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Fig. 1. Sketch-based terrain modeling example in our tool:aah estroke is drawn (left) or manipulated (right), the terri tessellated in the GPU to
follow the stroke. In the CPU, the quadtree data structureldie) controls the quadrilateral patches sent to the GPU.

Abstract—Motivated by the importance of having real-time generation[[b],[[6] through texture synthesis and heigiltfi
feedback in sketch-based modeling tools, we present a framework captured examples. The idea is to achieve a high level of
for terrain edition capable of generating and displaying complex v jism through Digital Elevation Models (DEMs) of real-ter
and high-resolution terrains. Our system is efficient and fast . . o
enough to allow the user to see the terrain morphing at the .ralns [7]- Although_thls strategy produces conV|nc!r_lg essu
same time the drawing edmng occurs. We have two types of It IaCkS Contl’0||ablll'[y and restricts the I‘esult to vaioss Of
editing interactions: the user can draw strokes creating elevatios existing terrain primitives.

e sesoms o e onemiceming e o o o e WaY 10 improve contolaily over the terain gener
tool is thatgterrain primitives can be interactivgly manipulated atlon. Is to us.e |mage samples from a procedural Inﬁht. [8].
similarly to primitives in vector-graphics tools. We achieve real- 1he idea behind this technique is to allow the user to intu-
time performance in both modeling and rendering using a hybrid itively paint bumps at different resolution levels, enhagc
CPU-GPU coupled solution. We maintain a coarse version of the the terrain modeling tool while maintaining realistic rksu
terrain geometry in the CPU by using a quadtree, while a fine  Another step further usability and control is to permit asgl
version is produced in the GPU using tessellation shaders. different than90° when painting details on the terraif] [9].

Keywords-coupled computation; sketch-based modeling; ter- As the tool increases in controllability, the terrain maag!
rain modeling; GPU tessellation. tool becomes more user-controlled and less automatic. The
zenith of this process is an interface closer to pen-anepap
sketching [[10], allowing total control over terrain primaés

Recent years have been marked with a striking evoluti@xchanging physical realism by artistic freedom.
of sketch-based modeling tools| [1]. [2].| [3].] [4], which leav  Parallel to the question of balancing controllability and
the interesting property of benefiting greatly from reatei realistic results, terrain modeling tools can be analyzgd b
feedback while editing. As the object to be modeled increassvo different computational perspectives: CPU-based frode
in complexity, the modeling tool becomes more involving ting strategies[[11],[[12] and GPU-based shading and solver
develop. In the special case of terrain modeling, exemglifie techniques[[13],[114],[15]. On the one hand, the CPU plays
figure[d, the challenge is to create in real-time realisticata the role of a controller and its strategies focus mainly on
features with intuitive strokes and guided landscape desig integrating manual editing with complex deformations and

Synthetic terrains are applied in many applications, susimulations. On the other hand, the GPU offers massive
as: crowd and flight simulators, real movies using chroma-kearallelism and its techniques focus on shading landscapes
effects, film animations, and computer games. Regardlessand performing computational intensive tasks, such asraplv
the application, synthetic terrains often have direct grilce diffusion equations. The gap between one unit and the other
in the visual and artistic aspects to be accomplished. Thecomes clear when analyzing the data structure involved
common strategy to produce terrain models is by procedumal each computation. While the CPU allows a broad range

I. INTRODUCTION



of inter-connected data without penalizing access, the GPUTerrain modeling tools also benefit from intuitiveness and
requires coherent memory requests imposing data regularinatural interactions. The usage of sketch-based terraid- mo
Contribution: In this paper, we present a new modelingling exploring this aspect was presented by Watanabe and
framework for terrain editing bycoupling CPU-GPU com- lgarashi[20], and further inspired the work of Gaihal. [11].
putational perspectives. Differently from other apprash In Gain et al's work, the user can draw strokes defining
discussed in sectidn] Il, our modeling tool uses the CPU nmiountain silhouettes and modify previous strokes forming
only to control the initial level-of-detail (LOD) visuali#ion the base of mountains. Their CPU-based modeling framework
but also to start and stop the terrain generation done fgnerates terrain primitives extracting, at the same timese
the GPU. The combination of the different computationdfom the user strokes to create more realistic terrainsiotigh
granularities makes the data paths between the two unite mae do not extract noise from the user strokes in our tool, we
complex, as explained in sectidnllll. have two types of editing interactions, in the same spirit of
Our approach partitions the terrain with a view- anainet als work: the user can draw strokes creating mountain
heightmap-dependent quadtreel [16], as shown in figure 1- (mélevations or crevices; and previous strokes can be iritezfc
dle). This lightweight data structure controls the quadeital moved to different regions of the terrain, as shown in fidgure 1
patches to be rendered, serving two main purposes: it abowgight). Moreover, we use a CPU-GPU coupled method to
first coarse LOD analysis of the terrain; and it frees the CPdlfastically improve the performance of our tool, geneatin
from the costly task of generating the entire heightmap.datterrains two orders of magnitude faster than Gatial’s work.
Next, we employ the GPU to solely generate and maintainOne work dealing with static real terrains and focused on
the terrain data on its own texture memory. The generatioendering is the work of Losasso and Hoppel[21]. In their
is accomplished by a fast multigrid solver [15] specificallapproach, calledeometry clipmapghey define a regular-grid
designed for terrains. The generated data is constantty inse hierarchy centered about the viewer instead of a worldepac
our approach to morph the original rendering of low-resotut quadtree. This choice simplifies both their pyramid compres
guadtree patches in smooth high-resolution trianglesutitto sion scheme and inter-level continuity while the viewer is
the graphics-card tessellation shaders. The tesselldtavsa moving. The geometry clipmaps uses the CPU to (1) construct
for a second fine LOD analysis of the terrain, balancing theéOD regular regions (see [21, figure 2]) based on viewer
decision between the units. Although the whole data is \gghatdistance, (2) tessellate the regions in fine-to-coarser ade
and used by the GPU, the management is done by the CRusing triangle strips (seé [21, figure 3]) to exploit hardsvar
The final result of our coupled solution is a real-time terraiocclusion culling and vertex caching, (3) update the tarrai
modeling tool based on sketches and capable of dynamicaihintained in CPU memory via decompression. There is one
generate and visualize multiresolution heightmaps (see ssimple data path as the GPU is only used to interpolate height
tion[[V). The framework presented is discussed in more tetavalues for visual continuity in the vertex shader. In a regis
in sectior’V, and sectidn VI concludes our work giving futurgersion of this ideal[22], the height-value interpolatia i
research directions. improved in the GPU by elevation-map upsampling, terrain
detail synthesis and normal-map computation but remaining
Il. RELATED WORK with a single data path between the units. In our approach, we
In many editing tools, especially sketch-based modeling,dre interested in dynamically changing terrains and use dif
is important to have real-time feedback to help improve tHerent techniques: a CPU-based quadtree data structiner rat
editing quality [17], [18],[19]. This importance is emplwed than a nested regular grid; and a GPU-based runtime terrain
particularly in sketch-based terrain modeling, being ablsee management for both tessellation and terrain modification.
the terrain morphing at the same time the drawing editing Realistic terrains can also be created through modeling by
occurs constitutes a great user experience, an exampleensploying simulation of natural phenomena. Aehal. [13]
shown in figurd1l (left). presented a GPU-based method for hydraulic erosion simu-
The quality of the modeling tool depends mainly on threlation capable of simulating water transportation and ieros
aspects: controllability, intuitiveness and responsigsn The one order of magnitude faster than CPU-based methods. The
first makes the actual modeling possible, the second makeswork of Stava et al. [23] presents a comprehensive set of
tool more natural and easy to learn, and the third enhanees @PU-accelerated erosion tools for real-time interactareain
creativity process when the tool provides real-time feedlba modeling, indicating the usage of graphics hardware for the
One interesting example combining these three aspectss@ution of physically-based equations. Although in ourdmo
the FBERMESH [4]. In this tool, the user is able to createeling system we do not have simulation effects, we use the
freeform surfaces with 3D curves in real-time with naturadla GPU computational power to generate the terrain by solving
unconstrained design. However, there are two drawbacksairdifferent type of physically-based equation.
FIBERMESH: the high pre-computational cost required when The terrain modeling in our approach is accomplished by
adding or removing 3D curves; and the relative small modatembining the multigrid GPU solver of Hnaiét al. [15] with
that the tool can handle. LikeiBERMESH, our system builds an adaptive tessellation-based rendering shader capide-o
the surface by interpolating curves but allowing real-timdling dynamic heightmaps. The main contribution of Hnati
interaction with more complex models. al’s work is to introduce a GPU-based multigrid diffusion



equation solver for terrains relying on Laplacian equajonquad patches to the GPU (illustrated by tleamera-then-
which interpolates not only heights but also amplitude amdnder path in red in figurd12). Second, a fine version of
frequency noise parameters. Our modeling tool uses Hedidithe terrain is produced in the GPU using two programmable
al.’s solver to allow an interactive edition and manipulatidnh cshaders within the tessellator stage. One of them is regpens

complex terrain primitives. to subdivide regularly each quad patch, i.e. the quad ledéno
sent by the CPU, while the other reads the height values from
Il. REAL-TIME TERRAIN MODELING a texture that changes interactively based on manipulatich

The main contribution of this paper is a real-time terraidrawing of strokes (illustrated by thiFaw-then-contropath in
modeling system, combining a novel CPU-GPU coupled sblue in figure[2). It is important to note that the differentala
lution with a natural sketch-based interaction. In thistise¢ paths in our framework have an influence in each other, e.g.
we describe both the coupled computation and this intenacti drawing changes the heightmap that updates the quad patches

) that changes rendering.
A. CPU-GPU Coupled Computation The first phase of our algorithm is to update the quadtree

Creation of terrain models in real-time involves dealingata structure using a level-of-detail mechanism. Our LOD-
with dynamically changing data that increases exponédyntiabased approach considers the viewing projection of the dvoun
depending on the terrain resolution. However, high regmiut ing box of each quadtree node (see figure 3). This bounding
is only interesting in parts of the terrain with a high levebox is constructed by reading the minimum and maximum
of detail. In our terrain modeling framework, presented iheight values that fall inside the node (illustrated by the
figure[2, we make use of this observation dividing the terrairpdate-bounding-boxyath in green in figuré]2). We use a
generation process over a multiresolution pyramid. Thee bdsear metric on the number of pixels of the bounding-box
level of this pyramid, i.e. coarse resolution, is used whkene projection in order to make our LOD approach both view
the details are low or do not appear in the current point-adnd height-values dependent. Using this metric, the geadtr
view. The top level of the pyramid, i.e. fine resolution, i®ds node is recursively subdivided until a given criterion istme
whenever the details are high and dominant in the curresffectively increasing the resolution of the current tarrand

shading of the terrain model. moving upward in the multiresolution pyramid.
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In our framework, we have used the rectangular shape of the
spdate beundiga ko TEXTURE bounding-box projection to determine the quadtree noddisub
vision. The recursive creation of child nodes, four at a tilee
Fig. 2. The terrain modeling framework of our tool. While the C&dtrols done in Ordf':'r to .gua.ramee that each projection shape has abo
the multigrid solver depending on drawings and sends tepatohes to be the same size (in pixels). Moreover, the screen rectangées a
rendered, the GPU generates the terrain in texture memory emseliates | ;sed to determine if a quadtree node is completely occluded
its own produced heightmap. This setting requires threedifft data paths: d be di ded. i f deri in thie Vi
adaptive rendering using a quadtree (red); solver itaratamntrol (blue); and ana can be - Iscarae N I.e. not sent for _ren ering a_s In the vie
updating coarse-resolution details on the quadtree (yreen frustum culling technique. The result is an adaptive quesdtr
controlling the minimum resolution level imposed to the GPU
There are two main user interactions related to the multirgglepending on each quad node subdivision), which changes
olution pyramid:draw of strokes controlling the terrain gener-interactively depending on camera properties. In the GP&J, w
ation process; andameramovement changing the renderinguse regular subdivision of patches (each patch correspgonds
process. These two interactions guide two complementaryquadtree node sent for rendering) but a more refined LOD
approaches of our terrain modeling tool. First, a coarssi@er technique could also be applied, allowing a second form of
of the terrain geometry is maintained in the CPU using 120D in the top level of the multiresolution pyramid.
quadtree, as shown in figuré 1 (middle), where regions closefThe second phase of our algorithm comprehends the fol-
to the viewer are subdivided more than far regions. This Emgdowing modules (depicted in figuld 2): thaultigrid solver
and lightweight data structure fits the CPU main role of datnd thetessellation shadersiodule. The former provides the
control, while allowing it to send adaptive quadrilateral ( height values of the terrain to be used by the latter module.




The multigrid solver module, based on the work of Hna&idi i.e. edges connected forming a T. In our experiments, we
al. [15], computes the heightmap of the terrain through g@enerate a large number of triangles through the tessell|ati
sequence of increasing resolution textures, up to an arpitr making this possible T-junctions imperceptible. However a
size, using a two-step algorithm. The first step solves naore elaborated strategy for low-level tessellation cae us
Poisson-based diffusion system to interpolate gradient carregular subdivision ac-cross patches to avoid T-jumaid@ur
straints. The resulting gradients and height constrainés &PU-based LOD guarantees that visible quad patches have at
then used by the second step to compute the final heightnmapst 2 neighbor patches (invisible patches can be arlytrari
employing a similar diffusion system. Both systems areesblv big) and this fact can be used to construct a bit-mask for
using a multigrid strategy, detailed in figuké 5, which firseach patch, to be sent to the GPU, imposing a twice coarser
solves a coarse-resolution system to then increase the resddivision for patches with bigger neighbors. This apphoa
lution and start solving again. While the dyadic upsamplgg tan be thought as a second form of LOD done by the GPU
done once per level, the number of solver iterations is nthymathat is local-geometry dependent.
the same for each level and depends on the desired accurac¥he integration of the first CPU phase and the second GPU
The input of the multigrid solver module is given by strokehase is done after the quadtree is refined and before ren-
drawing and is explained in the next section. The outputisf thdering. The leaf nodes of the current quadtree are transfrm
module is a multiresolution terrain stored as a mipmap textunto quad patches, where each patch contains its corresgpnd
pyramid (see figurgl4). While the GPU is responsible for thimipmap level and texture position. From this patch, the GPU i
module, the CPU is able to start and stop solver iteratioable to further increase (but not decrease) the terrainutiso
within drawing and rendering events, keeping the GPU busy the tessellation control shader, up to a specified reisolut
depending on the last solver iteration. This coupled smfuti
defines the entire multiresolution pyramid, where the base
level is determined by the CPU and the top level is computed
and generated by the GPU.

mipmap levels
.

. solver B. Sketch-based and Interactive Edition
* jterations

Interaction with terrain models in real-time requires prim
" itives that are easy to create, manipulate and understand.
Fig. 4. The multiresolution texture scheme of our tool. Theaier is Creating mountains or plains by stipulating each small giec
stored as a mipmap texture pyramid that changes over time, degemithe  Of the terrain can be a cumbersome and slow work. Our
multigrid solver iterations done so far. terrain modeling system allows intuitive and natural iater
tion through simple sketches drawn over the current camera

The tessellation shaders module uses the mipmap-pyraigwing plane. These sketches act pulling and pushing
texture generated by the solver module in a producer-coesurthe terrain surface. The sketches can be created, moved or
strategy, synchronized and controlled by the CPU. Afteheadeleted; effectively changing the terrain. Depending oa th
new resolution level is constructed by the solver, a shadgésired primitive to create or modify, the user can move the
uniform value is updated to the current maximum level. Theamera to choose the best view of the terrain. The camera
CPU also controls the minimum level through the quadtre®om can also be used to interact with terrain primitives at
refined nodes sent as quad patches to the GPU. different scales.

The tessellation shaders module employs two stages of th&here are two main primitives supported by our sketch-
graphics-hardware pipeline: the tessellatioontrol shader based modeling tool: mountains and crevices primitiveavier
used to determine the subdivision level done by the tessellaing up or down the terrain level), and plateaux primitives
fixed functionality; and the tessellati@valuation shademused (drawing in the same terrain level). These primitives can be
to specify properties of the vertices created by the temsell seen in a terrain example shown in figlte 6.

In our terrain modeling tool, the control shader uses a emist To interactively morph the terrain as each primitive is
uniform value determined by the CPU to subdivide regulariyrawn or manipulated, the modeling strokes are convertied in
each quad patch. Depending on the subdivision, the respluttonstraints used by the GPU multigrid solver in the second
of the patch can increase or remain the same. The evaluajigrase of our algorithm (explained in the previous section).
shader reads the appropriate level of the mipmap-pyramitie 3D strokes are projected and rasterized on top of the
texture to place each generated vertex at the correct heightain creating an input 2D image used by the multigrid solv
position. The multiresolution texture is also used by th&JCPto specify its constraints. This process is further dedaile

but only a small resolution of it (we uskl x 64 from the6th figure[8. The 3D curves before rasterization representiterra
solver iteration) since the quadtree minimum leaf size isimuprimitives and are similar to curves in a vector-graphiad.to
bigger than the texel from the highest resolution texture. The projection of 3D curves depends on the primitive been

In the tessellation shaders, we use a straightforwarceglyat drawn. In the case of a plateaux primitive, the stroke is
for subdivision that does not consider different tesseltat projected on the horizontal plane defined by the first point
levels across patch boundaries. This may lead to T-jungtionf the drawing that touches the terrain. In the case a mauntai
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Fig. 5. The landscape primitives specified by 3D strokes angarted to constraints through rasterization and stored 2B constraint texture. This texture
is downsampled to be used insalve-then-upsamplerocess, i.e. the multigrid solver, where it first solves fog small resolutions before extrapolating the
solution for finer resolution systems. The final solution is tieightmap of the terrain in a multiresolution pyramid storedhanipmap texture.

primitive, the first and last point of the drawing touchingth | Terrain Size| Iterations | Creation (ms)| Tess. (ms)| GPU (MB) |

terrain determine a vertical plane where the stroke is ptege 512 x 512 45 23 4.8 16.9
However, in our real-time modeling scenario, the last point ;flg x ;g gg ?,E gg 15471-38
is unknown while the drawing editing occurs. One simple ;. | 4 56 14 6.7 716.7

solution is to project the extremity of the stroke been drawn
onto the terrain to obtain a dynamic last point. Although TABLE |

. . . . TERRAIN MODELING COMPUTATIONAL TIMINGS AND GPUMEMORY
this solution successfully changes the terrain, the reisult CONSUMPTION AT DIFFERENT RESOLUTIONS
confusing to the user since both terrain and drawing are
changing dynamically (one stroke point updates the tettainh
updates where the next stroke point is projected). Instéad o

projecting the stroke extremity to the dynamic terrain, e U For these results we have drawn several strokes, changing
the depthmap of the scene when the user starts drawing asilterrain shape and inducing the GPU multigrid solver, and
approximation of the current terrain. By projecting ont@sth consjdered the timing to create and tessellate the maximum
depthmap, with the appropriate transformations, the n@viReso|ution. The timings show that our system can compute
last point is now based on a fixed terrain, matching what thge solver and tessellate high-resolution terrains in-ties
user expects to modify. (at about20 frames per second) allowing for still higher
The manipulation of 3D curves can be done independeni¥solutions when working with adaptive tessellation.
from each other and from new drawings. The first or last anaiyzing the performance results further, the ability to
points used to compute the projection plane for primitives,nirol” incrementally the creation of the terrain consitu
can be manipulated with drag-and-drop interaction changig,other important characteristic of our approach. Theesolv
the projection and thus the primitive. These points act 3 ations can be used to specify the resolution levels and t
handles that can be moved morphing the terrain to a differat, features precision, which affects both timing and memo
conflgurauor_]. ) ) ) o consumption. More iterations generate improved and higher
The creation and manipulation of different primitives argeso|ution terrains, at the cost of more GPU time and memory.

handled by the CPU. The solver in the GPU receives th§,e memory usage in our system refers to the mipmap-
final projection by reading from the 2D constraint texturee(s pyramid texture stored in the GPU.

figure[B). The different type of strokes and the number 0

: L . One terrain example modeled with our tool can be seen in
terrain primitives affect little the performance of the sl P

figure[8. In this example appears different terrain prineiiv
drawn: mountains, plateaux and crevices. In addition t@iter
primitives, our tool allows several user interactions Juding

We have tested our modeling system with differergketching and manipulation of previous strokes and camera
heightmap resolutions and number of solver iterationslelflo movement.
presents the terrain creation solver and tessellatioaebeen- Adding the GPU to the process of creating and tessellating
dering timings and GPU memory consumption for the testeke terrain (not only for rendering) makes our approach to ru
terrain size and respective number of iterations. The timinat 27.8 ms for a512 x 512 grid. While Gainet al. [11]] report
are given using d024 x 768 pixel viewport and considering 2.3 seconds on a similar CPU to generate the same terrain
the camera constantly moving. All timings were performed igrid. That is, our approach generates terrains two order of
an Intel Core2Quad CPU and an nVidia 480 GTS GPU usimgagnitude faster than Gaet al’s work employing one single
OpenGL 4.1. unit.

IV. RESULTS
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Fig. 6. Terrain example generated by our modeling systemKreord south Fig. 7. lllustration of coarse (top) and fine (down) versidnaoterrain

views). The blue strokes were drawn to create mountains aadces, and tessellated by the GPU. The coarser resolution correspuntise quadtree

the red strokes were drawn to create plateaux in the midst. (shown on the right), that is the minimum resolution level imgebdy the
CPU, and the finer resolution is the maximum resolution level.

Compared against Hnaidt al’s approach[[15], our coupled V. DISCUSSIONS

solution introduces the usage of tessellatic_)n shaders and gpe majority of procedural editing and feature extraction
CPU-based method to control and synchronize between dra@g|s for terrain modeling are based on a top-view interac-

ing and rendering events. One direct advantage of this gpy, [7], [10], [17]. Although interesting, this approacimits
proach comes from the high-cost memory bandwidth betwegfp artistic freedom of the tool. Our modeling system is Hase
the CPU and the GPU; by using the CRidly for control on 3 3D camera with a first-person perspective and sketch-
and synchronization, the communication between the Unf§sed drawing interaction over the moving view plane. This

becomes small (few kilobytes in our system) even though theathod allows the user to draw landscape silhouettes at any
GPU is handling large amounts of data (hundreds of megaby{fstance and with more freedom.

for high-resolution terrains). Without the CPU-GPU codple The drawing interaction is only convincing when the tool
solution, the modeling framework changes from ComPUtat'Oﬂssponds in real-time. Inspired byEERMESH [4], our tool
bound (regarding FLOP count) to I/O-bound (regarding datgs controllability and real-time responsiveness. Howetee
transfers), compromising the real-time performance of thga| with high-resolution terrains, we use a different type
terrain modeling tool. of solver to generate the model. WhileBERMESH uses a
Another advantage is that while the multigrid GPU solvetirect solver with a high pre-computational cost, we usesa fa
acts in a global scope, generating and improving the entimaultigrid solver in the GPU that is suitable for our goal.
terrain, the CPU quadtree adaptation and the GPU tessellati Our GPU-based solver hints for a multiresolution hierarchy
(see an illustrative example in figué 7) act in a local scopef terrains in the form of a texture pyramid. This pyramid is
refining the terrain on demand for rendering. This strategynstructed top-down and can be used profitably for level-of
alleviates the burden on the CPU, in terms of editing ardktail control on both the CPU and the GPU (as explained
visualization, and on the GPU, in terms of control and sy section[1ll). Aiming at only visualizing static and real
chronization, providing a comprehensive sketch-basediter terrains, the technique from the geometry clipmaps [212] [2
modeling tool. Without one unit or the other, the tool isises a better solution for LOD control, building a comprdsse
less capable of dealing with high-resolution and dynarhicalmultiresolution pyramid that is accessed bottom-up. Haxev
changing terrains. we are interesting in a flexible modeling interface for dyiam



terrain generation and the geometry clipmaps’ technigmets We
appropriate.

Between creating and tessellating the terrain in the GPU,
the creation is more costly (see table 1) since we use a simple
regular subdivision approach in the tessellation contnader.  [1]
In the case of a complex second form of LOD in the GPU,
to allow even higher terrain resolutions, the bottlenecky ma
become the terrain tessellation.

The two modules of the CPU, controlling the solver itera—2
. - ]
tions and building the quadtree data structure, depend ®n tan
user input, drawing of strokes and moving the camera, and are
intrinsic serial computations. Although the two modules ca
not be implemented by the GPU, they could be suppresseg;
making the modeling tool more simple to implement but less
interactive.

VI. CONCLUSIONS [4]

We have presented a real-time terrain modeling tool combin-
ing two strategies in the GPU with a lightweight CPU-basegs)
data structure. Our tool is capable of dynamically generate
heightmaps with adaptive resolution, that is, our tesgefia
shaders are able to generate on-the-fly different parts ef th
terrain at different resolutions. [6]

One interesting aspect of our CPU-GPU coupled computa-
tion solution is the usage of the CPU to control the GPU solver
iterations and stop at a certain resolution and then resunig
computing when the GPU is idle. Another interesting feature
of our method is the balance between terrain generatiorein th
CPU and in the GPU — we can control this balance by simplyg]
changing the quadtree refinement. With these featuresstire u
can draw strokes and see at the same time the terrain morphing
to the drawing. Terrain primitives, such as mountains and
clefts, are controlled seamlessly in our framework. (9]

o . . [10]

Although with interesting features, our modeling framekvor
has a wide variety of future work directions. First, there is
room for optimizations in the GPU solver: instead of perfoerm
ing the initial iterations in the GPU, the CPU is more adeguaf;
to compute these low-resolution mipmaps and use them in its
guadtree data structure (avoiding transfering data badhile
the GPU is not underutilized with small images. Second, t
current usage of the mipmap-pyramid texture in the tedsmila
evaluation shader indicates the possibility of using anigxic
filtering with a gradient vector depending on the solverrahi
the tessellation shaders allow a second fine LOD analysis]
of the terrain that is interesting to explore. Finally, adyli
normal and fractal texture painting or simulation effeats i
our sketch-based modeling tool can increase the realism of
the generated terrains. In short, we believe this work has
the potential to become an effective terrain modeling tool
practical applications.
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