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Abstract—Pattern recognition in large amount of data has been design compact and representative training sets. The sdiea i
paramount in the last decade, since that is not straightforward yse an evaluating set to identify the irrelevant traininggkes,
to design interactive and real time classification systems. Very i.e., the ones that did not participate in any classificagioo:
recently, the Optimum-Path Forest classifier was proposed to . .
overcome such limitations, together with its training set pruning cess over the eval-ugtmg set. Then, the algorithm remoeseth
algorithm, which requires a parameter that has been empirically Samples from training set. This procedure has demonstrated
set up to date. In this paper, we propose a Harmony Search- to be interesting in situations in which we have redundant
based algorithm that can find near optimal values for that. The samples, such as image classification and network intrusion
experimental results have showed that our algorithm is able 10 yatection benchmarking datasets. In the former case, oge ma
find proper values for the OPF pruning algorithm parameter. o . . -

have similar features for pixels in the same neighborhond, a

Keywords-Optimum-Path  Forest; Supervised classification; in the latter situation several connections in a short pedb
Pattern Recognition; time may define similar samples in the feature space.

The OPF training set pruning algorithm works with a
stopping criterion, which is called/ Loss and is defined as

The problem of large datasets classification still remainlse absolute deviation between the accuracy over the atigin
pursued by scientific community. Images acquired by petsorvaluating set and the final pruned one. Although this ambroa
digital cameras have millions of pixels to be recognized, fdas obtained good results in several applications [4],i{5%
instance. Genre music classification of high quality audieot straightforward to find a good value fad Loss, which
files in multimedia collections is another critical probléhat has been performed empirically up to date. In this paper,
require fast and reliable recommendation systems. Magneiie propose an algorithm to find proper values for that using
resonance images from human brain produce hundredsaefevolutionary intelligence algorithm called Harmony 18ba
thousands of voxels for further classification and iderdtfan (HS) [6]. Experimental results have showed that the propose
of possible diseases. Anyway, one has several problemsajmproach is suitable to this task. The remainder of this pape
which a prompt feedback is more important than an accuraie,organized as follows. Sectioqs Il aqdl Il review OPF and
but expensive, classifier's decision. HS background, respectively. Sectiofd IV presents the megpo

In order to handle such challenge, Papa et [al. [1] haweethodology to estimaté/ Loss and Sectio V refers to the
proposed a new way of facing pattern recognition by modelirgxperimental section. Finally, Sectibn]VI states condosi
it as a graph partition in optimum-path trees (OPTSs), which
are rooted at some key samples (prototypes). The main idea is Il. OPTIMUM-PATH FOREST
to begin a competition process among prototypes in order toThe OPF classifier works by modeling the problem of
conquer the remaining dataset samples. This process i rybattern recognition as a graph partition in a given feature
by a smooth path-cost function defined by the user, whidpace. The nodes are represented by the feature vectotseand t
stands for the optimality criterion. The collection of OPT®dges connect all pairs of them, defining a full connecteslnes
defines an optimum-path forest (OPF), which gives the nargeaph. This kind of representation is straightforwardegithat
to the classifier. The OPF has demonstrated to be similarthe graph does not need to be explicitly represented, allpwi
Support Vector Machines (SVMs) 1[2], but much faster fous to save memory. The partition of the graph is carried out by
training. This skill may be very important in the aforemena competition process between some key samplesdatype,
tioned context, i.e., the one that stands for applicatidvad t which offer optimum paths to the remaining nodes of the
are characterized by a large amount of data. Therefore, itgaph. Each prototype sample defines its optimum-path tree
often desirable to have user-friendly tools that can imtendgth  (OPT), and the collection of all OPTs defines an optimum-
fast feedback. path forest, which gives the name to the classifier [1]. Th& OP

Further, aiming to speed up OPF classification phase, Pajam be seen as a generalization of the well known Dijkstra’s
et al. [3] proposed a training set pruning algorithm, whialn ¢ algorithm to compute optimum paths from a source node to

I. INTRODUCTION



the remaining ones [7]. The main difference relies on thé fas minimum as compared to any other spanning tree in
that OPF uses a set of source nodes (prototypes) with ahg complete graph. In the MST, every pair of samples is
smooth path-cost function|[8]. connected by a single path which is optimum according
t0 fmaz- That is, the minimum-spanning tree contains one
optimum-path tree for any selected root node. The optimum
Let Z = Z,UZ>UZ; be a dataset labeled with a functian  prototypes are the closest elements of the MST with differen
in which Zy, Z, and Z; are, respectively, training, evaluatingabels in Z, (i.e., elements that fall in the frontier of the

and test sets such that and Z, are used to design a givenclasses)Algorithm [ implements the training procedure for
classifier andZs is used to assess its accuracy. ISe€ Z; a QPE.

set of prototype samples. Essentially, the OPF classiféztes
a discrete optimal partition of the feature space such that a Algorithm 1: — OPF TRAINING ALGORITHM
samples € Z>,UZ3 can be classified according to this partition.

A. Background theory

. Lo . . INPUT: A X-labeled training setZ; and the pair(v, d) for
This partition is an optimum path forest (OPF) computed in feature vector andgdista;lce compﬂtat(igns?
R™ by the image foresting transform (IFT) algorithid [8]. OUTPUT: Optimum-path foresP;, cost mapC,, label map
The OPF algorithm may be used with asmoothpath-cost Ly, and ordered se¥;.

function which can group samples with similar propertiels [8 AUXILIARY:  Priority queue(, setS of prototypes, and cost

. . C variable cst.
Particularly, we useq the path-cost functigh,., which is 1. SetZ] « 0 and compute by MST the prototype s8iC .
computed as follows: 2. For eachs € Z;\S, setCi(s) + +oo.
0 ifscs 3. For eachs € S, do
Frmaz((s)) { L 4. L Ci(s) + 0, Pi(s) < nil, L1(s) < X(s), inserts in Q.
e +oo  otherwise 5. While Q is not empty, do
fmaz(m-{s,t)) = max{fima(7),d(s,t)}, (1) . Remove from@ a samples such thatC(s) is minimum.
7. Inserts in Z7.

in which d(s,t) means the distance between sampleand 8. For eacht elz1 such thatCi (¢) > Ci(s), do
t, and a pathr is defined as a sequence of adjacent samplés. Computecst «— max{C1(s),d(s,t)}.
In such a way, we have th, .. () computes the maximum 10- If cst - gl Eg’;hi” " & from @

X . X ! - , \ o0, then removet from Q.
distance between adjacent samples wvhenr is not a trivial 12 L Pi(t) 5, Li(t) < Ly(s), Ci(t) « cst.
path. Insertt in Q.

The OPF algorithm assigns one optimum p&th(s) from 1?1 Return a classifiefP:, C1, L1, Z}].

S to every sample € Z;, forming an optimum path foreg?

(a function with no cycles which assigns to each Z;\S its The time complexity for training is€(|Zl|2), due to the

predecessoP(s) in P*(s) or a markernil whens € S. Let main (Lines 5-13) and inner loops (Lines 8-13)Afgorithm[],

R(s) € S be the root ofP*(s) which can be reached fromwhich runé(|Z;|) times each.

P(s). The OPF algorithm computes for eaghke 7, the cost ~ 2) Classification:For any sample € Z3 (similar definition

C(s) of P*(s), the labelL(s) = A(R(s)), and the predecessoris applied to Z;), we consider all arcs connecting with

P(s). sampless € 73, as thought were part of the training graph.
The OPF classifier is composed of two distinct phases: @onsidering all possible paths frorfi* to ¢, we find the

training and (i) classification. The former step consistsgen- optimum path P*(¢) from S* and labelt with the class

tially, in finding the prototypes and computing the optimumA(R(¢)) of its most strongly connected prototyggt) € S*.

path forest, which is the union of all OPTs rooted at eachhis path can be identified incrementally by evaluating the

prototype. After that, we take a sample from the test sampfgtimum costC(t) as

connect it to all samples of the optimum-path forest geeerat .

in the training phase and we evaluate which node offered C(t) = min{max{C(s), d(s, t)}}, Vs € Z1. 2)

the optimum path to it. Notice that this test sample is not Let the nodes* € Z, be the one that satisfies Equation 2

permanently added to the training set, i.e., it is used onbeo (i.e., the predecessoP(t) in the optimum pathP*(t)).

The next sections describe in details this procedure. Given thatL(s*) = A(R(t)), the classification simply assigns
1) Training: We say thatS* is an optimum set of proto- L(s*) as the class of. An error occurs wherL(s*) # A(t).

types when the OPF algorithm minimizes the classificatiohlgorithm[2implements this procedure.

errors for everys € Z;. S* can be found by exploiting the ]

theoretical relation between minimum-spanning tree (MST)Algorithm 2: — OPF Q. ASSIFICATION ALGORITHM

and optimum-path tree fof,... [9]. The training essentially |ypyr: Classifier [Py, C1, L1, Z}], test setZs, and the
consists in findingS* and an OPF classifier rooted §it. pair (v,d) for feature vector and distance com-
By computing an MST in the complete grag;, A), putations.

we obtain a connected acyclic graph whose nodes are affuTPuT Label L, and predecessof, maps defined for
Zs, and accuracy valuedcc.

samples ofZ; and the arcs are undirected and weighted, ;.\ ary: Cost variablestmp and mincost.
by the distancesl between adjacent samples. The spanning For each € Zs, do
tree is optimum in the sense that the sum of its arc weigtits | i+ 1, mincost < max{Ci(k:),d(ki,t)}.



3. Lo(t) + Li(k;) and Py(t) < k;. applies this idea repetitively, while the loss in accuranyZ

4. While i < |Zi| andmincost > C1(ki+1), do with respect to the highest accuracy obtainedAbyorithm[3

5. Computetmp < max{Ci(kit1, d(ki+1, 1)} (using the initial training set size) is less or equal to a
6. If tmp < mincost, then . luelM I, ified by th th

by mincost « tmp. maximum valu oss specified by the user or there are no
8. La(t) < L(kiz1) and Pa(t) < kig1. more irrelevant samples if;.

9. 141+ 1.

10. Compute accuracylce according to[[1].
11. Return[Lz, P, Acc].

) ] ] Algorithm 4: — LEARNING-WITH-PRUNING ALGORITHM
In Algorithm[2 the main loop (Linesl — 9) performs the

classification of all nodes 5. The inner loop (Linest —9)  INPUT. Training and evaluation setsZ, and Zs, la-
visits each node: .« € 7/ i — 1.2 1Z/] — 1 until an beled byA, the pair (v, d) for feature vector and
. i+l 2= S 121 distance computations, maximum |lag&Loss in
optimum pathry, ,, - (ki11,t) is found. accuracy onZ,, and numbefT" of iterations.
3) Learning and pruning:Large datasets usually present OuTPUT: EOPF classifier [P1,C1, L1, Z1] with reduced
redundancy, so at least in theory it should be possible training set.

to estimate a reduced training set with the most relevanfYX!L/ARY: fyflgz of relevant samples, and variabletec and

patterns for classification. The use of a training 8etand an | [PL,Ch, L1, Z}] + Algorithm B(Z1, Zo, T, (v, d)).
evaluation seZ, has allowed OPF to learn relevant samples [L,, P,, Acc] < Algorithm X([Py, C1, L1, Z1], Za, (v, d)).
for Z; from the classification errors iZ,, by swapping 3. tmp <+ AccandR <+ 0.

misclassified samples af, and non-prototype samples of4. While [Acc — tmp| < M Loss andR # Z1 do

; ; ; ; ; R« 0.
Z dgrlng a few |ter§t|ons [1]. In this I(_agrnmg strate@_l _ For each samplé € Z», do
remains the same size and the classifier instance with fie s Py(t) € Z1.
highest accuracy is selected to be tested on the unseengset While s # nil, do
Z3. Algorithm[3 implements this learning procedure. 9. R+ RUs.
10. 5 < Pi(s).
Algorithm 3: — OPF LEARNING ALGORITHM 11. Move samples fromZ;\R to Zs.
12. [Pl,cl,LhZﬂ eAIgorlthmB(Zl,Zz,T, (’U,d)).
INPUT: A X-labeled training and evaluating sets; and  13. L [Lz, P2, tmp] < Algorithm [X([P1, C4, L1, Z1], Z>, (v, d)).

Z, respectively, number of iterations, and the  14. Return[Py, C4, L1, Z1].
pair (v, d) for feature vector and distance compu-

tations. In Algorithm[4 Lines1—3 compute learning and classifica-

OUTPUT: Optimum-path foresf;, cost mapC,, label map .. ; . e . L
L., ordered setz! and Maz Acc. tion using the highest accuracy classifier obtained for diain

AUXILIARY:  Arrays FP and FN of sizese for false positives training set size. Its accuracy is returnedAac and used as
and false negatives, sét of prototypes, and list reference value in order to stop the pruning process, when th

LM of misclassified samples. loss in accuracy is greater than a user-specifieHoss value

%- EEtMaTqACC — I—il- - or when all training samples are considered relevant. Thia ma

- For each iteration’ = 1,2,...,T, do loop in Lines4 — 1 ntially marks the relevant sampl
3. LM <« () and compute the sef C Z; of prototypes. _OOZp by f ﬁs . tSh esset. tally ?h St ed fee T t sfa ges
a [Py, Ch, Lu, 7}] < Algorithm [ Z1, S, (v, d)). in Z, by following the optimum paths used for classification
5. For each class = 1,2,...,¢, do (Lines5—10) backwards, moves irrelevant sampleszg and
6. L FP(i)« 0and FN(i) + 0. repeats learning and classification from a reduced traiséig
7. [L2, P2, Acc] < Algorithm [X([P1, C1, L1, Z1], Z2, (v,d)) until it reaches the above stopping criterion.
8. If Acc > MaxAcc then
9. L Save the current instan¢@, C1, L1, Z1] I1l. HARMONY SEARCH
10. of the classifier and se¥/axz Acc + Acc. ) ) )
11. While LM +# 0 The Harmony Search (HS) is an evolutionary algorithm
12. LM + LM\t. inspired in the music, considering the improvisation pesce
13. Replacet by a non-prototype sample, randomly of music players[[6]. The HS is simple in concept, few
14 L selected fromz;.

15. Return the classifier instand@, C1, L1, Z1] with the highest in parameters, and eas.y n I.mpl.ementatlon,'w!th thgoﬂetlca
16. accuracy inZs, and its valueM azAcc. background of stochastic derlvatlv_e._ The main idea is to use
the same process adopted by musicians to create new songs to
The efficacy ofAlgorithm[3increases with the size df;, obtain a near-optimal solution of some optimization preces
because more non_prototype Samp|es can be Swapped BWica”y, any pOSSible solution is modeled as a harmony and
misclassified samples df,. However, for sake of efficiency, €&ch parameter to be optimized can be seen as a musical
we need to choose a reasonable maximum sizeZforAfter hote. The best harmony (solution) is chosen as the one
learning the best training samples 8, we may also mark that maximizes some optimization criterion. The algoritism
paths inP; used to classify samples i, and define their composed by few steps, as described below:
nodes aselevant samplem a setR. The “irrelevant” training o Step 1: Initialize the optimization problem and algorithm
samples inZ;\R can then be moved td&,. Algorithm [4 parameters;



o Step 2: Initialize a Harmony Memory (HM); The pitch adjustment of each instrument is often used to

« Step 3: Improvise a new harmony from HM,; improve the solutions and to escape from local optima. This

« Step 4: Update the HM if the new harmony is better thamechanism concerns with shifting the neighboring values of
the worst harmony in the HM. In this case, one includesome decision variable in the harmony. If the pitch adjustme
the new harmony in HM, and removes the worst one froecision for the decision variablg is Yes, x| is replaced as

HM; and follows:
« Step 5: If the stopping criterion is not satisfied, go to Step

Follow, we discuss each one of the aforementioned StePSheres is an arbitrary value
a) The Optimization Problem and Algorithm Parameters: d) Update HM: In Step 4, if the new harmony vector is

In order to describe how HS works, an optimization problegier than the worst harmony in the HM, the latter is replace
is specified in Step 1 as follows: by this new harmony.

e) Stopping Criterion:In Step 5, if the HS algorithm

Minimize f(z) subject to ws, ¥i = 1,2, ..., HMS, (3) finishes when it satisfies the ;topping crite_rion. C_)therwise

Steps 3 and 4 are repeated in order to improvise a new
where f(z) is the objective functiongz; means the harmony harmony again.
i and HM S is the number of harmonies (harmony memory
size - HMS).

The HS algorithm parameters required to solve the op_lnthis section, we present our proposed algorithm to find the
timization problem (Equatiofi]3) are also specified in thid! Loss value automatically, which falls in the finite interval
step: HMS, harmony memory considering rate (HMCR), pitciﬁ)» 100]. The main idea is to use HS to find proper values for
adjusting rate (PAR), and stopping criterion. HMCR and pAfhat, since we have an infinite number of real valued possible
are parameters used to improve the solution vector, i.ey, ttsolutions, and an exhaustive search may be prohibitive.
can help the algorithm to find globally and locally improved As any optimization algorithm, HS also needs a fitness
solutions in the harmony search process (Step 3). function to maximize (minimize). In our schema, it is deblea

b) Harmony Memory (HM):Now, let us defin@g as the to find the best trade-off between accuracy over the evalgati

j-th value of harmony. In Step 2, the HM matrix (Equatidn 4) Sét and the fraining set size. Therefore, we would like to
is initialized with randomly generated solution vectorstwi find values forM Loss such that the accuracy can the best

their respective values of the objective function: as possible, and the training set size can be the small as we
can obtain. Thus, in order to deal with that, we proposed the
following fitness function:

IV. PROPOSED METHOD

Z3 x5 ... ab f(z2) 1 -
HM = . @ F = Acc =yl , (8)
Thms  Thms -+ Thms | f(@hms) in which Acc stands for the accuracy over the evaluating set.

¢) Generating a New Harmony From HMn Step 3, a The idea for that is to makelcc and the training set size

new harmon vec?ton;’ is enerateci/ from the HM bgsea o inversely proportional to each other, in the sense that ndret
Y ;1S g . €0 Mpe accuracy stabilizes, the fitness function can stilléases

memory considerations, pitch adjustments, and randorinrzatwith lower values for|Z|. However, the reader may ask

(music improvisation). It is also possible to choose the new sut a simple rate between accuracy and training set size.

value using the HMCR parameter, which varies between 0 an hough our first experiments were conducted with that jdea

1 as follows: the training set size dominates the accuracy value, leaging
to high pruning rates and low accuracy ones.
o e { ap € {x}t a2, ... a’MS Y with probability HCMR, 5) Thus, in order to smooth the dominance of training set
xi ¢ X; with probability (1-HCMR).”  Size, we decided to use a sigmoid function, since the second

term of Equatior 8, i.e.ﬁ falls in the interval[0.5, 1],

The HMCR is the probability of choosing one value from,. . .
L . .given that0 < |Z;| < +oo. Algorithm [B implements our
the historic values stored in the HM, and (1- HMCR) %troposed methodology to findif Loss.

the probability of randomly choosing one feasible value n
limited to those stored in the HM.

Further, every component of the new harmony veofp'rs
examined to determine whether it should be pitch-adjusted

The initial loop in Linesl —5 is responsible for the harmony
memory initialization. In Line2, each harmony receives a real
value randomly selected within the interviéll 100]. Further,
Algorithm{d is called withM Loss = HM, ; in Line 3. After
Yeswith probability PAR, ©6) that, the classifier generated in Liseis used to access the

. . . . .. /
Pitch djusti d far, <— . .
fiehing acusting decision Tty { No with probability (1-PAR). accuracy over the evaluating sgt (Line 4). The accuracy



value is stored inH M, , position, which stands forf(z;)
(Equation’%).

The conditional in Liner verifies whether the new harmony
h will be composed by some value extracted from the harmony
memory (Liness — 9). In the affirmative case, Lin& selects In this section we described the experiments conducted, as
an index value withirf1, hins] in order to retrieve thé/Loss Well as the datasets employed in this work. For that, we used
value from some position of the harmony memory. Otherwis#le LibOPF [10], which is a free library implemented in C
the new harmony will be composed by a randomly numbé&nguage to the design of classifiers based on optimum-path
within the interval[0, 100] in Line 12 (these steps implementforest. In regard to the datasets, we used data obtained from

Equatior[5). Lined0—11 implements the pitch adjusting rate different applications, as described below:

V. EXPERIMENTS

as described in Equatidd 7. As the value MfLoss can not
change a lot, we used = 0.1. The Lines13 — 15 calculate
the fitness value of the new harmony which is stored in
h[2] (h[1] stores theM Loss value).

Line 16 finds the harmony that leads to the lowest fitness
in the harmony memory, and stores its index in the,
variable. The corresponding fitness is storednitn F'itness.

The next step concerns with replacing the worst harmony
with the new one obtained in the previous step whether its
fitness value is lower than the one provided by the new
harmony. Linesl7 — 19 implements this idea. The function
call GetMaxHarmony in Line 20 finds the harmony that
achieved the highest fitness, and store its optimized value i
Line 20. Finally, Line 21 outputsM Loss.

Algorithm 5: — PROPOSED ALGORITHM

INPUT: Labeled trainingZ; and evaluating setZ-, the
pair (v,d) for feature vector and distance com-
putations, harmony memory siZzens, harmony
memory considering ratémcr, pitch adjusting
rate par and number of iteration§” for conver-
gence.

M Loss value.

Harmony memory HM of sizex x 2, variablesi,
Ace, k, imin andminFitness, and new harmony
vector h of sizel x 2.

OUTPUT:
AUXILIARY :

1. For each harmony (Vi = 1,..., hms), do
2. HM;,1 < Random(0,100).
3. [Pl,Cl,Ll,Z{] <—AlgorithmIZ(Zl,Zg,HMM).
4, [LQ, P, ACC} — Algorlthm W[Pl, 01, Ly, Zﬂ, Za, (’U, d))
-1
5. L HMZ',]' — Ace | —L— 7 .
1+57|Z1|
6. Fork«+ 1toT, do
7. If (hmer > 0.5), then
8. i + Randominteger(1,hms).
9. h[].] — HMi’l.
10. If (par > 0.5), then
11. L 1] «+ A[1] +0.1.
12. Else h[1] <~ Random(0,100).
13. [Pl,Cl,Ll,Z{] <—Algor|thm|Z(Z1,Z2,h[1])
14, [L27P27ACC} <+ Algorithm [P1,017L1,ZH,ZQ, (’U,d)).
—1

15. h[2] + Acc (1,

1+e7‘Z1|
16. [imin, minFitness] < GetMinFitnessH M ).
17. If (R[2] > minFitness), then.
18. HMimin,l < h[l]
19. . HMimimQ <— h[2]

20. i + GetMaxHarmonyH M).
21. MLoss <— HM; ;.
22. ReturnsM Loss.

Fig. 1.
Itatinga, SP - Brazil by (a) CBERS-2B CCD sensor (2R3G4B) @sdb)
respective ground truth image.

« NTL: this dataset comprises with consumer profiles from
a brazilian energy company, and was designed to identify
thefts in power distribution systems, which are the so
called non-technical losses (ntl). This dataset is congbose
by 736 samples, which are described by 4 features and
distributed in 2 classes, i.e., illegal or legal consumer.
CBERS: this dataset is composed by 25,876 samples,
which represents pixels from an image obtained from
CBERS-2B satellite. Each sample is represented by 21
features (18 texture features and 3 RGB values), dis-
tributed in 6 classes. Figuté 1 displays the original and
ground truth images.

NSL-KDD: this dataset is composed by 125,973 sam-
ples, which was designed for intrusion detection in com-
puter networks. In that case, each sample is represented
by 41 features extracted from connections to a local area
network at Lincoln Labs - MIT (Massachusetts Institute
of Technology). The number of classes is two, which
stand for a normal access and an attack [11].

IRIS: this dataset is one of the most used in the pattern
recognition for benchmarking purposes, and it comprises
150 samples equally distributed in 3 classes. Each sample
is represented by 4 features. The goal of this dataset it to
distinguish three species of iris plaht [12].

MPEG-7: this dataset contains 1,400 images represented
by their shapes, equally distributed in 70 classes [13].
In order to describe each sample, we used the Moments
Invariants descriptor [14].

Satellite images used in the experiments: coveringattea of

Ihttp://www.iscx.ca/NSL-KDD/



For each dataset, we used different percentages of training Fig. 3. Exhaustive search fav/ Loss value over CBERS dataset.
evaluating and test sets, which were empirically chosesedba Fitness curve over evaluating set
on our previous experience. Talfle | displays the perceatage °°*® .
for each dataset. As aforementioned in Secfioh IV, we used %%
both training and evaluating sets to guide the whole process 064

of finding optimal or near optimal values fdif Loss param- 0.64 1
eter, which aims to maximize the fitness function given by  osss g
Equatior[8. w063 p
0.625 B
TABLE |
PERCENTAGES USED FOR EACH DATASET 0.62 1
0.615 q
Data | Training  Evaluating | Test 06l |
NTL 30% 20% 50% '
CBERS 5% 45% 50% 0.605 . - - . . . . . .
NSL-KDD 1% 49% 50% 0] 0.1 0.2 0.3 0.4 ME{.}SSS 0.6 0.7 0.8 0.9 1
IRIS 30% 20% 50%
MPEG-7 20% 30% 50%
Fig. 4. Exhaustive search fav/ Loss value over NSL-KDD dataset.
. . Fitness curve over evaluating set
A. Results and Discussion 0075 L TThescmmoversmAme®

In this section, we described the experiments conducted ove 7
the five datasets: NTL, CBERS, NSL-KDD, IRIS and MPEG-
7. In order to compare the proposed approach, we performed
an exhaustive search fdrl Loss within the interval[0, 100]. 0.96
The values were sampled @01, summarizingl00 values in . o055
the aforementioned interval. Figures[2,[3[ %, 5 Bhd 6 display
the curves for each dataset. Theaxis stands for the fithess

0.965

0.95

function F' (Equation[8), whilex axis denotes each/ Loss 0.945 1
sampled value. In regard to HS parameters, we used = 0.94 A
15, hmer = 0.6, par = 0.3 andT = 5 (number of iterations).

Notice that these values were empirically chosen, based on S0 o1 o0z 03 o4 05 06 07 08 09 1

our previous experience. Mboss

Fig. 2. Exhaustive search fav/ Loss value over NTL dataset. Fig. 5. Exhaustive search fdv/ Loss value over IRIS dataset.

Fitness curve over evaluating set Fitness curve over evaluating set
0.88 T T T T T T T T T 1.005 T T T T T T T T T

0.87

0.86
0.85
0.995 ~q
0.84

w 0.83
0.82
0.985 B
0.81
0.8

0.79

0.78 L L L ! ! ! ! 0.975 ! ! ! L L L ! ! !

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
MLoss MLoss

Table[l displays the execution times in seconds regarding
the exhaustive search for all datasets. We also showed datasets these values correspond to the maximum of curves
execution time of our proposed approach to findLoss displayed in FigurelSI2 afid 5, respectively. Although theiesl
automatically (seconds), which was described in Segfidn 1Yor MPEG-7, NSL-KDD and CBERS are not optimal, they
These results averaged over 10 runnings. One can also seeatkealso suitable to accomplish the task, since a considerab
gain of the proposed technigue in terms of execution time.amount of reduction in the training set has been accomplishe

Table[IIl displays theM Loss values obtained through thewithout affecting a lot the accuracy over the test set.
proposed technique. One can see that for NTL and IRISIn addition, we would like to shed light over the choice



TABLE Il

Fig. 6. Exhaustive search fdv/ Loss value over MPEG-7 dataset. VALUES FOR M Loss EOUND BY THE PROPOSED APPROACH
Fitness curve over evaluating set

0.64 . . . . . . . . . Data | MLoss
NTL 0.62

0.62 1 CBERS 0.62
NSL-KDD 0.91

0.6 E IRIS 0.36
MPEG-7 0.19

0.58

0.56
algorithm to find propers values fav/ Loss. This algorithm

is based on the Harmony Search, which is guided by a fithess
function that considers the accuracy over the evaluatig se
and also the training set size, in order to find the best trade-
off between effectiveness and efficiency for data classifina

We conducted experiments over 5 public datasets in order
to show the robustness of our proposed hybrid approach
(HS+OPF) against an exhaustive search fé.oss values.
We have seen that in 2 (NTL and IRIS) out of 5 datasets

0.54

0.52

0.5 L L L L L L L L L
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

MLoss

TABLE I
PERFORMANCES RESULTSTIMINGS ARE EXPRESSED IN SECONDS

Data |  Exhaustive [s] Proposed [s] | Gain | the proposed approach has found optiméLoss values, and

(’\‘gll_ERS 198341001 01'23 . 1651;'Z§ié607301 151090(;’3 with respect to the remaining 3 datasets, i..e, MPEG-7, NSL-
. . . . (1) .

NSL-KDD | 21160.80 = 229729  5260.90 + 8035.36  920% KDD and CBERS, we _have obtained good value_:s. We a_lso

IRIS 1.70 £+ 0.46 0.42 +0.06 370% concluded that we can improve the results, but with the price

MPEG-7 8.20 £ 0.6 1.32 4+ 1.05 6210%

of computational cost for that. For future works, we intemt t
make OPF pruning faster with GPGPU programming. Thus,

) ) ) .. the hybrid approach proposed here will be benefited with that
for Harmony Search, which has been guided by its efficiency,

since other widely used evolutionary-based techniquesy su
as Particle Swarm Optimization [15] and Gravitational $kar
Algorithm [16], have high computational burden. While the The authors would like to thank FAPESP grants
former technique attempts to move particles through therswa#2010/11676-7, #2010/02045-3 and #2009/16206-1.

by updating each dimension individually, the latter needs
to sort thek best possible solutions to compute their new
position, for each one of them.
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