled and less automatic. The
zenith of this process is an interface closer to pen-and-paper
sketching [10], allowing total control over terrain primitives
exchanging physical realism by artistic freedom.

Parallel to the question of balancing controllability and
realistic results, terrain modeling tools can be analyzed by
two different computational perspectives: CPU-based model-
ing strategies [11], [12] and GPU-based shading and solver
techniques [13], [14], [15]. On the one hand, the CPU plays
the role of a controller and its strategies focus mainly on
integrating manual editing with complex deformations and
simulations. On the other hand, the GPU offers massive
parallelism and its techniques focus on shading landscapes
and performing computational intensive tasks, such as solving
diffusion equations. The gap between one unit and the other
becomes clear when analyzing the data structure involved
on each computation. While the CPU allows a broad range



of inter-connected data without penalizing access, the GPU
requires coherent memory requests imposing data regularity.

Contribution: In this paper, we present a new modeling
framework for terrain editing bycoupling CPU–GPU com-
putational perspectives. Differently from other approaches,
discussed in section II, our modeling tool uses the CPU not
only to control the initial level-of-detail (LOD) visualization
but also to start and stop the terrain generation done by
the GPU. The combination of the different computational
granularities makes the data paths between the two units more
complex, as explained in section III.

Our approach partitions the terrain with a view- and
heightmap-dependent quadtree [16], as shown in figure 1 (mid-
dle). This lightweight data structure controls the quadrilateral
patches to be rendered, serving two main purposes: it allowsa
first coarse LOD analysis of the terrain; and it frees the CPU
from the costly task of generating the entire heightmap data.

Next, we employ the GPU to solely generate and maintain
the terrain data on its own texture memory. The generation
is accomplished by a fast multigrid solver [15] specifically
designed for terrains. The generated data is constantly used in
our approach to morph the original rendering of low-resolution
quadtree patches in smooth high-resolution triangles through
the graphics-card tessellation shaders. The tessellator allows
for a second fine LOD analysis of the terrain, balancing the
decision between the units. Although the whole data is updated
and used by the GPU, the management is done by the CPU.

The final result of our coupled solution is a real-time terrain
modeling tool based on sketches and capable of dynamically
generate and visualize multiresolution heightmaps (see sec-
tion IV). The framework presented is discussed in more details
in section V, and section VI concludes our work giving future
research directions.

II. RELATED WORK

In many editing tools, especially sketch-based modeling, it
is important to have real-time feedback to help improve the
editing quality [17], [18], [19]. This importance is emphasized
particularly in sketch-based terrain modeling, being ableto see
the terrain morphing at the same time the drawing editing
occurs constitutes a great user experience, an example is
shown in figure 1 (left).

The quality of the modeling tool depends mainly on three
aspects: controllability, intuitiveness and responsiveness. The
first makes the actual modeling possible, the second makes the
tool more natural and easy to learn, and the third enhances the
creativity process when the tool provides real-time feedback.
One interesting example combining these three aspects is
the FIBERMESH [4]. In this tool, the user is able to create
freeform surfaces with 3D curves in real-time with natural and
unconstrained design. However, there are two drawbacks in
FIBERMESH: the high pre-computational cost required when
adding or removing 3D curves; and the relative small models
that the tool can handle. Like FIBERMESH, our system builds
the surface by interpolating curves but allowing real-time
interaction with more complex models.

Terrain modeling tools also benefit from intuitiveness and
natural interactions. The usage of sketch-based terrain mod-
eling exploring this aspect was presented by Watanabe and
Igarashi [20], and further inspired the work of Gainet al. [11].
In Gain et al.’s work, the user can draw strokes defining
mountain silhouettes and modify previous strokes forming
the base of mountains. Their CPU-based modeling framework
generates terrain primitives extracting, at the same time,noise
from the user strokes to create more realistic terrains. Although
we do not extract noise from the user strokes in our tool, we
have two types of editing interactions, in the same spirit of
Gainet al.’s work: the user can draw strokes creating mountain
elevations or crevices; and previous strokes can be interactively
moved to different regions of the terrain, as shown in figure 1
(right). Moreover, we use a CPU–GPU coupled method to
drastically improve the performance of our tool, generating
terrains two orders of magnitude faster than Gainet al.’s work.

One work dealing with static real terrains and focused on
rendering is the work of Losasso and Hoppe [21]. In their
approach, calledgeometry clipmaps, they define a regular-grid
hierarchy centered about the viewer instead of a world-space
quadtree. This choice simplifies both their pyramid compres-
sion scheme and inter-level continuity while the viewer is
moving. The geometry clipmaps uses the CPU to (1) construct
LOD regular regions (see [21, figure 2]) based on viewer
distance, (2) tessellate the regions in fine-to-coarse order and
using triangle strips (see [21, figure 3]) to exploit hardware
occlusion culling and vertex caching, (3) update the terrain
maintained in CPU memory via decompression. There is one
simple data path as the GPU is only used to interpolate height
values for visual continuity in the vertex shader. In a revised
version of this idea [22], the height-value interpolation is
improved in the GPU by elevation-map upsampling, terrain
detail synthesis and normal-map computation but remaining
with a single data path between the units. In our approach, we
are interested in dynamically changing terrains and use dif-
ferent techniques: a CPU-based quadtree data structure rather
than a nested regular grid; and a GPU-based runtime terrain
management for both tessellation and terrain modification.

Realistic terrains can also be created through modeling by
employing simulation of natural phenomena. Anhet al. [13]
presented a GPU-based method for hydraulic erosion simu-
lation capable of simulating water transportation and erosion
one order of magnitude faster than CPU-based methods. The
work of Št’ava et al. [23] presents a comprehensive set of
GPU-accelerated erosion tools for real-time interactive terrain
modeling, indicating the usage of graphics hardware for the
solution of physically-based equations. Although in our mod-
eling system we do not have simulation effects, we use the
GPU computational power to generate the terrain by solving
a different type of physically-based equation.

The terrain modeling in our approach is accomplished by
combining the multigrid GPU solver of Hnaidiet al. [15] with
an adaptive tessellation-based rendering shader capable of han-
dling dynamic heightmaps. The main contribution of Hnaidiet
al.’s work is to introduce a GPU-based multigrid diffusion



equation solver for terrains relying on Laplacian equations,
which interpolates not only heights but also amplitude and
frequency noise parameters. Our modeling tool uses Hnaidiet
al.’s solver to allow an interactive edition and manipulation of
complex terrain primitives.

III. R EAL-TIME TERRAIN MODELING

The main contribution of this paper is a real-time terrain
modeling system, combining a novel CPU–GPU coupled so-
lution with a natural sketch-based interaction. In this section,
we describe both the coupled computation and this interaction.

A. CPU–GPU Coupled Computation

Creation of terrain models in real-time involves dealing
with dynamically changing data that increases exponentially
depending on the terrain resolution. However, high resolution
is only interesting in parts of the terrain with a high level
of detail. In our terrain modeling framework, presented in
figure 2, we make use of this observation dividing the terrain
generation process over a multiresolution pyramid. The base
level of this pyramid, i.e. coarse resolution, is used whenever
the details are low or do not appear in the current point-of-
view. The top level of the pyramid, i.e. fine resolution, is used
whenever the details are high and dominant in the current
shading of the terrain model.

Fig. 2. The terrain modeling framework of our tool. While the CPUcontrols
the multigrid solver depending on drawings and sends terrainpatches to be
rendered, the GPU generates the terrain in texture memory and tessellates
its own produced heightmap. This setting requires three different data paths:
adaptive rendering using a quadtree (red); solver iterations control (blue); and
updating coarse-resolution details on the quadtree (green).

There are two main user interactions related to the multires-
olution pyramid:draw of strokes controlling the terrain gener-
ation process; andcameramovement changing the rendering
process. These two interactions guide two complementary
approaches of our terrain modeling tool. First, a coarse version
of the terrain geometry is maintained in the CPU using a
quadtree, as shown in figure 1 (middle), where regions closer
to the viewer are subdivided more than far regions. This simple
and lightweight data structure fits the CPU main role of data
control, while allowing it to send adaptive quadrilateral (or

quad) patches to the GPU (illustrated by thecamera-then-
render path in red in figure 2). Second, a fine version of
the terrain is produced in the GPU using two programmable
shaders within the tessellator stage. One of them is responsible
to subdivide regularly each quad patch, i.e. the quad leaf node
sent by the CPU, while the other reads the height values from
a texture that changes interactively based on manipulationand
drawing of strokes (illustrated by thedraw-then-controlpath in
blue in figure 2). It is important to note that the different data
paths in our framework have an influence in each other, e.g.
drawing changes the heightmap that updates the quad patches
that changes rendering.

The first phase of our algorithm is to update the quadtree
data structure using a level-of-detail mechanism. Our LOD-
based approach considers the viewing projection of the bound-
ing box of each quadtree node (see figure 3). This bounding
box is constructed by reading the minimum and maximum
height values that fall inside the node (illustrated by the
update-bounding-boxpath in green in figure 2). We use a
linear metric on the number of pixels of the bounding-box
projection in order to make our LOD approach both view
and height-values dependent. Using this metric, the quadtree
node is recursively subdivided until a given criterion is met,
effectively increasing the resolution of the current terrain and
moving upward in the multiresolution pyramid.

terrain

quadtree

node

height values

bounding

box

Fig. 3. Illustration of a quadtree node and its corresponding bounding
box. The minimum and maximum height values are used to specify thelimits
inside the current node. The quadtree is refined depending onthe projection
shape of each node.

In our framework, we have used the rectangular shape of the
bounding-box projection to determine the quadtree node subdi-
vision. The recursive creation of child nodes, four at a time, is
done in order to guarantee that each projection shape has about
the same size (in pixels). Moreover, the screen rectangles are
used to determine if a quadtree node is completely occluded
and can be discarded, i.e. not sent for rendering as in the view-
frustum culling technique. The result is an adaptive quadtree
controlling the minimum resolution level imposed to the GPU
(depending on each quad node subdivision), which changes
interactively depending on camera properties. In the GPU, we
use regular subdivision of patches (each patch correspondsto
a quadtree node sent for rendering) but a more refined LOD
technique could also be applied, allowing a second form of
LOD in the top level of the multiresolution pyramid.

The second phase of our algorithm comprehends the fol-
lowing modules (depicted in figure 2): themultigrid solver;
and thetessellation shadersmodule. The former provides the
height values of the terrain to be used by the latter module.



The multigrid solver module, based on the work of Hnaidiet
al. [15], computes the heightmap of the terrain through a
sequence of increasing resolution textures, up to an arbitrary
size, using a two-step algorithm. The first step solves a
Poisson-based diffusion system to interpolate gradient con-
straints. The resulting gradients and height constraints are
then used by the second step to compute the final heightmap
employing a similar diffusion system. Both systems are solved
using a multigrid strategy, detailed in figure 5, which first
solves a coarse-resolution system to then increase the reso-
lution and start solving again. While the dyadic upsampling is
done once per level, the number of solver iterations is normally
the same for each level and depends on the desired accuracy.
The input of the multigrid solver module is given by stroke
drawing and is explained in the next section. The output of this
module is a multiresolution terrain stored as a mipmap texture
pyramid (see figure 4). While the GPU is responsible for this
module, the CPU is able to start and stop solver iterations
within drawing and rendering events, keeping the GPU busy.

solver
iterations

mipmap levels

Fig. 4. The multiresolution texture scheme of our tool. The terrain is
stored as a mipmap texture pyramid that changes over time, depending on the
multigrid solver iterations done so far.

The tessellation shaders module uses the mipmap-pyramid
texture generated by the solver module in a producer-consumer
strategy, synchronized and controlled by the CPU. After each
new resolution level is constructed by the solver, a shader
uniform value is updated to the current maximum level. The
CPU also controls the minimum level through the quadtree
refined nodes sent as quad patches to the GPU.

The tessellation shaders module employs two stages of the
graphics-hardware pipeline: the tessellationcontrol shader,
used to determine the subdivision level done by the tessellator
fixed functionality; and the tessellationevaluation shader, used
to specify properties of the vertices created by the tessellator.
In our terrain modeling tool, the control shader uses a constant
uniform value determined by the CPU to subdivide regularly
each quad patch. Depending on the subdivision, the resolution
of the patch can increase or remain the same. The evaluation
shader reads the appropriate level of the mipmap-pyramid
texture to place each generated vertex at the correct height
position. The multiresolution texture is also used by the CPU,
but only a small resolution of it (we use64× 64 from the6th
solver iteration) since the quadtree minimum leaf size is much
bigger than the texel from the highest resolution texture.

In the tessellation shaders, we use a straightforward strategy
for subdivision that does not consider different tessellation
levels across patch boundaries. This may lead to T-junctions,

i.e. edges connected forming a T. In our experiments, we
generate a large number of triangles through the tessellation,
making this possible T-junctions imperceptible. However a
more elaborated strategy for low-level tessellation can use
irregular subdivision ac-cross patches to avoid T-junctions. Our
CPU-based LOD guarantees that visible quad patches have at
most 2 neighbor patches (invisible patches can be arbitrarily
big) and this fact can be used to construct a bit-mask for
each patch, to be sent to the GPU, imposing a twice coarser
subdivision for patches with bigger neighbors. This approach
can be thought as a second form of LOD done by the GPU
that is local-geometry dependent.

The integration of the first CPU phase and the second GPU
phase is done after the quadtree is refined and before ren-
dering. The leaf nodes of the current quadtree are transformed
into quad patches, where each patch contains its corresponding
mipmap level and texture position. From this patch, the GPU is
able to further increase (but not decrease) the terrain resolution
in the tessellation control shader, up to a specified resolution
depending on the last solver iteration. This coupled solution
defines the entire multiresolution pyramid, where the base
level is determined by the CPU and the top level is computed
and generated by the GPU.

B. Sketch-based and Interactive Edition

Interaction with terrain models in real-time requires prim-
itives that are easy to create, manipulate and understand.
Creating mountains or plains by stipulating each small piece
of the terrain can be a cumbersome and slow work. Our
terrain modeling system allows intuitive and natural interac-
tion through simple sketches drawn over the current camera
viewing plane. These sketches act bypulling and pushing
the terrain surface. The sketches can be created, moved or
deleted; effectively changing the terrain. Depending on the
desired primitive to create or modify, the user can move the
camera to choose the best view of the terrain. The camera
zoom can also be used to interact with terrain primitives at
different scales.

There are two main primitives supported by our sketch-
based modeling tool: mountains and crevices primitives (draw-
ing up or down the terrain level), and plateaux primitives
(drawing in the same terrain level). These primitives can be
seen in a terrain example shown in figure 6.

To interactively morph the terrain as each primitive is
drawn or manipulated, the modeling strokes are converted into
constraints used by the GPU multigrid solver in the second
phase of our algorithm (explained in the previous section).
The 3D strokes are projected and rasterized on top of the
terrain creating an input 2D image used by the multigrid solver
to specify its constraints. This process is further detailed in
figure 5. The 3D curves before rasterization represent terrain
primitives and are similar to curves in a vector-graphics tool.

The projection of 3D curves depends on the primitive been
drawn. In the case of a plateaux primitive, the stroke is
projected on the horizontal plane defined by the first point
of the drawing that touches the terrain. In the case a mountain



Fig. 5. The landscape primitives specified by 3D strokes are converted to constraints through rasterization and stored ona 2D constraint texture. This texture
is downsampled to be used in asolve-then-upsampleprocess, i.e. the multigrid solver, where it first solves for the small resolutions before extrapolating the
solution for finer resolution systems. The final solution is the heightmap of the terrain in a multiresolution pyramid stored as a mipmap texture.

primitive, the first and last point of the drawing touching the
terrain determine a vertical plane where the stroke is projected.
However, in our real-time modeling scenario, the last point
is unknown while the drawing editing occurs. One simple
solution is to project the extremity of the stroke been drawn
onto the terrain to obtain a dynamic last point. Although
this solution successfully changes the terrain, the resultis
confusing to the user since both terrain and drawing are
changing dynamically (one stroke point updates the terrainthat
updates where the next stroke point is projected). Instead of
projecting the stroke extremity to the dynamic terrain, we use
the depthmap of the scene when the user starts drawing as an
approximation of the current terrain. By projecting onto this
depthmap, with the appropriate transformations, the moving
last point is now based on a fixed terrain, matching what the
user expects to modify.

The manipulation of 3D curves can be done independently
from each other and from new drawings. The first or last
points used to compute the projection plane for primitives
can be manipulated with drag-and-drop interaction changing
the projection and thus the primitive. These points act as
handles that can be moved morphing the terrain to a different
configuration.

The creation and manipulation of different primitives are
handled by the CPU. The solver in the GPU receives the
final projection by reading from the 2D constraint texture (see
figure 5). The different type of strokes and the number of
terrain primitives affect little the performance of the solver.

IV. RESULTS

We have tested our modeling system with different
heightmap resolutions and number of solver iterations. Table I
presents the terrain creation solver and tessellation-based ren-
dering timings and GPU memory consumption for the tested
terrain size and respective number of iterations. The timings
are given using a1024× 768 pixel viewport and considering
the camera constantly moving. All timings were performed in
an Intel Core2Quad CPU and an nVidia 480 GTS GPU using
OpenGL 4.1.

Terrain Size Iterations Creation (ms) Tess. (ms) GPU (MB)

512× 512 45 23 4.8 16.9

1K × 1K 49 28 5.2 57.3

2K × 2K 53 35 5.9 141.8

4K × 4K 56 44 6.7 716.7

TABLE I
TERRAIN MODELING COMPUTATIONAL TIMINGS AND GPU MEMORY

CONSUMPTION AT DIFFERENT RESOLUTIONS.

For these results we have drawn several strokes, changing
the terrain shape and inducing the GPU multigrid solver, and
considered the timing to create and tessellate the maximum
resolution. The timings show that our system can compute
the solver and tessellate high-resolution terrains in real-time
(at about 20 frames per second) allowing for still higher
resolutions when working with adaptive tessellation.

Analyzing the performance results further, the ability to
control incrementally the creation of the terrain constitutes
another important characteristic of our approach. The solver
iterations can be used to specify the resolution levels and ter-
rain features precision, which affects both timing and memory
consumption. More iterations generate improved and higher
resolution terrains, at the cost of more GPU time and memory.
The memory usage in our system refers to the mipmap-
pyramid texture stored in the GPU.

One terrain example modeled with our tool can be seen in
figure 6. In this example appears different terrain primitives
drawn: mountains, plateaux and crevices. In addition to terrain
primitives, our tool allows several user interactions, including
sketching and manipulation of previous strokes and camera
movement.

Adding the GPU to the process of creating and tessellating
the terrain (not only for rendering) makes our approach to run
at 27.8 ms for a512× 512 grid. While Gainet al. [11] report
2.3 seconds on a similar CPU to generate the same terrain
grid. That is, our approach generates terrains two order of
magnitude faster than Gainet al.’s work employing one single
unit.



Fig. 6. Terrain example generated by our modeling system (north and south
views). The blue strokes were drawn to create mountains and crevices, and
the red strokes were drawn to create plateaux in the midst.

Compared against Hnaidiet al.’s approach [15], our coupled
solution introduces the usage of tessellation shaders and a
CPU-based method to control and synchronize between draw-
ing and rendering events. One direct advantage of this ap-
proach comes from the high-cost memory bandwidth between
the CPU and the GPU; by using the CPUonly for control
and synchronization, the communication between the units
becomes small (few kilobytes in our system) even though the
GPU is handling large amounts of data (hundreds of megabytes
for high-resolution terrains). Without the CPU–GPU coupled
solution, the modeling framework changes from computation-
bound (regarding FLOP count) to I/O-bound (regarding data
transfers), compromising the real-time performance of the
terrain modeling tool.

Another advantage is that while the multigrid GPU solver
acts in a global scope, generating and improving the entire
terrain, the CPU quadtree adaptation and the GPU tessellation
(see an illustrative example in figure 7) act in a local scope,
refining the terrain on demand for rendering. This strategy
alleviates the burden on the CPU, in terms of editing and
visualization, and on the GPU, in terms of control and syn-
chronization, providing a comprehensive sketch-based terrain
modeling tool. Without one unit or the other, the tool is
less capable of dealing with high-resolution and dynamically
changing terrains.

Fig. 7. Illustration of coarse (top) and fine (down) version of a terrain
tessellated by the GPU. The coarser resolution correspondsto the quadtree
(shown on the right), that is the minimum resolution level imposed by the
CPU, and the finer resolution is the maximum resolution level.

V. D ISCUSSIONS

The majority of procedural editing and feature extraction
tools for terrain modeling are based on a top-view interac-
tion [7], [10], [17]. Although interesting, this approach limits
the artistic freedom of the tool. Our modeling system is based
on a 3D camera with a first-person perspective and sketch-
based drawing interaction over the moving view plane. This
method allows the user to draw landscape silhouettes at any
distance and with more freedom.

The drawing interaction is only convincing when the tool
responds in real-time. Inspired by FIBERMESH [4], our tool
has controllability and real-time responsiveness. However, to
deal with high-resolution terrains, we use a different type
of solver to generate the model. While FIBERMESH uses a
direct solver with a high pre-computational cost, we use a fast
multigrid solver in the GPU that is suitable for our goal.

Our GPU-based solver hints for a multiresolution hierarchy
of terrains in the form of a texture pyramid. This pyramid is
constructed top-down and can be used profitably for level-of-
detail control on both the CPU and the GPU (as explained
in section III). Aiming at only visualizing static and real
terrains, the technique from the geometry clipmaps [21], [22]
uses a better solution for LOD control, building a compressed
multiresolution pyramid that is accessed bottom-up. However,
we are interesting in a flexible modeling interface for dynamic



terrain generation and the geometry clipmaps’ technique isnot
appropriate.

Between creating and tessellating the terrain in the GPU,
the creation is more costly (see table I) since we use a simple
regular subdivision approach in the tessellation control shader.
In the case of a complex second form of LOD in the GPU,
to allow even higher terrain resolutions, the bottleneck may
become the terrain tessellation.

The two modules of the CPU, controlling the solver itera-
tions and building the quadtree data structure, depend on the
user input, drawing of strokes and moving the camera, and are
intrinsic serial computations. Although the two modules can
not be implemented by the GPU, they could be suppressed,
making the modeling tool more simple to implement but less
interactive.

VI. CONCLUSIONS

We have presented a real-time terrain modeling tool combin-
ing two strategies in the GPU with a lightweight CPU-based
data structure. Our tool is capable of dynamically generate
heightmaps with adaptive resolution, that is, our tessellation
shaders are able to generate on-the-fly different parts of the
terrain at different resolutions.

One interesting aspect of our CPU–GPU coupled computa-
tion solution is the usage of the CPU to control the GPU solver
iterations and stop at a certain resolution and then resume
computing when the GPU is idle. Another interesting feature
of our method is the balance between terrain generation in the
CPU and in the GPU – we can control this balance by simply
changing the quadtree refinement. With these features, the user
can draw strokes and see at the same time the terrain morphing
to the drawing. Terrain primitives, such as mountains and
clefts, are controlled seamlessly in our framework.

Although with interesting features, our modeling framework
has a wide variety of future work directions. First, there is
room for optimizations in the GPU solver: instead of perform-
ing the initial iterations in the GPU, the CPU is more adequate
to compute these low-resolution mipmaps and use them in its
quadtree data structure (avoiding transfering data back),while
the GPU is not underutilized with small images. Second, the
current usage of the mipmap-pyramid texture in the tessellation
evaluation shader indicates the possibility of using anisotropic
filtering with a gradient vector depending on the solver. Third,
the tessellation shaders allow a second fine LOD analysis
of the terrain that is interesting to explore. Finally, adding
normal and fractal texture painting or simulation effects in
our sketch-based modeling tool can increase the realism of
the generated terrains. In short, we believe this work has
the potential to become an effective terrain modeling tool in
practical applications.

ACKNOWLEDGMENTS

We would like to acknowledge the grant of the first author
provided by the PPF Interactions Multimodales, and the grant
of the second author provided by Brazilian agency CNPq (Na-
tional Counsel of Technological and Scientific Development).

We also would like to thank the anonymous reviewers for their
valuable comments and suggestions.

REFERENCES

[1] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: a Sketching
Interface for 3D Freeform Design,” inProceedings of the 26th
annual conference on Computer graphics and interactive techniques,
ser. SIGGRAPH ’99. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1999, pp. 409–416. [Online]. Available:
http://dx.doi.org/10.1145/311535.311602

[2] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowalski, J. C.
Lee, P. L. Davidson, M. Webb, J. F. Hughes, and A. Finkelstein,
“WYSIWYG NPR: Drawing strokes directly on 3D models,”ACM
Transactions on Graphics, vol. 21, no. 3, pp. 755–762, 2002. [Online].
Available: http://dx.doi.org/10.1145/566654.566648

[3] R. Schmidt, B. Wyvill, M. C. Sousa, and J. A. Jorge, “ShapeShop:
Sketch-based Solid Modeling with BlobTrees,” inACM SIGGRAPH
2007 courses, ser. SIGGRAPH ’07. New York, NY, USA: ACM,
2007. [Online]. Available: http://doi.acm.org/10.1145/1281500.1281554

[4] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa, “FiberMesh:
Designing Freeform Surfaces with 3D Curves,” inACM SIGGRAPH
2007 papers, ser. SIGGRAPH ’07. New York, NY, USA: ACM, 2007.
[Online]. Available: http://doi.acm.org/10.1145/1275808.1276429

[5] G. J. P. de Carpentier and R. Bidarra, “Interactive GPU-based
Procedural Heightfield Brushes,” inProceedings of the 4th International
Conference on Foundations of Digital Games, ser. FDG ’09. New
York, NY, USA: ACM, 2009, pp. 55–62. [Online]. Available:
http://doi.acm.org/10.1145/1536513.1536532

[6] E. Yeguas, R. Muoz-Salinas, and R. Medina-Carnicer, “Example-based
Procedural Modelling by Geometric Constraint Solving,”Multimedia
Tools and Applications, pp. 1–30, 2011, 10.1007/s11042-011-0795-0.
[Online]. Available: http://dx.doi.org/10.1007/s11042-011-0795-0

[7] H. Zhou, J. Sun, G. Turk, and J. M. Rehg, “Terrain Synthesis from
Digital Elevation Models,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, pp. 834–848, 2007. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.1027

[8] K. Perlin and L. Velho, “Live Paint: Painting with Procedural
Multiscale Textures,” inProceedings of the 22nd annual conference on
Computer graphics and interactive techniques, ser. SIGGRAPH ’95.
New York, NY, USA: ACM, 1995, pp. 153–160. [Online]. Available:
http://doi.acm.org/10.1145/218380.218437

[9] E. Keller, Introducing ZBrush. Sybex, 2008.
[10] J. M. Cohen, J. F. Hughes, and R. C. Zeleznik, “Harold: a World

Made of Drawings,” inProceedings of the 1st international symposium
on Non-photorealistic animation and rendering, ser. NPAR ’00.
New York, NY, USA: ACM, 2000, pp. 83–90. [Online]. Available:
http://doi.acm.org/10.1145/340916.340927

[11] J. Gain, P. Marais, and W. Straßer, “Terrain Sketching,” in Proceedings
of the Symposium on Interactive 3D Graphics and Games, ser. I3D ’09.
New York, NY, USA: ACM, 2009, pp. 31–38. [Online]. Available:
http://doi.acm.org/10.1145/1507149.1507155

[12] R. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “Integrating
Procedural Generation and Manual Editing of Virtual Worlds,” in
Proceedings of the 2010 Workshop on Procedural Content Generation in
Games, ser. PCGames ’10. New York, NY, USA: ACM, 2010, pp. 2:1–
2:8. [Online]. Available: http://doi.acm.org/10.1145/1814256.1814258

[13] N. H. Anh, A. Sourin, and P. Aswani, “Physically based Hydraulic
Erosion Simulation on Graphics Processing Unit,” inProceedings of
the 5th international conference on Computer graphics and interactive
techniques in Australia and Southeast Asia, ser. GRAPHITE ’07.
New York, NY, USA: ACM, 2007, pp. 257–264. [Online]. Available:
http://doi.acm.org/10.1145/1321261.1321308

[14] A. Peytavie, E. Galin, J. Grosjean, and S. Merillou, “Arches: a
Framework for Modeling Complex Terrains,”Computer Graphics
Forum, vol. 28, no. 2, pp. 457–467, 2009. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2009.01385.x

[15] H. Hnaidi, E. Gúerin, S. Akkouche, A. Peytavie, and E. Galin, “Feature
based Terrain Generation using Diffusion Equation,”Computer
Graphics Forum, vol. 29, no. 7, September 2010. [Online]. Available:
http://liris.cnrs.fr/publis/?id=4974

[16] R. A. Finkel and J. L. Bentley, “Quad Trees a Data Structure for
Retrieval on Composite Keys,”Acta Informatica, vol. 4, pp. 1–9, 1974.
[Online]. Available: http://dx.doi.org/10.1007/BF00288933

http://dx.doi.org/10.1145/311535.311602
http://dx.doi.org/10.1145/566654.566648
http://doi.acm.org/10.1145/1281500.1281554
http://doi.acm.org/10.1145/1275808.1276429
http://doi.acm.org/10.1145/1536513.1536532
http://dx.doi.org/10.1007/s11042-011-0795-0
http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.1027
http://doi.acm.org/10.1145/218380.218437
http://doi.acm.org/10.1145/340916.340927
http://doi.acm.org/10.1145/1507149.1507155
http://doi.acm.org/10.1145/1814256.1814258
http://doi.acm.org/10.1145/1321261.1321308
http://dx.doi.org/10.1111/j.1467-8659.2009.01385.x
http://liris.cnrs.fr/publis/?id=4974
http://dx.doi.org/10.1007/BF00288933


[17] L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge,
“Sketch-based Modeling: A Survey,”Computers & Graphics,
vol. 33, no. 1, pp. 85 – 103, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.cag.2008.09.013

[18] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: a Sketching Interface
for 3D Freeform Design,” inACM SIGGRAPH 2007 courses, ser.
SIGGRAPH ’07. New York, NY, USA: ACM, 2007. [Online].
Available: http://doi.acm.org/10.1145/1281500.1281532

[19] T. Igarashi and J. F. Hughes, “A Suggestive Interface for 3D
Drawing,” in ACM SIGGRAPH 2007 courses, ser. SIGGRAPH
’07. New York, NY, USA: ACM, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1281500.1281531

[20] N. Watanabe and T. Igarashi, “A Sketching Interface forTerrain
Modeling,” in ACM SIGGRAPH 2004 Posters, ser. SIGGRAPH ’04.
New York, NY, USA: ACM, 2004, pp. 73–. [Online]. Available:
http://doi.acm.org/10.1145/1186415.1186500

[21] F. Losasso and H. Hoppe, “Geometry Clipmaps: Terrain
Rendering Using Nested Regular Grids,”ACM Trans. Graph.,
vol. 23, pp. 769–776, August 2004. [Online]. Available:
http://doi.acm.org/10.1145/1015706.1015799

[22] A. Asirvatham and H. Hoppe, “Terrain Rendering using GPU-
based Geometry Clipmaps,” inGPU Gems 2, M. Pharr and
R. Fernando, Eds. Addison-Wesley, March 2005. [Online]. Available:
http://http.developer.nvidia.com/GPUGems2/gpugems2chapter02.html

[23] O. Št’ava, B. Beněs, M. Brisbin, and J. Ǩrivánek, “Interactive
Terrain Modeling using Hydraulic Erosion,” inProceedings of
the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA ’08. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2008, pp. 201–210. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1632592.1632622

http://dx.doi.org/10.1016/j.cag.2008.09.013
http://doi.acm.org/10.1145/1281500.1281532
http://doi.acm.org/10.1145/1281500.1281531
http://doi.acm.org/10.1145/1186415.1186500
http://doi.acm.org/10.1145/1015706.1015799
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter02.html
http://portal.acm.org/citation.cfm?id=1632592.1632622

	Introduction
	Related Work
	Real-time Terrain Modeling
	CPU–GPU Coupled Computation
	Sketch-based and Interactive Edition

	Results
	Discussions
	Conclusions
	References

