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Abstract—Pattern recognition in large amount of data has been
paramount in the last decade, since that is not straightforward
to design interactive and real time classification systems. Very
recently, the Optimum-Path Forest classifier was proposed to
overcome such limitations, together with its training set pruning
algorithm, which requires a parameter that has been empirically
set up to date. In this paper, we propose a Harmony Search-
based algorithm that can find near optimal values for that. The
experimental results have showed that our algorithm is able to
find proper values for the OPF pruning algorithm parameter.
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I. I NTRODUCTION

The problem of large datasets classification still remains
pursued by scientific community. Images acquired by personal
digital cameras have millions of pixels to be recognized, for
instance. Genre music classification of high quality audio
files in multimedia collections is another critical problemthat
require fast and reliable recommendation systems. Magnetic
resonance images from human brain produce hundreds of
thousands of voxels for further classification and identification
of possible diseases. Anyway, one has several problems in
which a prompt feedback is more important than an accurate,
but expensive, classifier’s decision.

In order to handle such challenge, Papa et al. [1] have
proposed a new way of facing pattern recognition by modeling
it as a graph partition in optimum-path trees (OPTs), which
are rooted at some key samples (prototypes). The main idea is
to begin a competition process among prototypes in order to
conquer the remaining dataset samples. This process is ruled
by a smooth path-cost function defined by the user, which
stands for the optimality criterion. The collection of OPTs
defines an optimum-path forest (OPF), which gives the name
to the classifier. The OPF has demonstrated to be similar to
Support Vector Machines (SVMs) [2], but much faster for
training. This skill may be very important in the aforemen-
tioned context, i.e., the one that stands for applications that
are characterized by a large amount of data. Therefore, it is
often desirable to have user-friendly tools that can interact with
fast feedback.

Further, aiming to speed up OPF classification phase, Papa
et al. [3] proposed a training set pruning algorithm, which can

design compact and representative training sets. The idea is to
use an evaluating set to identify the irrelevant training samples,
i.e., the ones that did not participate in any classificationpro-
cess over the evaluating set. Then, the algorithm removes those
samples from training set. This procedure has demonstrated
to be interesting in situations in which we have redundant
samples, such as image classification and network intrusion
detection benchmarking datasets. In the former case, one may
have similar features for pixels in the same neighborhood, and
in the latter situation several connections in a short period of
time may define similar samples in the feature space.

The OPF training set pruning algorithm works with a
stopping criterion, which is calledMLoss and is defined as
the absolute deviation between the accuracy over the original
evaluating set and the final pruned one. Although this approach
has obtained good results in several applications [4], [5],it is
not straightforward to find a good value forMLoss, which
has been performed empirically up to date. In this paper,
we propose an algorithm to find proper values for that using
an evolutionary intelligence algorithm called Harmony Search
(HS) [6]. Experimental results have showed that the proposed
approach is suitable to this task. The remainder of this paper
is organized as follows. Sections II and III review OPF and
HS background, respectively. Section IV presents the proposed
methodology to estimateMLoss and Section V refers to the
experimental section. Finally, Section VI states conclusions.

II. OPTIMUM-PATH FOREST

The OPF classifier works by modeling the problem of
pattern recognition as a graph partition in a given feature
space. The nodes are represented by the feature vectors and the
edges connect all pairs of them, defining a full connectedness
graph. This kind of representation is straightforward, given that
the graph does not need to be explicitly represented, allowing
us to save memory. The partition of the graph is carried out by
a competition process between some key samples (prototypes),
which offer optimum paths to the remaining nodes of the
graph. Each prototype sample defines its optimum-path tree
(OPT), and the collection of all OPTs defines an optimum-
path forest, which gives the name to the classifier [1]. The OPF
can be seen as a generalization of the well known Dijkstra’s
algorithm to compute optimum paths from a source node to



the remaining ones [7]. The main difference relies on the fact
that OPF uses a set of source nodes (prototypes) with any
smooth path-cost function [8].

A. Background theory

Let Z = Z1∪Z2∪Z3 be a dataset labeled with a functionλ,
in which Z1, Z2 andZ3 are, respectively, training, evaluating
and test sets such thatZ1 andZ2 are used to design a given
classifier andZ3 is used to assess its accuracy. LetS ⊆ Z1 a
set of prototype samples. Essentially, the OPF classifier creates
a discrete optimal partition of the feature space such that any
samples ∈ Z2∪Z3 can be classified according to this partition.
This partition is an optimum path forest (OPF) computed in
ℜn by the image foresting transform (IFT) algorithm [8].

The OPF algorithm may be used with anysmoothpath-cost
function which can group samples with similar properties [8].
Particularly, we used the path-cost functionfmax, which is
computed as follows:

fmax(〈s〉) =

{

0 if s ∈ S,
+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (1)

in which d(s, t) means the distance between sampless and
t, and a pathπ is defined as a sequence of adjacent samples.
In such a way, we have thatfmax(π) computes the maximum
distance between adjacent samples inπ, whenπ is not a trivial
path.

The OPF algorithm assigns one optimum pathP ∗(s) from
S to every samples ∈ Z1, forming an optimum path forestP
(a function with no cycles which assigns to eachs ∈ Z1\S its
predecessorP (s) in P ∗(s) or a markernil when s ∈ S. Let
R(s) ∈ S be the root ofP ∗(s) which can be reached from
P (s). The OPF algorithm computes for eachs ∈ Z1, the cost
C(s) of P ∗(s), the labelL(s) = λ(R(s)), and the predecessor
P (s).

The OPF classifier is composed of two distinct phases: (i)
training and (ii) classification. The former step consists,essen-
tially, in finding the prototypes and computing the optimum-
path forest, which is the union of all OPTs rooted at each
prototype. After that, we take a sample from the test sample,
connect it to all samples of the optimum-path forest generated
in the training phase and we evaluate which node offered
the optimum path to it. Notice that this test sample is not
permanently added to the training set, i.e., it is used only once.
The next sections describe in details this procedure.

1) Training: We say thatS∗ is an optimum set of proto-
types when the OPF algorithm minimizes the classification
errors for everys ∈ Z1. S∗ can be found by exploiting the
theoretical relation between minimum-spanning tree (MST)
and optimum-path tree forfmax [9]. The training essentially
consists in findingS∗ and an OPF classifier rooted atS∗.

By computing an MST in the complete graph(Z1, A),
we obtain a connected acyclic graph whose nodes are all
samples ofZ1 and the arcs are undirected and weighted
by the distancesd between adjacent samples. The spanning
tree is optimum in the sense that the sum of its arc weights

is minimum as compared to any other spanning tree in
the complete graph. In the MST, every pair of samples is
connected by a single path which is optimum according
to fmax. That is, the minimum-spanning tree contains one
optimum-path tree for any selected root node. The optimum
prototypes are the closest elements of the MST with different
labels in Z1 (i.e., elements that fall in the frontier of the
classes).Algorithm 1 implements the training procedure for
OPF.

Algorithm 1: – OPF TRAINING ALGORITHM

INPUT: A λ-labeled training setZ1 and the pair(v, d) for
feature vector and distance computations.

OUTPUT: Optimum-path forestP1, cost mapC1, label map
L1, and ordered setZ′

1.
AUXILIARY : Priority queueQ, set S of prototypes, and cost

variable cst.
1. SetZ′

1 ← ∅ and compute by MST the prototype setS ⊂ Z1.
2. For eachs ∈ Z1\S, setC1(s)← +∞.
3. For eachs ∈ S, do
4. C1(s)← 0, P1(s)← nil, L1(s)← λ(s), inserts in Q.
5. While Q is not empty, do
6. Remove fromQ a samples such thatC1(s) is minimum.
7. Inserts in Z′

1.
8. For eacht ∈ Z1 such thatC1(t) > C1(s), do
9. Computecst← max{C1(s), d(s, t)}.
10. If cst < C1(t), then
11. If C1(t) 6= +∞, then removet from Q.
12. P1(t)← s, L1(t)← L1(s), C1(t)← cst.
13. Insert t in Q.
14. Return a classifier[P1, C1, L1, Z

′

1].

The time complexity for training isθ(|Z1|
2
), due to the

main (Lines 5-13) and inner loops (Lines 8-13) inAlgorithm 1,
which runθ(|Z1|) times each.

2) Classification:For any samplet ∈ Z3 (similar definition
is applied toZ2), we consider all arcs connectingt with
sampless ∈ Z1, as thought were part of the training graph.
Considering all possible paths fromS∗ to t, we find the
optimum pathP ∗(t) from S∗ and label t with the class
λ(R(t)) of its most strongly connected prototypeR(t) ∈ S∗.
This path can be identified incrementally by evaluating the
optimum costC(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let the nodes∗ ∈ Z1 be the one that satisfies Equation 2
(i.e., the predecessorP (t) in the optimum pathP ∗(t)).
Given thatL(s∗) = λ(R(t)), the classification simply assigns
L(s∗) as the class oft. An error occurs whenL(s∗) 6= λ(t).
Algorithm 2 implements this procedure.

Algorithm 2: – OPF CLASSIFICATION ALGORITHM

INPUT: Classifier [P1, C1, L1, Z
′

1], test setZ3, and the
pair (v, d) for feature vector and distance com-
putations.

OUTPUT: Label L2 and predecessorP2 maps defined for
Z3, and accuracy valueAcc.

AUXILIARY : Cost variablestmp andmincost.
1. For eacht ∈ Z3, do
2. i← 1, mincost← max{C1(ki), d(ki, t)}.



3. L2(t)← L1(ki) andP2(t)← ki.
4. While i < |Z′

1| andmincost > C1(ki+1), do
5. Computetmp← max{C1(ki+1, d(ki+1, t)}.
6. If tmp < mincost, then
7. mincost← tmp.
8. L2(t)← L(ki+1) andP2(t)← ki+1.
9. i← i+ 1.
10. Compute accuracyAcc according to [1].
11. Return[L2, P2, Acc].

In Algorithm 2, the main loop (Lines1 − 9) performs the
classification of all nodes inZ3. The inner loop (Lines4− 9)
visits each nodeki+1 ∈ Z ′

1, i = 1, 2, . . . , |Z ′
1| − 1 until an

optimum pathπki+1
· 〈ki+1, t〉 is found.

3) Learning and pruning:Large datasets usually present
redundancy, so at least in theory it should be possible
to estimate a reduced training set with the most relevant
patterns for classification. The use of a training setZ1 and an
evaluation setZ2 has allowed OPF to learn relevant samples
for Z1 from the classification errors inZ2, by swapping
misclassified samples ofZ2 and non-prototype samples of
Z1 during a few iterations [1]. In this learning strategy,Z1

remains the same size and the classifier instance with the
highest accuracy is selected to be tested on the unseen set
Z3. Algorithm 3 implements this learning procedure.

Algorithm 3: – OPF LEARNING ALGORITHM

INPUT: A λ-labeled training and evaluating setsZ1 and
Z2, respectively, numberT of iterations, and the
pair (v, d) for feature vector and distance compu-
tations.

OUTPUT: Optimum-path forestP1, cost mapC1, label map
L1, ordered setZ′

1 andMaxAcc.
AUXILIARY : ArraysFP andFN of sizesc for false positives

and false negatives, setS of prototypes, and list
LM of misclassified samples.

1. SetMaxAcc← −1.
2. For each iterationI = 1, 2, . . . , T , do
3. LM ← ∅ and compute the setS ⊂ Z1 of prototypes.
4. [P1, C1, L1, Z

′

1]← Algorithm 1(Z1, S, (v, d)).
5. For each classi = 1, 2, . . . , c, do
6. FP (i)← 0 andFN(i)← 0.
7. [L2, P2, Acc]← Algorithm 2([P1, C1, L1, Z

′

1], Z2, (v, d))
8. If Acc > MaxAcc then
9. Save the current instance[P1, C1, L1, Z

′

1]
10. of the classifier and setMaxAcc← Acc.
11. While LM 6= ∅
12. LM ← LM\t.
13. Replacet by a non-prototype sample, randomly
14. selected fromZ1.
15. Return the classifier instance[P1, C1, L1, Z

′

1] with the highest
16. accuracy inZ2, and its valueMaxAcc.

The efficacy ofAlgorithm 3 increases with the size ofZ1,
because more non-prototype samples can be swapped by
misclassified samples ofZ2. However, for sake of efficiency,
we need to choose a reasonable maximum size forZ1. After
learning the best training samples forZ1, we may also mark
paths inP1 used to classify samples inZ2 and define their
nodes asrelevant samplesin a setR. The “irrelevant” training
samples inZ1\R can then be moved toZ2. Algorithm 4

applies this idea repetitively, while the loss in accuracy on Z2

with respect to the highest accuracy obtained byAlgorithm 3
(using the initial training set size) is less or equal to a
maximum valueMLoss specified by the user or there are no
more irrelevant samples inZ1.

Algorithm 4: – LEARNING-WITH-PRUNING ALGORITHM

INPUT: Training and evaluation sets,Z1 and Z2, la-
beled byλ, the pair (v, d) for feature vector and
distance computations, maximum lossMLoss in
accuracy onZ2, and numberT of iterations.

OUTPUT: EOPF classifier [P1, C1, L1, Z
′

1] with reduced
training set.

AUXILIARY : SetR of relevant samples, and variablesAcc and
tmp.

1. [P1, C1, L1, Z
′

1]← Algorithm 3(Z1, Z2, T, (v, d)).
2. [L2, P2, Acc]← Algorithm 2([P1, C1, L1, Z

′

1], Z2, (v, d)).
3. tmp← Acc andR ← ∅.
4. While |Acc− tmp| ≤MLoss andR 6= Z1 do
5. R ← ∅.
6. For each samplet ∈ Z2, do
7. s← P2(t) ∈ Z1.
8. While s 6= nil, do
9. R ← R∪ s.
10. s← P1(s).
11. Move samples fromZ1\R to Z2.
12. [P1, C1, L1, Z

′

1]← Algorithm 3(Z1, Z2, T, (v, d)).
13. [L2, P2, tmp]← Algorithm 2([P1, C1, L1, Z

′

1], Z2, (v, d)).
14. Return[P1, C1, L1, Z

′

1].

In Algorithm 4, Lines1−3 compute learning and classifica-
tion using the highest accuracy classifier obtained for an initial
training set size. Its accuracy is returned inAcc and used as
reference value in order to stop the pruning process, when the
loss in accuracy is greater than a user-specifiedMLoss value
or when all training samples are considered relevant. The main
loop in Lines4 − 13 essentially marks the relevant samples
in Z1 by following the optimum paths used for classification
(Lines5−10) backwards, moves irrelevant samples toZ2, and
repeats learning and classification from a reduced trainingset
until it reaches the above stopping criterion.

III. H ARMONY SEARCH

The Harmony Search (HS) is an evolutionary algorithm
inspired in the music, considering the improvisation process
of music players [6]. The HS is simple in concept, few
in parameters, and easy in implementation, with theoretical
background of stochastic derivative. The main idea is to use
the same process adopted by musicians to create new songs to
obtain a near-optimal solution of some optimization process.
Basically, any possible solution is modeled as a harmony and
each parameter to be optimized can be seen as a musical
note. The best harmony (solution) is chosen as the one
that maximizes some optimization criterion. The algorithmis
composed by few steps, as described below:

• Step 1: Initialize the optimization problem and algorithm
parameters;



• Step 2: Initialize a Harmony Memory (HM);
• Step 3: Improvise a new harmony from HM;
• Step 4: Update the HM if the new harmony is better than

the worst harmony in the HM. In this case, one includes
the new harmony in HM, and removes the worst one from
HM; and

• Step 5: If the stopping criterion is not satisfied, go to Step
3.

Follow, we discuss each one of the aforementioned steps.
a) The Optimization Problem and Algorithm Parameters:

In order to describe how HS works, an optimization problem
is specified in Step 1 as follows:

Minimize f(x) subject to xi, ∀i = 1, 2, . . . , HMS, (3)

wheref(x) is the objective function,xi means the harmony
i andHMS is the number of harmonies (harmony memory
size - HMS).

The HS algorithm parameters required to solve the op-
timization problem (Equation 3) are also specified in this
step: HMS, harmony memory considering rate (HMCR), pitch
adjusting rate (PAR), and stopping criterion. HMCR and PAR
are parameters used to improve the solution vector, i.e., they
can help the algorithm to find globally and locally improved
solutions in the harmony search process (Step 3).

b) Harmony Memory (HM):Now, let us definexj
i as the

j-th value of harmonyi. In Step 2, the HM matrix (Equation 4)
is initialized with randomly generated solution vectors with
their respective values of the objective function:

HM =











x1
1 x2

1 . . . xn
1 f(x1)

x1
2 x2

2 . . . xn
2 f(x2)

...
...

...
...

...
x1
hms x2

hms . . . xn
hms f(xhms)











. (4)

c) Generating a New Harmony From HM:In Step 3, a
new harmony vectorx

′

i is generated from the HM based on
memory considerations, pitch adjustments, and randomization
(music improvisation). It is also possible to choose the new
value using the HMCR parameter, which varies between 0 and
1 as follows:

x′
i ←

{

x′
i ∈

{

x1
i , x

2
i , . . . , x

HMS
i

}

with probability HCMR,

x′
i /∈ Xi with probability (1-HCMR).

(5)

The HMCR is the probability of choosing one value from
the historic values stored in the HM, and (1- HMCR) is
the probability of randomly choosing one feasible value not
limited to those stored in the HM.

Further, every component of the new harmony vectorx
′

i is
examined to determine whether it should be pitch-adjusted:

Pitching adjusting decision forx′
i ←

{

Yes with probability PAR,

No with probability (1-PAR).
(6)

The pitch adjustment of each instrument is often used to
improve the solutions and to escape from local optima. This
mechanism concerns with shifting the neighboring values of
some decision variable in the harmony. If the pitch adjustment
decision for the decision variablex′

1 is Yes,x′
1 is replaced as

follows:

x′
i ← x′

i + σ, (7)

whereσ is an arbitrary value.
d) Update HM: In Step 4, if the new harmony vector is

better than the worst harmony in the HM, the latter is replaced
by this new harmony.

e) Stopping Criterion: In Step 5, if the HS algorithm
finishes when it satisfies the stopping criterion. Otherwise,
Steps 3 and 4 are repeated in order to improvise a new
harmony again.

IV. PROPOSED METHOD

In this section, we present our proposed algorithm to find the
MLoss value automatically, which falls in the finite interval
[0, 100]. The main idea is to use HS to find proper values for
that, since we have an infinite number of real valued possible
solutions, and an exhaustive search may be prohibitive.

As any optimization algorithm, HS also needs a fitness
function to maximize (minimize). In our schema, it is desirable
to find the best trade-off between accuracy over the evaluating
set and the training set size. Therefore, we would like to
find values forMLoss such that the accuracy can the best
as possible, and the training set size can be the small as we
can obtain. Thus, in order to deal with that, we proposed the
following fitness function:

F = Acc

(

1

1 + e−|Z1|

)−1

, (8)

in which Acc stands for the accuracy over the evaluating set.
The idea for that is to makeAcc and the training set size
inversely proportional to each other, in the sense that whether
the accuracy stabilizes, the fitness function can still increases
with lower values for |Z1|. However, the reader may ask
about a simple rate between accuracy and training set size.
Although our first experiments were conducted with that idea,
the training set size dominates the accuracy value, leadingus
to high pruning rates and low accuracy ones.

Thus, in order to smooth the dominance of training set
size, we decided to use a sigmoid function, since the second
term of Equation 8, i.e., 1

1+e−|Z1| falls in the interval[0.5, 1],
given that 0 < |Z1| < +∞. Algorithm 5 implements our
proposed methodology to findMLoss.

The initial loop in Lines1−5 is responsible for the harmony
memory initialization. In Line2, each harmony receives a real
value randomly selected within the interval[0, 100]. Further,
Algorithm 4 is called withMLoss = HMi,1 in Line 3. After
that, the classifier generated in Line3 is used to access the
accuracy over the evaluating setZ2 (Line 4). The accuracy



value is stored inHMi,2 position, which stands forf(xi)
(Equation 4).

The conditional in Line7 verifies whether the new harmony
h will be composed by some value extracted from the harmony
memory (Lines8− 9). In the affirmative case, Line8 selects
an index value within[1, hms] in order to retrieve theMLoss
value from some position of the harmony memory. Otherwise,
the new harmony will be composed by a randomly number
within the interval[0, 100] in Line 12 (these steps implement
Equation 5). Lines10−11 implements the pitch adjusting rate,
as described in Equation 7. As the value ofMLoss can not
change a lot, we usedσ = 0.1. The Lines13 − 15 calculate
the fitness value of the new harmonyh, which is stored in
h[2] (h[1] stores theMLoss value).

Line 16 finds the harmony that leads to the lowest fitness
in the harmony memory, and stores its index in theimin

variable. The corresponding fitness is stored inminFitness.
The next step concerns with replacing the worst harmony
with the new one obtained in the previous step whether its
fitness value is lower than the one provided by the new
harmony. Lines17 − 19 implements this idea. The function
call GetMaxHarmony in Line 20 finds the harmonyi that
achieved the highest fitness, and store its optimized value in
Line 20. Finally, Line 21 outputsMLoss.

Algorithm 5: – PROPOSED ALGORITHM

INPUT: Labeled trainingZ1 and evaluating setZ2, the
pair (v, d) for feature vector and distance com-
putations, harmony memory sizehms, harmony
memory considering ratehmcr, pitch adjusting
rate par and number of iterationsT for conver-
gence.

OUTPUT: MLoss value.
AUXILIARY : Harmony memory HM of sizem× 2, variablesi,

Acc, k, imin andminFitness, and new harmony
vectorh of size1× 2.

1. For each harmonyi (∀i = 1, . . . , hms), do
2. HMi,1 ← Random(0,100).
3. [P1, C1, L1, Z

′

1]←Algorithm 4(Z1,Z2,HMi,1).
4. [L2, P2, Acc]← Algorithm 2([P1, C1, L1, Z

′

1], Z2, (v, d)).

5. HMi,j ← Acc

(

1

1+e
−|Z′

1
|

)

−1

.

6. For k ← 1 to T , do
7. If (hmcr > 0.5), then
8. i← RandomInteger(1,hms).
9. h[1]← HMi,1.
10. If (par > 0.5), then
11. h[1]← h[1] + 0.1.
12. Elseh[1]← Random(0,100).
13. [P1, C1, L1, Z

′

1]←Algorithm 4(Z1,Z2,h[1]).
14. [L2, P2, Acc]← Algorithm 2([P1, C1, L1, Z

′

1], Z2, (v, d)).

15. h[2]← Acc

(

1

1+e
−|Z′

1
|

)

−1

.

16. [imin,minF itness]← GetMinFitness(HM).
17. If (h[2] > minFitness), then.
18. HMimin,1 ← h[1].
19. HMimin,2 ← h[2].
20. i← GetMaxHarmony(HM).
21. MLoss← HMi,1.
22. ReturnsMLoss.

V. EXPERIMENTS

In this section we described the experiments conducted, as
well as the datasets employed in this work. For that, we used
the LibOPF [10], which is a free library implemented in C
language to the design of classifiers based on optimum-path
forest. In regard to the datasets, we used data obtained from
different applications, as described below:

• NTL: this dataset comprises with consumer profiles from
a brazilian energy company, and was designed to identify
thefts in power distribution systems, which are the so
called non-technical losses (ntl). This dataset is composed
by 736 samples, which are described by 4 features and
distributed in 2 classes, i.e., illegal or legal consumer.

• CBERS: this dataset is composed by 25,876 samples,
which represents pixels from an image obtained from
CBERS-2B satellite. Each sample is represented by 21
features (18 texture features and 3 RGB values), dis-
tributed in 6 classes. Figure 1 displays the original and
ground truth images.

• NSL-KDD1: this dataset is composed by 125,973 sam-
ples, which was designed for intrusion detection in com-
puter networks. In that case, each sample is represented
by 41 features extracted from connections to a local area
network at Lincoln Labs - MIT (Massachusetts Institute
of Technology). The number of classes is two, which
stand for a normal access and an attack [11].

• IRIS: this dataset is one of the most used in the pattern
recognition for benchmarking purposes, and it comprises
150 samples equally distributed in 3 classes. Each sample
is represented by 4 features. The goal of this dataset it to
distinguish three species of iris plant [12].

• MPEG-7: this dataset contains 1,400 images represented
by their shapes, equally distributed in 70 classes [13].
In order to describe each sample, we used the Moments
Invariants descriptor [14].

Fig. 1. Satellite images used in the experiments: covering thearea of
Itatinga, SP - Brazil by (a) CBERS-2B CCD sensor (2R3G4B) andits (b)
respective ground truth image.

(a) (b)

1http://www.iscx.ca/NSL-KDD/



For each dataset, we used different percentages of training,
evaluating and test sets, which were empirically chosen, based
on our previous experience. Table I displays the percentages
for each dataset. As aforementioned in Section IV, we used
both training and evaluating sets to guide the whole process
of finding optimal or near optimal values forMLoss param-
eter, which aims to maximize the fitness function given by
Equation 8.

TABLE I
PERCENTAGES USED FOR EACH DATASET.

Data Training Evaluating Test
NTL 30% 20% 50%
CBERS 5% 45% 50%
NSL-KDD 1% 49% 50%
IRIS 30% 20% 50%
MPEG-7 20% 30% 50%

A. Results and Discussion

In this section, we described the experiments conducted over
the five datasets: NTL, CBERS, NSL-KDD, IRIS and MPEG-
7. In order to compare the proposed approach, we performed
an exhaustive search forMLoss within the interval[0, 100].
The values were sampled at0.01, summarizing100 values in
the aforementioned interval. Figures 2, 3, 4, 5 and 6 display
the curves for each dataset. They axis stands for the fitness
function F (Equation 8), whilex axis denotes eachMLoss
sampled value. In regard to HS parameters, we usedhms =
15, hmcr = 0.6, par = 0.3 andT = 5 (number of iterations).
Notice that these values were empirically chosen, based on
our previous experience.

Fig. 2. Exhaustive search forMLoss value over NTL dataset.
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Table II displays the execution times in seconds regarding
the exhaustive search for all datasets. We also showed the
execution time of our proposed approach to findMLoss
automatically (seconds), which was described in Section IV.
These results averaged over 10 runnings. One can also see the
gain of the proposed technique in terms of execution time.

Table III displays theMLoss values obtained through the
proposed technique. One can see that for NTL and IRIS

Fig. 3. Exhaustive search forMLoss value over CBERS dataset.
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Fig. 4. Exhaustive search forMLoss value over NSL-KDD dataset.
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Fig. 5. Exhaustive search forMLoss value over IRIS dataset.
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datasets these values correspond to the maximum of curves
displayed in Figures 2 and 5, respectively. Although the values
for MPEG-7, NSL-KDD and CBERS are not optimal, they
are also suitable to accomplish the task, since a considerable
amount of reduction in the training set has been accomplished,
without affecting a lot the accuracy over the test set.

In addition, we would like to shed light over the choice



Fig. 6. Exhaustive search forMLoss value over MPEG-7 dataset.
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TABLE II
PERFORMANCES RESULTS: TIMINGS ARE EXPRESSED IN SECONDS.

Data Exhaustive [s] Proposed [s] Gain
NTL 6.40± 0.49 1.27± 1.03 500%
CBERS 1984.10± 167.17 169.43± 507.01 1190%
NSL-KDD 21160.80± 2297.29 5260.90± 8035.36 920%
IRIS 1.70± 0.46 0.42± 0.06 370%
MPEG-7 8.20± 0.6 1.32± 1.05 6210%

for Harmony Search, which has been guided by its efficiency,
since other widely used evolutionary-based techniques, such
as Particle Swarm Optimization [15] and Gravitational Search
Algorithm [16], have high computational burden. While the
former technique attempts to move particles through the swarm
by updating each dimension individually, the latter needs
to sort thek best possible solutions to compute their new
position, for each one of them.

VI. CONCLUSION

Optimum-path forest-based classifiers have been shown
to be useful in several applications, that vary from remote
sensing to biomedical signal recognition. The main skill for
that classifiers is their fast training phases, even for large
datasets. In regard to classification step, the computational
complexity is proportional to the number of training samples,
i.e., θ(|Z1| |Z3|), in which Z1 and Z3 stand for training
and test sets, respectively (similar definition is applied to
evaluating set -Z2). In order to make OPF faster, a training
set pruning algorithm was developed, aiming to find the most
relevant samples from training set, such that the remaining
ones should be removed from that set. The idea is to design
compact and representative training sets. This approach has
been used in several applications, and its benefits can be
highlighted in datasets in which one can find redundancy.

However, the main problem for OPF pruning algorithm is to
set theMLoss parameter, which is defined as the maximum
allowed deviation of accuracy over the evaluating set with
respect to the original and pruned training set. Thus, the user
needs to define the allowed loss of accuracy. Henceforth, in
some applications, the same user may not want to define that
value. Thus, we proposed in this research a evolutionary-based

TABLE III
VALUES FORMLoss FOUND BY THE PROPOSED APPROACH.

Data MLoss

NTL 0.62
CBERS 0.62
NSL-KDD 0.91
IRIS 0.36
MPEG-7 0.19

algorithm to find propers values forMLoss. This algorithm
is based on the Harmony Search, which is guided by a fitness
function that considers the accuracy over the evaluating set
and also the training set size, in order to find the best trade-
off between effectiveness and efficiency for data classification.

We conducted experiments over 5 public datasets in order
to show the robustness of our proposed hybrid approach
(HS+OPF) against an exhaustive search forMLoss values.
We have seen that in 2 (NTL and IRIS) out of 5 datasets
the proposed approach has found optimalMLoss values, and
with respect to the remaining 3 datasets, i..e, MPEG-7, NSL-
KDD and CBERS, we have obtained good values. We also
concluded that we can improve the results, but with the price
of computational cost for that. For future works, we intent to
make OPF pruning faster with GPGPU programming. Thus,
the hybrid approach proposed here will be benefited with that.
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