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Email: thomas@inf.ufes.br

Karsten Berns
Robotics Research Lab, Department of Computer Science

University of Kaiserslautern, Gottlieb-Daimler-Strasse,
Bldg. 48, 67663 Kaiserslautern, Germany

Email: berns@informatik.uni-kl.de

Abstract—We enhance the Multilayer Perceptron to map a
feature vector not only from the original d-dimensional feature
space, but from an intermediate implicit Hilbert feature space
in which kernels calculate inner products. The kernel substitutes
the usual inner product between weight vectors and the input
vector (or the feature vector of the hidden layer). The objec-
tive is to boost the generalization capability of this universal
function approximator even more. Classification experiments
with standard Machine Learning data sets are shown. We are
able to improve the classification accuracy performance criterion
for certain kernel types and their intrinsic parameters for the
majority of the data sets.
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I. I NTRODUCTION

Ever since the error backpropagation training algorithm in
conjunction with the multilayer feedforward neural network
with nonlinear activation function was defined by Werbos [1]
and presented to a larger audience by Rumelhart et al. [2], [3],
it became one of the most powerful general purpose function
approximators for regression and classification.

In recent years, the use of feature mapping into Hilbert
space, together with kernel based inner product similarity
measures1 has gained considerable attention, because its intro-
duces an additional, in general non-linear, mapping from the
original feature space to an intermediate space which should
improve regression (cf. for example, [4]) and/or classification
quality of the new features. Especially the Support Vector
Machine [5] has drawn much attention to kernel-based implicit
feature mapping, although many other classification techniques
can be enhanced by kernels, as will be reviewed later, and
also constitutes the main motivation of this work, since we
incorporate it into the standard feedforward artificial neural
network. Our main contribution is to introduce an additional
nonlinear feature space mapping by kernels before applying
the MLP mapping, improving even more the general purpose
function approximation capabilities of the MLP. An important
characteristic of our approach is that the knowledge of the
function approximator is explicitly stored in the weightsw (be-
sides the architecture of the network). This is not possible, for
instance, in the kernel enhanced perceptron [6] that constitutes
the basic architecture for the Support Vector Machine (SVM).

1For the sake of simplicity, we will occasionally use the term “kernel
mapping” to identify the mapping from the original feature space into Hilbert
space where kernels can be used to calculate an inner product.

The SVM additionally maximizes the margin but has the
same architecture (a linear dichotomizer in the implicit Hilbert
feature space). The SVM stores the weight vector implicitly
in the Lagrange multipliers obtained from the solution of the
convex quadratic programming problem defined by the margin
maximization.

The rest of the paper is organized as follows. In section II we
review the multilayer perceptron and backpropagation in the
light of the enhancing its mapping by an additional nonlinear
mapping, using kernels. Section III incorporates the kernel
mapping into the Multilayer Perceptron (MLP) prior to the
proper MLP mapping, followed by the review of related
relevant work in section IV. Experimental results suggesting
the convergence and potential to improve performance of the
kernel enhanced MLP is presented in section V and finally the
conclusions are drawn in section VI.

II. M ULTILAYER PERCEPTRON AND THEERROR

BACKPROPAGATION

We expect the reader to be familiar with the Multilayer
Perceptron and the Error Backpropagation training algorithm
in its basic form, described in standard textbooks, such as [7],
[8]. We consider only a network with one hidden layer and
the basic error backpropagation algorithm based on gradient
descent, since further aspects are irrelevant regarding the
conceptual enhancement of the kernel mapping introduced
here. In the following we review the architecture and learning
algorithm of the network, in order to be able to introduce our
conceptual enhancement of kernel mapping.

A. Multilayer Perceptron mapping

Consider as input to the net ad-dimensional patternx from
an input domainX which is usually the Euclidean vector
spaceR

d. The hidden layer of the net hasH neurons which
all calculate the functionθ : X → R which is the inner
product 〈wh,x〉 = wh · x = wT

hx of a neuron specific
d-dimensional weight vectorwh and the inputx, followed
by an activation functionz : R → R, usually the logistic
sigmoid function z(a) = 1/(1 + exp(−a)) or hyperbolic
tangent sigmoid functionz(a) = tanh a to give

θh = z(〈wh,x〉), h = 1, . . . ,H. (1)

All H input-to-hidden mappingsθh of the hidden layer
are assembled into aH-dimensional feature vectorθ =
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[ θ1 · · · θH ]T which constitutes a new pattern in the
domain Θ. The calculus of the hidden layer feature vector
θ consequently defines a map (using the same symbol)

θ : X → Θ

x 7→ θ(x) = [ z(〈wh1
,x〉) · · · z(〈whH

,x〉) ]T. (2)

The final mapping from the hidden to the output layer is
replicating the same functional mapping from the input pattern
to the hidden layer, calculating for all output neurons the
function

yi = z(〈wi,θ〉), i = 1, . . . , c, (3)

where thewi areH-dimensional weight vectors2 specifically
for each of thec output units. We can again merge the output
into a c-dimensional feature vectory = [ y1 · · · yc ]T

which constitutes a new pattern in the final output domainY.
The calculus of the output layer feature vectory therefore
defines another map (using the same symbol)

y : Θ → Y

θ 7→ y(θ) = [ z(〈wi1 ,θ〉) · · · z(〈wic
,θ〉) ]T. (4)

Resumingly we observe that the Multilayer Perceptron per-
forms a mapping

y : X → Θ → Y

x 7→ θ(x) 7→ y(θ(x)). (5)

Frequently an additional fixed input componentx0 = 1 and
eventually a fixed hidden componentθ0 = 1 is introduced
which augments the dimension of the input, hidden and weight
vectors in 1 and incorporates an offset into the calculated inner
products.

B. Error Backpropagation weight optimization

An unconstrained optimization in the form of a gradient
descent is the basic algorithm to optimize the weight vectors
wh to the hidden layer andwi to the output layer. An
error functionE is established which describes the expected
discrepancy between a desiredc-dimensional output vectort
and the vectory calculated by the MLP. We consider only the
stochastic version of the optimization algorithm, aka. on-line
learning which adjusts all weights after presenting a single
training patternx to the network which is labeled with its
desired outputt = [ t1 · · · ti · · · tc ]T, such that the
pattern specific mismatch (aka. delta)δ ∈ R

c is defined as

δ = t − y(θ(x)). (6)

For the sake of simplicity we avoid pattern specific indices
p for the p = 1, . . . , n training patternsx(p). The pattern

2It would be necessary to introduce an additional index to distinguish the
input-to-hidden weightswh from the hidden-to-output weightswi, or rename
one of the two, but for the sake of simplicity we expect the reader to recognize
the layer of the weight vector by its context.

specific error is the square of the delta (multiplying by0.5
for convenience)

E =
1

2
δ2 =

1

2
[t − y(θ(x))]

2
=

1

2

c
∑

i=1

[ti − yi(θ(x))]
2
, (7)

or more specifically, emphasizing the dependencies of the error
on the weights

E({wh}
H
h=1, {wi}

c
i=1) =

1

2

[

t − y(θ(x; {wh}
H
h=1); {wi}

c
i=1)

]2
. (8)

We furthermore defineδi as thei-th component of the dis-
crepancy vector

δi = ti − yi i = 1, . . . , c. (9)

In order to modify the hidden-to-output weights by the basic
gradient descent, with learning rateη ∈ R

+, we use the rule

wnew
i = wold

i − η
∂E

∂wi

∣

∣

∣

∣

w
old
i

, i = 1, . . . , c. (10)

In order to unify the formalisms for the presence and absence
of kernel mapping, we abbreviate the inner product of weights
and feature vectors as

k(w,x) := w · x, ki := k(wi,θ), kh := k(wh,x). (11)

The gradient of the error with respect to a hidden-to-output
weight vector, needed in (10), considering (6), (7) is obtained
by the chain rule

∂E

∂wi

=
∂ 1

2δ2

∂wi

= −δi

∂y

∂wi

= −δi

∂z(k(wi,θ))

∂wi

=

−δiz
′(ki)

∂k(wi,θ)

∂wi

= −si

∂k(wi,θ)

∂wi

= (12)

−siθ, (13)

wherez′(k) is the derivative of the activation function,z′(k) =
z(k)(1− z(k)) for the logistic sigmoid andz′(k) = 1− z(k)2

for the hyperbolic tangent, andsi is defined as the hidden-to-
output sensitivity

si := δiz
′(ki). (14)

Similarly for the input-to-hidden gradient descent, usingthe
same schema for the weightswh as in (10) for the hidden-to-
output weightswi and additionally backpropagating the error
deeper into the net, we obtain

∂E

∂wh

= −sh

∂k(wh,x)

∂wh

= (15)

−shx, (16)

where the input-to-hidden sensitivitysh is defined as

sh := z′(kh)

c
∑

i=1

siwih. (17)



III. M ULTILAYER PERCEPTRONKERNEL MAPPING

We will now extend the MLP model and the backpropaga-
tion algorithm by introducing an additional nonlinear mapping
from the input domainX to an implicit intermediate Hilbert
spaceH domain3, which is then mapped to the hidden
layer domainΘ. Thinking further we can also introduce this
intermediate mapping in between the hidden and output layer,
but this would create a different model, and is left for later
consideration.

A. Implicit kernel map

We define a mapφ

φ : X → H

x 7→ φ(x) (18)

which projects a feature vectorx of dimensiond to a new
feature vectorφ(x) of dimensionℓ ≤ ∞. This map however
may not be defined explicitly in general. The metric of similar-
ities and consequently distances in the mapped spaceH must
exclusively be expressed as an inner productφ(xi) ·φ(xj) of
the mapped versions of the original feature vectorsxi andxj

when implementable calculus4 has to be done. This constraint
enables the use of kernelsk that implement the inner product
in the transformed space as

k(xi,xj) := φ(xi) · φ(xj). (19)

As examples consider the commonly employed Radial Ba-
sis Function kernelk(xi,xj) = exp(−γ||xi − xj ||

2) with
spread parameterγ or the inhomogeneous polynomial kernel
k(xi,xj) = (xi · xj + 1)p which maps to all possible
monomials up to degreep, see e.g. [9]. The mapped space
H is a vector space where a inner product is defined, whereas
the features in the original pattern spaceX are not restricted to
be continuous values. By virtue of an appropriate kernel, the
original features can be of symbolic, discrete or continuous
nature, or any mix of these. An extensive treatment of kernels
can be found, for example, in [6].

B. Input-to-hidden kernel mapping

A crucial observation when considering the argument
〈wh,x〉 = wh · x = wT

hx of the activation functionz
is that both argumentswh and x of the inner product are
from the same domainX , in the case of the conventional
MLP they are fromR

d. This becomes even clearer when
we geometrically interpret the meaning of the inner product.
The valuedh := wh · x, incorporating the offset (aka bias)
wh0 and fixing x0 = 1, is an unnormalized distance ofx
from the hyperplane defined bywh (the absolute value could
be obtained by dividingdh by the modulus of the vector
[ wh1 · · · whd ]T). Consider also the Support Vector Ma-
chine where the weight vector of the separating hyperplane is a

3 H stands for theHilbert but also suggestshidden, since the patternsφ(x)
in this space in general are only implicitly available.

4 Patternsφ(x) in Hilbert space in general cannot be stored in computer
memory explicitly. They can only be handled in analytical calculus.

linear combination of the feature vectors, and is consequently
from the same domain.

This rationale leads us to the mapping of the elements of
the input domainX , in this case the input vectorx and the
input-to-hidden weight vectorwh to the implicit domainH by
virtue of the mapping (18), obtaining theℓ-dimensional images
φ(x) andφ(wh). Note again that patterns in the mapped space
do only exist implicitly and cannot be accessed directly (the
dimensionℓ of H can even be infinite [10], [11]). The mapping
(2), (1) to the hidden domainΘ now takes its arguments from
the intermediate spaceH and is modified correspondingly to

θh = z(〈φ(wh),φ(x)〉) = z(k(wh,x)), h = 1, . . . ,H.
(20)

θ : H → Θ

φ(x) 7→ θ(φ(x)) =

[ z(〈φ(wh1
),φ(x)〉) · · · z(〈φ(whH

),φ(x)〉) ]T.

(21)

Fortunately we can calculate the inner products〈φ(wh),φ(x)〉
needed in the MLP mapping function (20) by the kernel (19)
askh = k(wh,x). The consequence for the MLP feedforward
mapping is that the abbreviations for the inner products defined
in (11) are now really meaning kernel functions defined in
(19). They specialize to the usual inner product and con-
sequently to the well known MLP when the linear kernel
k(xi,xj) = xi · xj with the identity mappingφ(x) = x is
used.

The kernel enhanced mapping of the Multilayer Perceptron,
considering (5) is correspondingly adapted to

y : X → H → Θ → Y

x 7→ φ(x) 7→ θ(φ(x)) 7→ y(θ(φ(x))). (22)

We can state that we have modified the architecture of the
Multilayer Perceptron by introducing an additional nonlinear
Hilbert space halfway between the input vector domain and
the hidden layer domain. The next step is necessarily the
adaptation of the weight optimization since the chain rule to
calculate the dependency of the approximation error on the
weights now affect the weight specific gradients (13) and (16).

C. Error backpropagation weight optimization with kernel
mapping

We have to review the term∂kh/∂wh in (15) sincek in
general does not stand for an inner product of original weight
and input vectors anymore, but for an inner product of their
mapped counterparts in the Hilbert space. The value of the
partial derivative of a kernel relative to the weight vector
depends on the nature of the kernel. In table I some important
kernels are listed. The definitionk is needed in the feedforward
input-to-hidden mapping (21) and the partial derivative with
respect to the weight vector∂k(wh,x)/∂wh is needed in the
modified error function gradient (15) and specialized in (15)
with respect to the type of kernel in table I. We can also reuse



Kernel
type

Definition k(w,x) Derivative ∂k(w,x)
∂w

Linear w · x x

Polynomial
(inhomoge-
neous)

(w · x + 1)p (w · x + 1)p−1
x

Radial Ba-
sis Function

exp(−γ||w · x||2) −2kγ(w − x)

Hyperbolic
tangent
sigmoid

tanh(γw · x) γ(1 − k2)x

Logistic
sigmoid

1
1+exp(−γ(w·x))

k(1 − k)(−γx)

TABLE I
KERNELS AND THEIR PARTIAL DERIVATIVES WRT TO WEIGHT VECTOR

(FIRST ARGUMENT)

the value ofkh in all but the linear and polynomial kernels in
the calculus of the derivative.

IV. RELATED RELEVANT WORK

Kernel based clustering, regression and classification has
gained a lot of attention, especially in the context of the
Support Vector Machine (SVM) [5], [11]. Outside the SVM
context, kernel mapping can also be used to nonlinearly
transform the problem description to a new feature space
and adapt classical classifier paradigms, for instance, Kernel
Principal Component Analysis (Kernel PCA) [12], Fisher
discriminant analysis [13], kernel K-means clustering [14],
the Nearest-Neighbor classifier [15], Quadratic Gaussian based
Bayes classifier [16], Least Mean Square Linear dichotomizer
[16] or high-dimensional pattern visualization by the Sammon
map [17]. To the best of our knowledge kernel mapping has
not been applied within the architecture of the feedforward
general purpose function approximator known as the Multi-
layer Perceptron with the ability to represent the knowledge
explicitly in weights w. A special attention is given here
to the kernel perceptron algorithm and the Support Vector
related optimization algorithms for regression and classifi-
cation described in [6]. If a mapφ(x) is used to map the
original patternx to the implicit feature spaceH by a kernel
mapping, the consequence is that the weight vectorw cannot
be represented in an explicit manner anymore, since it is
a linear combination of the mapped patternsφ(xj) that do
exist only implicitly in the kernel mapped feature space. The
classificator/regressor must rely on the dual coefficientsαj

obtained from the learning algorithm. On the contrary to that,
in our approach, we have the weights always explicitly at hand,
even if a feature mapping via kernels is applied. The weight
adaptation is also directly embedded into the backpropagation
algorithm with a particular additional derivation term foreach
kernel type. These are fundamental differences to the dual
representation in kernel perceptron and SVM architecture.

V. EXPERIMENTAL RESULTS

The aim of the experiments is to show, extending the
conventional Multilayer Perceptron by kernel mapping that
the network approximation converges. One should observe a
considerable diminishing of the expected errorE[E] of (7),
estimating it as the mean over all training and/or test patterns.

If additionally an appropriate kernel, together with its in-
trinsic parameter(s) improves the performance criterion when
comparing it to the conventional MLP, i.e. with a linear
kernel, then the introduction of kernel mapping suggests a
conceptual improvement of the general purpose architecture.
The experiments do not claim that the kernel enhanced MLP
performs better than other classifiers (or regressor in general).
We intend to suggest that if the right kernel and its intrinsic
parameters are chosen, the performance can increase compared
to the conventional MLP.

A. Benchmark data sets

We want to provide a simple experimental design which
easily allows reproducibility of the proposed method.5 We
restrict the experiments to classification of standard data
sets from the UCI Machine Learning Repository [18]. Only
continuous features with no missing values are allowed. The
task must be classification, i.e. one attribute is the symbolic
class label. For each of thec classes, one output neuron is
created, coding the class membership as ”1-out-of-c”, i.e.a
”1” at output yi if pattern x belongs to classωi, and ”0”
otherwise.

Where there is an explicit separation of training and test
data sets, for instance, in the ’pendigit’ set, the MLP was
trained with the training set and tested with the test set. For
all other data sets, K-fold cross-validation withK = 10 is
used. Table II shows the data sets that were randomly chosen
from the repository. The sets provide a good mix of small and
large number of classes, features and patterns.

B. Training method of the Multilayer Perceptron

The MLP is always trained with a basic pattern-based
(stochastic) backpropagation algorithm that uses the pure
gradient descent of (10). The learning rate is always set to
η = .2. All weight vectorswi, i = 1, . . . , c of the output
elements andwh, h = 1, . . . ,H of the hidden elements
were randomly initialized with a normalized modulus of
one. All input featuresxj , j = 1, . . . , d are independently
standardized to the range[−1, 1] by the linear transformation
xnew = −1 + 2(xold − xmin)/(xmax − xmin). When there is
an explicit training-test set division, the test set is submitted
to the same standardization, based on the extremesxmin, xmax

of the training set. The number of inputs is the dimensiond
of the feature vectorx, plus one, i.e. fixing an additional input
to x0 = 1 which incorporates the offset (bias)wh0 of each of
the hidden units into the weight vectorwh. The numberH of
the hidden units is set to twice the number of inputs, plus one

5 The Kernel MLP has been incorporated into the ’tooldiag’ pat-
tern recognition toolbox, written in C, and can be obtained at
http://sites.google.com/site/tooldiag.

http://sites.google.com/site/tooldiag


TABLE II
UCI MACHINE LEARNING REPOSITORY DATA SETS USED FOR THE

CLASSIFICATION EXPERIMENTS. IN CASE OF AN EXPLICIT TRAIN-TEST

SPLIT, THE NUMBER OF TEST SAMPLES IS MENTIONED. FOR A DETAILED

DESCRIPTION C.F. THE UCI SITE.

Data set # classes # features # training # test

breast cancer 2 30 569 -

glass 6 8 214 -

haberman survival 2 3 41 -

pendigits 10 16 7494 3498

pima 2 8 768 -

satimage 6 36 4435 2000

shuttle 7 9 43500 14500

sonar 2 60 208 -

vehicle 4 18 846 -

wine 3 13 178 -

In the hidden layer, we also use a fixed inputθ0 = 1, totaling
H + 1 = 2(d + 1) + 1 hidden unitsθ0, . . . , θH . The number
of the output neurons corresponds to the number of classes,
using the 1-out-of-c coding mentioned earlier. The activation
function is always the logistic sigmoid function. Trainingis
stopped when the maximum number of by default10000 steps
is reached, or the mean of the approximation error (7) over all
n training patterns falls below10−7. No heuristics to speed
up learning are used, such as momentum parameters or more
sophisticated gradients descent methods.

C. Parameter tuning

The intrinsic parameters of the kernels are of decisive
importance for the function approximation quality of the
proposed kernel Multilayer Perceptron. There is an obvious
need to perform an additional validation phase in order to
find the best parameter values. Whenever kernels are used,
this tuning stage must be done. This constitutes a drawback
and a limitation of the proposed method, although many
other successful regression/classification paradigms share this
burden. Consider, for example, the Support Vector Machine.
Always, when using another than a linear kernel, the appro-
priate values of the parameters must be chosen carefully to
obtain optimized results. We illustrate the influence of theγ-
parameter of the RBF kernel, c.f. table I for thependigitdata
set of table II. It has an explicit train-test separation with 7494
training patterns and 3498 test patterns. We expect a statistical
significance from this relatively large number of samples and
no arbitrary influence of a random train-test split because of
the explicit separation. In our experiments we chose a small
number of iterations (typically 100 to 1000) to find preliminary
good values of the kernel parameters, around which the main
experiments with the usually number of10000 training steps.
Fig. 1 emphasizes the need for the right choice of the intrinsic
kernel parameters, since the accuracy decreases dramatically
with inappropriateγ values.

bc bc bc bc bc
bc

bc

bc

bc

bc

.05 .1 .15 .2 .25

.5

1
2

3

5bc bc

bc bc bc bc

bc

bc

bc
bc

91.4% 89.9%
96.9% 97.1% 94.8%

95.8%

79.8%

44.4%

15.2%

9.6%

Fig. 1. Influence of theγ parameter of the Radial Basis Function kernel
on the accuracy of the kernel MLP classifier for thependigit data set. Ten-
fold cross validation with10000 learning steps was used to estimate the error.
Horizontal axis stands for the different cases, vertical axis shows the parameter
value and estimated accuracy for these cases.

D. Performance estimation in classification experiments

Table III shows the results of the classification experiments
for the UCI data. For all kernels the accuracy and the mean
squared error after10000 iterations (or reaching the MSE limit
before) are shown. In order to favor the linear kernel, we
repeated the classification performance experiments ten times.
The best estimated accuracy of these ten different experiments
is shown, together with the standard deviation of these ten
runs (in parentheses). For the nonlinear kernels the estimated
accuracy is shown, together with the kernel parameter. For
example in the ’glass’ data set the polynomial kernel of degree
five gave an estimated accuracy of 66.82%, or the RBF kernel
with γ = 0.4 estimated and error of 97.06% for the ’pendigits’
data set.

E. Evaluation of the experiments

The numerical results cannot justify any theoretical conclu-
sions but point to some interesting observations which in our
opinion justify further experiments with the kernel enhanced
MLP.

1) Convergence:The values for the mean squared error
obtained in the training phase suggest that the kernel enhanced
versions do converge as well as the linear MLP. Qualitatively
the error is comparable in both the linear and nonlinear case.
For example, in the ’shuttle’ base the training error reaches
2.04 · 10−4 for the polynomial kernel and1.00 · 10−4 for the
linear kernel. Also the test mean squared error in the case ofan
explicit train/test split is consistently in the same dimension in
the linear and nonlinear case, although it is generally higher
than the training error, for instance, in ’satimage’0.179 for
the linear kernel and0.178 for the sigmoid hyperbolic tangent
kernel.

2) Performance criterion:We can observe cases in which
the introduction of a kernel mapping does not seem to improve
the estimated classification accuracy, like in the case of ’breast
cancer’ and ’glass’ where the linear MLP is as good (97.54%)
or even better (70.09%) than the kernel enhanced MLPs.
This might suggest that the linear kernel is the best for this
kind of data set, that we did not find the optimal parameters



TABLE III
EXPLICIT OR 10-FOLD CROSS VALIDATION CLASSIFICATION ACCURACY[%]. FOR KERNEL ENHANCED CLASSIFIERS THE PARAMETER VALUE WITH THE

BEST RESULT IS INCLUDED IN BRACKETS. FOR EXPLICIT TRAIN/TEST SEPARATED DATA SETS THEMEAN SQUARED ERROR (MSE) OF THE TRAINING

DATA AND TEST DATA IS GIVEN , FOR CROSS VALIDATION THE VALUE IS THE MEAN OF THE10 RUNS OF THEMSE OF THE TRAINING DATA IS GIVEN. FOR

THE LINEAR KERNEL, ADDITIONALLY THE STANDARD DEVIATION σ OF THE ACCURACY FOR TEN EXPERIMENTS IS SHOWN IN PARENTHESES. BEST

RESULTS FOR EACH DATA SET INboldface.

Dataset
Kernel Type

Linear (Standard devia-
tion 10), MSE

Poly. [degree], MSE RBF [γ], MSE Sigmoid tanh [γ], MSE Sigmoid logistic [γ],
MSE

breast cancer 0.9754(3.62e-3), 5.47e-2 0.9736 [3], 4.30-3 0.9754[0.009], 1.45e-2 0.9754[2.3], 3.79e-3 0.9736 [1.3], 5.09e-3

glass 0.7009(3.09e-2), 1.85e-2 0.6682 [5], 1.93e-2 0.6122 [0.2], 8.02e-2 0.6916 [2.3], 2.24e-2 0.6729 [1.0], 1.85e-2

survival 0.6585 (3.41e-2), 2.25e-2 0.6829 [7], 4.40e-2 0.7073[0.33], 1.46e-1 0.6585 [2.3], 5.16e-2 0.6829 [3.0], 5.92e-2

pendigits 0.9320 (1.96e-3), 3.58e-3
/ 1.01e-1

0.9224 [5], 3.63e-3 /
1.01e-1

0.9706 [0.4], 4.50e-3 /
1.00e-1

0.9691, [3.2], 9.45e-5 /
1.01e-1

0.9291, [0.05], 3.72e-3
/ 1.01e-1

pima 0.7331 (2.17e-1), 6.66e-2 0.7448 [5], 7.69e-2 0.7604 [0.03], 1.69e-01 0.7682 [0.02], 1.50e-1 0.7695[0.02], 1.62e-1

satimage 0.9060 (4.85e-3), 6.28e-3
/ 1.79e-1

0.8900 [3], 1.92e-3 /
1.78e-1

0.8905 [0.7], 2.85e-2 /
1.68e-1

0.8945 [0.2], 4.20e-3 /
1.78e-1

0.9105[0.075], 1.22e-2
/ 1.74e-1

shuttle 0.9990 (5.44e-4), 1.00e-4
/ 1.43e-1

0.9986 [2], 2.04e-4 /
1.43e-1

0.9826 [0.3], 1.78e-2 /
1.40e-1

0.9994[1.95], 1.02e-4 /
1.43e-1

0.9980 [0.6], 4.62e-4 /
1.43e-1

sonar 0.8461 (1.82e-2), 2.14e-2 0.8654 [3], 3.75e-3 0.8894 [0.15], 5.71e-4 0.9038[2.2], 1.0e-7 0.8750 [5.0], 1.0e-7

vehicle 0.8357 (7.84e-3), 3.00e-3 0.8286 [3], 1.40-3 0.7565 [0.5],8.53e-2 0.8251 [2.3], 8.53e-2 0.8463[0.6], 1.81e-3

wine 0.9888 (6.51e-3), 1.0e-7 0.9831 [2,3,4,7], 1.0e-70.9943[0.008], 6.91e-3 0.9888 [1.9], 2.22e-5 0.9888 [2.0], 1.0e-7

for the nonlinear kernels used here, or that we did not find
yet the appropriate kernel and its parameters to improve the
results for the conventional, linear MLP. On the other hand,
there are examples of considerable improvement, for example,
’survival’ (65.85% to 70.73%), ’pendigits’ (93.20% to 97.06%)
or ’sonar’ (84.61% to 90.38%). For each of the three data
bases with explicit training/test split (’pendigits’, ’satimage’,
’shuttle’) we are able to find kernels that improve the results
of the linear kernel. This provides a potential justification
for using our model. Again, it should be said that there
probably are more appropriate classifiers for certain data sets,
but we juxtapose the linear and non-linear kernel version of
the Multilayer Perceptron and are able to improve performance
for certain data sets, kernel types and kernel parameters.

VI. CONCLUSION AND FUTURE WORK

We have extended the general purpose function approxi-
mator Multilayer Perceptron in the sense that the argument
x ∈ X of the function that has to be learned can be first
transformed to an intermediate hidden space, by virtue of a
mapping φ(x) ∈ H. This flexibilizes this highly adaptive
approximator even more, since an additional nonlinear map-
ping is preprocessing the original feature vector. One of the
advantages of this proposal is that symbolic patterns from a
spaceX can be processed by the MLP when an appropriate
kernel maps the symbolic patterns to an Euclidean implicit
space, where similarity metrics can be used. The price for the
introduction of the kernel mapping that has to be paid is an
additional meta-parameter, namely the type of kernel, together
with new intrinsic parameters of this kernel, for instance,the
spreadsγ in table I.

As mentioned before, applying a hidden-to-output kernel
mapping is straightforward. Considering (5) and (23) the
mapping of the MLP with input-to-hidden and hidden-to-
output kernel mapping becomes

y : X → H → Θ → H → Y

x 7→ φ(x) 7→ θ(φ(x)) 7→ φ(θ(φ(x))) 7→ y(φ(θ(φ(x)))).
(23)

The backpropagation step suffers a small modification in (12)
where the partial derivative∂ki/∂wi has now to be specialized
respecting the form of the kernel in table I. This modification
would somehow create a new MLP, since the application of
the kernel mapping in the input-to-hidden part, just applies the
usual MLP algorithm to previously kernel mapped features.
An additional hidden-to-output mapping modifies the MLP
philosophy in the sense that an additional intermediate feature
space is created. The input-hidden and hidden-output kernel
types even can be different, for instance, a polynomial kernel
and then a radial basis function kernel defining a first interme-
diate spaceH1 and then a second intermediate spaceH2. We
leave this idea for future work. Additionally other benchmark
data sets and kernels be be experimented which hopefully for
particular applications improve the approximation capabilities
of the Multilayer Perceptron. We also intend to apply the
kernel MLP to regression problems.

Finally, our work can readily be simplified to obtain a
kernel version of the Adaline [19], [20] and Perceptron [21],
however with an explicit representation of the weight vector w,
different from the dual representation [6] that does only permit
to express the separating hyperplane (for the Perceptron)
implicitly in the dual variablesα. We just have to exclude



the output layer for the Adaline and further post-process the
results by thesgn function (for the Perceptron). This is also
left for future work.
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[12] B. Scḧolkopf, A. Smola, and K. R. M̈uller, “Nonlinear component
analysis as a kernel eigenvalue problem,”Neural Computation, vol. 10,
pp. 1299–1319, 1998, technical Report No. 44, 1996, Max Planck
Institut für biologische Kybernetik, T̈ubingen. [Online]. Available:
/papers/nlpca.ps.gz

[13] S. Mika, G. R̈atsch, J. Weston, B. Schölkopf, and K.-R. M̈uller,
“Fisher discriminant analysis with kernels,” inNeural Networks
for Signal Processing IX, Y.-H. Hu, J. Larsen, E. Wilson, and
S. Douglas, Eds. IEEE, 1999, pp. 41–48. [Online]. Available:
/papers/upload23366 MikRaeWesSchMue99.ps

[14] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral
clustering and normalized cuts,” inProceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data
mining, ser. KDD ’04. New York, NY, USA: ACM, 2004, pp. 551–
556. [Online]. Available: http://doi.acm.org/10.1145/1014052.1014118

[15] K. Yu, L. Ji, and X. Zhang, “Kernel nearest-neighbor
algorithm,” Neural Processing Letters, vol. 15, pp. 147–
156, 2002, 10.1023/A:1015244902967. [Online]. Available:
http://dx.doi.org/10.1023/A:1015244902967
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