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Abstract—We enhance the Multilayer Perceptron to map a The SVM additionally maximizes the margin but has the
feature vector not only from the original d-dimensional feature same architecture (a linear dichotomizer in the implicibiit
space, but from an intermediate implicit Hilbert feature space feature space). The SVM stores the weight vector implicitly

in which kernels calculate inner products. The kernel substitutes . the L ltioli btained f h lution of th
the usual inner product between weight vectors and the input In the Lagrange multpliers obtained from the solution

vector (or the feature vector of the hidden layer). The objec- CONVEX qugdratic programming problem defined by the margin
tive is to boost the generalization capability of this universal maximization.

function approximator even more. Classification experiments The rest of the paper is organized as follows. In se€tion Il we
with standard Machine Learning data sets are shown. We are q\iew the multilayer perceptron and backpropagation @ th
able to improve the classification accuracy performance criterion liaht of th hancing it ina b dditi | i

for certain kernel types and their intrinsic parameters for the 9 0_ € en ancing 1ts mapP'”g y.an additonal nonimea
majority of the data sets. mapping, using kernels. Sectién Il incorporates the Kerne
mapping into the Multilayer Perceptron (MLP) prior to the
proper MLP mapping, followed by the review of related
relevant work in section IV. Experimental results suggesti
the convergence and potential to improve performance of the

Ever since the error backpropagation training algorithm s nel enhanced MLP is presented in section V and finally the
conjunction with the multilayer feedforward neural networ .onclusions are drawn in section!VI.

with nonlinear activation function was defined by Werbos [1]

Keywords-Multilayer Perceptron, kernel mapping

I. INTRODUCTION

and presented to a larger audience by Rumelhart et al. [], [3  !l. MULTILAYER PERCEPTRON AND THEERROR
it became one of the most powerful general purpose function BACKPROPAGATION
approximators for regression and classification. We expect the reader to be familiar with the Multilayer

In recent years, the use of feature mapping into Hilbeferceptron and the Error Backpropagation training algorit
space, together with kernel based inner product similarify its basic form, described in standard textbooks, suctvjs |
measuréshas gained considerable attention, because its int[g}. We consider only a network with one hidden layer and
duces an additional, in general non-linear, mapping froen tihe basic error backpropagation algorithm based on gradien
original feature space to an intermediate space which ehodescent, since further aspects are irrelevant regardieg th
improve regression (cf. for example, [4]) and/or classff@a conceptual enhancement of the kernel mapping introduced
quality of the new features. Especially the Support Vecteere. In the following we review the architecture and leagni
Machine [5] has drawn much attention to kernel-based intpliGyigorithm of the network, in order to be able to introduce our

feature mapping, although many other classification tepres COﬂCGth&' enhancement of kernel mappmg
can be enhanced by kernels, as will be reviewed later, and

also constitutes the main motivation of this work, since w@. Multilayer Perceptron mapping

incorporate it into the standard feedforward artificial r@u  Consider as input to the netdadimensional patters from
network. Our main contribution is to introduce an additionaan input domainX which is usually the Euclidean vector
nonlinear feature space mapping by kernels before applyiggaceR?. The hidden layer of the net hd$ neurons which
the MLP mapping, improving even more the general purpoa#l calculate the functiord : X — R which is the inner
function approximation capabilities of the MLP. An imparta product (wy,,x) = wy, - x = w}x of a neuron specific
characteristic of our approach is that the knowledge of tlkdimensional weight vectow; and the inputx, followed
function approximator is explicitly stored in the weightgbe- by an activation function : R — R, usually the logistic
sides the architecture of the network). This is not possiole sigmoid functionz(a) = 1/(1 + exp(—a)) or hyperbolic
instance, in the kernel enhanced perceptron [6] that datessi tangent sigmoid function(a) = tanha to give

the basic architecture for the Support Vector Machine (SVM)
0 = z({wp,x)), h=1,...,H. 1)
IFor the sake of simplicity, we will occasionally use the terkerhel . . . .
mapping” to identify the mapping from the original feature apénto Hilbert Al H 'npUt'to'h'dden mgppmgs‘)h of the hidden layer
space where kernels can be used to calculate an inner product are assembled into d&/-dimensional feature vectof =
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[, --- 0y |7 which constitutes a new pattern in thespecific error is the square of the delta (multiplying (@
domain ©. The calculus of the hidden layer feature vectdor convenience)
6 consequently defines a map (using the same symbol) c

B= 18" = lt- (00 = 5 3l - w6, ()

i=1

DN | =

0: X -0

x = 0(x) = [ 2((wn,,x)) -+ 2((Why %) 1™ (@ or more specifically, emphasizing the dependencies of tige er

The final mapping from the hidden to the output layer ig" the weights

replicating the same functional mapping from the inputeratt E({wi L {wi¥e,) =

to the hidden layer, calculating for all output neurons the 1 )

function 3 [t —y (06 {wntim1): {witio)] ™ (8)
yi = z2({w;,0)), i=1,...,¢ 3)

We furthermore defing; as thei-th component of the dis-
where thew; are H-dimensional weight vectcﬁspecifically crepancy vector

for each of the: output units. We can again merge the output .

. . . T 6z:tz_yz 221,...70. (9)
into a c-dimensional feature vectay = [ 4, .- . ]

which constitutes a new pattern in the final output don&in  |n order to modify the hidden-to-output weights by the basic

The calculus of the output layer feature vectortherefore gradient descent, with learning ragjes R+, we use the rule
defines another map (using the same symbol)

OF
new __ qld _ -
y@*)y Wi =W, nawz wad, ¢ 15"'76' (10)
— T
0—=y0) =1 2((wi, 0)) - =2((wi,0)) ' (4 |y order to unify the formalisms for the presence and absence

Resumingly we observe that the Multilayer Perceptron péf KeMel mapping, we abbreviate the inner product of weight
forms a mapping and feature vectors as

yiX >0 k(w,x):=w-x, k;:=k(w;,0), kp:=k(wp,x). (11)

x = 0(x) — y(60(x)). (5) The gradient of the error with respect to a hidden-to-output
weight vector, needed ih (10), considering (6), (7) is oixdi

Frequently an additional fixed input component = 1 and by the chain rule

eventually a fixed hidden componeé§ = 1 is introduced

which augments the dimension of the input, hidden and weight HoF B 6%52 _ Jy 0z(k(w;,0))

vectors in 1 and incorporates an offset into the calculatadri ow;, ow; ow; ow;
products. L(w:. 0 Lk(w:. 0
. . . . 6wi 0wi
B. Error Backpropagation weight optimization 0 (13)
—Si0,

An unconstrained optimization in the form of a gradient
descent is the basic algorithm to optimize the weight vectowherez’(k) is the derivative of the activation functiog,(k) =
wy, to the hidden layer andw; to the output layer. An z(k)(1— z(k)) for the logistic sigmoid and’(k) = 1 — z(k)?
error functionE is established which describes the expectddr the hyperbolic tangent, and is defined as the hidden-to-
discrepancy between a desiredlimensional output vector output sensitivity
and the vectoy calculated by the MLP. We consider only the i := 02 (ks). (14)
stochastic version of the optimization algorithm, aka.lioe-
learning which adjusts all weights after presenting a singl Similarly for the input-to-hidden gradient descent, using
training patternx to the network which is labeled with its same schema for the weights, as in [(10) for the hidden-to-

desired output = [ ¢, ... ¢ --- ¢, ]T, such that the output weightsw; and additionally backpropagating the error
pattern specific mismatch (aka. deltafg R is defined as ~ d€eper into the net, we obtain
E 3
6=t —y(0(x). (6) OF __,,2kwnx) (15)
6wh 3Wh
For the sake of simplicity we avoid pattern specific indices —8pX, (16)
p for the p = 1,...,n training patternsx(?). The pattern

where the input-to-hidden sensitivity, is defined as

2|t would be necessary to introduce an additional index tdirdjsish the c
input-to-hidden weightsv;, from the hidden-to-output weights;, or rename L o
one of the two, but for the sake of simplicity we expect the ezad recognize Sh =2 (kh) Z $iWih- (17)
the layer of the weight vector by its context. i=1



[1l. M ULTILAYER PERCEPTRONKERNEL MAPPING linear combination of the feature vectors, and is consetyen

We will now extend the MLP model and the backpropagdf®™m the same domain. _
tion algorithm by introducing an additional nonlinear maygp 1 1S rationale leads us to the mapping of the elements of
from the input domain¥ to an implicit intermediate Hilbert th€ input domain¥’, in this case the input vector and the
space  domairf, which is then mapped to the hidderinPut-to-hidden weight vectow, to the implicit domair?t by
layer domain®. Thinking further we can also introduce thisVitue of the mapping (18), obtaining tifedimensional images
intermediate mapping in between the hidden and output lay@fx) andé(w,). Note again that patterns in the mapped space
but this would create a different model, and is left for latedC Only exist implicitly and cannot be accessed directl (th

consideration. dimensior? of H can even bfa infinite [10],_[11]). The mapping
(2), (3) to the hidden domai® now takes its arguments from

A. Implicit kernel map the intermediate spack and is modified correspondingly to

We define a map
X —H eh:Z(<¢(W}L),¢(X)>)ZZ(/C(W;“X)), h=1,...,H.
X > (x) (18) (20)

which projects a feature vector of dimensiond to a new 9:H—-6

feature vectorp(x) of dimension? < co. This map however P(x) — 0(9(x)) =

may not be defined explicitly in general. The metric of simila [ 2((d(wn ), $(x))) - 2(((Why ), (X)) I

ities and consequently distances in the mapped spaomist ('21)
exclusively be expressed as an inner prodpict;) - ¢(x;) of
the mapped versions of the original feature vectorandx; Fortunately we can calculate the inner produgitwy, ), ¢(x))
when implementable calculifshas to be done. This constraintneeded in the MLP mapping function (20) by the kernel (19)
enables the use of kernelsthat implement the inner productask,;, = k(wy, x). The consequence for the MLP feedforward
in the transformed space as mapping is that the abbreviations for the inner productddfi
in (11) are now really meaning kernel functions defined in

h(xi, %) = @(xi) - $(x;). (19) (19). They specialize to the usual inner product and con-
As examples consider the commonly employed Radial Baequently to the well known MLP when the linear kernel
sis Function kerneli(x;,x;) = exp(—v|lx; — x,[[?) with  k(xi, ;) = x; - x; with the identity mappingp(x) = x is
spread parametey or the inhomogeneous polynomial kerneHsed.
k(xi,x;) = (x; - x; + 1)? which maps to all possible The kernel enhanced mapping of the Multilayer Perceptron,
monomials up to degrep, see e.g. [9]. The mapped spacgonsidering|(5) is correspondingly adapted to
‘H is a vector space where a inner product is defined, whereas VX HoO0Y
the features in the original pattern spakere not restricted to '
be continuous values. By virtue of an appropriate kerned, th X = ¢(x) = 8(d(x)) — y(0(p(x))). (22)

original features can be of symbolic, discrete or contifuou \ye can state that we have modified the architecture of the
nature, or any mix of these. An extensive treatment of kemei\'/lultilayer Perceptron by introducing an additional nogtim

can be found, for example, in [6]. Hilbert space halfway between the input vector domain and
B. Input-to-hidden kernel mapping the hid(_jen layer do_main. Thg ngxt st_ep is nece;sarily the
adaptation of the weight optimization since the chain role t
‘Wiculate the dependency of the approximation error on the
weights now affect the weight specific gradients| (13) and.(16

A crucial observation when considering the argume
(wp,x) = wj - x = w;x of the activation functionz
is that both argumentsv;, and x of the inner product are
from the same domair’, in the case of the conventionalC. Error backpropagation weight optimization with kernel
MLP they are fromR¢. This becomes even clearer whemapping
we geometrically interpret the meaning of the inner product \y,e pave to review the termky, /ow, in (15) sincek in
The valued,, := wy, - x, incorporating the offset (aka bias)general does not stand for an inner product of original wieigh

wpo and fixing zo = 1, is an unnormalized distance &f 4nq input vectors anymore, but for an inner product of their
from the hyperplane defined by;, (the absolute value could napped counterparts in the Hilbert space. The value of the

be obtained by dividingdh'by the modulus of the vector harial derivative of a kernel relative to the weight vector
[wp --- wne 7). Consider also the Support Vector Magepends on the nature of the kernel. In table | some important
chine where the weight vector of the separating hyperplaae ikernels are listed. The definitidnis needed in the feedforward
input-to-hidden mapping (21) and the partial derivativethwi
3 'H stands for theHilbert but also suggestsidden since the patterng(x) respect to the Weight VeCtQﬁ’k(W x)/@w is needed in the
in this space in general are only implicitly available. ho h

4 patternsg(x) in Hilbert space in general cannot be stored in computénc’diﬁed error function gradienF(lS) and specialized in)(15
memory explicitly. They can only be handled in analytical chls. with respect to the type of kernel in table I. We can also reuse



Ok (w,x)

Kernel Definition k(w, x) Derivative O V. EXPERIMENTAL RESULTS

type . : , .

_ The aim of the experiments is to show, extending the

Linear wox X conventional Multilayer Perceptron by kernel mapping that

Polynomial  (w - x + 1)? (w-x+1)P~'x the network approximation converges. One should observe a

(inhomoge- considerable diminishing of the expected er&fi&] of (7),

neous) . . . ..

Radial B 5 o estimating it as the mean over all training and/or test padte

o Enction exp(=llw - x|I%) ~2k(w —x) If additionally an appropriate kernel, together with its in

Hyperbolic  tanh(yw - ) 1) trinsic p_arameter(s) improves _the performgnce qntendngamv

tangent comparing it to the conventional MLP, i.e. with a linear

sigmoid kernel, then the introduction of kernel mapping suggests a

Logistic e ) k(1 — k) (—7x) conceptual improvement of the general purpose architectur

sigmoid The experiments do not claim that the kernel enhanced MLP
TABLE | performs better than other classifiers (or regressor inrgéne

KERNELS AND THEIR PARTIAL DERIVATIVES WRT TO WEIGHT vecTor ~ We intend to suggest that if the right kernel and its intgnsi
(FIRST ARGUMENT) parameters are chosen, the performance can increase aampar
to the conventional MLP.

A. Benchmark data sets

We want to provide a simple experimental design which
easily allows reproducibility of the proposed methodve
restrict the experiments to classification of standard data
sets from the UCI Machine Learning Repository [18]. Only

IV. RELATED RELEVANT WORK continuous features with no missing values are allowed. The
task must be classification, i.e. one attribute is the symbol

Kernel based clustering, regression and classification hasass label. For each of the classes, one output neuron is
gained a lot of attention, especially in the context of thereated, coding the class membership as "1-out-of-c”,d.e.
Support Vector Machine (SVM) [5], [11]. Outside the SVM'1” at output y; if pattern x belongs to classs;, and "0”
context, kernel mapping can also be used to nonlineayherwise.
transform the problem description to a new feature spaceWhere there is an explicit separation of training and test
and adapt classical classifier paradigms, for instancenélerdata sets, for instance, in the ’pendigit’ set, the MLP was
Principal Component Analysis (Kernel PCA) [12], Fishetrained with the training set and tested with the test set. Fo
discriminant analysis| [13], kernel K-means clustering][14all other data sets, K-fold cross-validation witti = 10 is
the Nearest-Neighbor classifier [15], Quadratic Gaussseseth used. Table |l shows the data sets that were randomly chosen
Bayes classifier [16], Least Mean Square Linear dichotomizigom the repository. The sets provide a good mix of small and
[16] or high-dimensional pattern visualization by the Samnm large number of classes, features and patterns.
map [17]. To the best of our knowledge kernel mapping has
not been applied within the architecture of the feedforward
general purpose function approximator known as the Multi- The MLP is always trained with a basic pattern-based
layer Perceptron with the ability to represent the knowkeddstochastic) backpropagation algorithm that uses the pure
explicitly in weights w. A special attention is given heregradient descent of (10). The learning rate is always set to
to the kernel perceptron algorithm and the Support Vector= -2. All weight vectorsw;,i = 1,...,c of the output
related optimization algorithms for regression and cfassielements andw,,h = 1,...,H of the hidden elements
cation described in [6]. If a magh(x) is used to map the were randomly initialized with a normalized modulus of
original patternx to the implicit feature spacg( by a kernel one. All input featuresz;,j = 1,...,d are independently
mapping, the consequence is that the weight vestarannot Standardized to the range 1, 1] by the linear transformation
be represented in an explicit manner anymore, since it 48" = —1 + 2(z°'! — Zmin)/(€max — Tmin). When there is
a linear combination of the mapped patterigs;) that do an explicit training-test set division, the test set is siitad
exist only implicitly in the kernel mapped feature spacee THO the same standardization, based on the extremes rmax
classificator/regressor must rely on the dual coefficients Of the training set. The number of inputs is the dimension
obtained from the learning algorithm. On the contrary td,thedf the feature vectox, plus one, i.e. fixing an additional input
in our approach, we have the weights always explicitly atharf0 o = 1 which incorporates the offset (biag),o of each of
even if a feature mapping via kernels is applied. The weigHte hidden units into the weight vecter,. The numbetH of
adaptation is also directly embedded into the backpropmyatthe hidden units is set to twice the number of inputs, plus one
algorithm with a particular additional derivation term feach , _ Y
kernel type. These are fundamental differences to the d The Kemel MLP has been incorporated into the ‘tooldiag'- pat

yp %h recognition toolbox, written in C, and can be obtained a
representation in kernel perceptron and SVM architecture. http://sites.google.com/site/tooldiag.

the value ofk;, in all but the linear and polynomial kernels in
the calculus of the derivative.

Training method of the Multilayer Perceptron
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TABLE Il
UCI MACHINE LEARNING REPOSITORY DATA SETS USED FOR THE

CLASSIFICATION EXPERIMENTS IN CASE OF AN EXPLICIT TRAIN-TEST / " T 70.8% 5
SPLIT, THE NUMBER OF TEST SAMPLES IS MENTIONEDFOR A DETAILED 01.4% solag JOP% 9TL% 94.8% 958/\
44.4%

DESCRIPTION CF. THE UCI SITE.

Data set # classes # features # training  # test
breast cancer 2 30 569 - 3\ 15 2%
I 6 8 214 ) "
ass - " 9.6%
’ . ; 1 N —
haberman survival 2 3 41 - 0 35 F  o—F
pendigits 10 16 7494 3498
pima 2 8 768
satimage 6 36 4435 2000 Fig. 1. Influence of they parameter of the Radial Basis Function kernel
shuttle 7 9 43500 14500 on the accuracy of the kernel MLP classifier for thendigit data set. Ten-
fold cross validation withl 0000 learning steps was used to estimate the error.
sonar 2 60 208 - Horizontal axis stands for the different cases, verticis arows the parameter
vehicle 4 18 846 R value and estimated accuracy for these cases.
wine 3 13 178

D. Performance estimation in classification experiments

Table 11T shows the results of the classification experiraent
In the hidden layer, we also use a fixed ingyt= 1, totaling for the UCI data. For all kernels the accuracy and the mean
H+1=2(d+1)+1 hidden unitsfy, ..., 0. The number squared error after0000 iterations (or reaching the MSE limit
of the output neurons corresponds to the number of classegfore) are shown. In order to favor the linear kernel, we
using the 1-out-of-c coding mentioned earlier. The adtivat repeated the classification performance experiments regsti
function is always the logistic sigmoid function. Trainifigy The best estimated accuracy of these ten different expetime
stopped when the maximum number of by defaoh00 steps iS shown, together with the standard deviation of these ten
is reached, or the mean of the approximation efror (7) over &ins (in parentheses). For the nonlinear kernels the estima
n training patterns falls below0~7. No heuristics to speed accuracy is shown, together with the kernel parameter. For

up learning are used, such as momentum parameters or nff@mple in the ‘glass’ data set the polynomial kernel of degr
sophisticated gradients descent methods. five gave an estimated accuracy of 66.82%, or the RBF kernel

with v = 0.4 estimated and error of 97.06% for the 'pendigits’
C. Parameter tuning data set.

The intrinsic parameters of the kernels are of decisife Evaluation of the experiments
importance for the function approximation quality of the The numerical results cannot justify any theoretical concl
proposed kernel Multilayer Perceptron. There is an obviogfns but point to some interesting observations which in ou
need to perform an additional validation phase in order tpinion justify further experiments with the kernel enhedhc
find the best parameter values. Whenever kernels are udddp.
this tuning stage must be done. This constitutes a drawbackl) Convergence:The values for the mean squared error
and a limitation of the proposed method, although margbtained in the training phase suggest that the kernel eakdan
other successful regression/classification paradigmeghé versions do converge as well as the linear MLP. Qualitativel
burden. Consider, for example, the Support Vector Machine error is comparable in both the linear and nonlinear.case
Always, when using another than a linear kernel, the apprider example, in the ’shuttle’ base the training error reache
priate values of the parameters must be chosen carefully2t64 - 10— for the polynomial kernel and.00 - 10~* for the
obtain optimized results. We illustrate the influence of the linear kernel. Also the test mean squared error in the caaa of
parameter of the RBF kernel, c.f. table | for thendigitdata explicit train/test split is consistently in the same dirsien in
set of table 1. It has an explicit train-test separationhviid94 the linear and nonlinear case, although it is generally drigh
training patterns and 3498 test patterns. We expect atitatis than the training error, for instance, in 'satimagel79 for
significance from this relatively large number of sampled arthe linear kernel and.178 for the sigmoid hyperbolic tangent
no arbitrary influence of a random train-test split because kernel.
the explicit separation. In our experiments we chose a small2) Performance criterion:We can observe cases in which
number of iterations (typically 100 to 1000) to find prelimig  the introduction of a kernel mapping does not seem to improve
good values of the kernel parameters, around which the méie estimated classification accuracy, like in the casereft
experiments with the usually number t§000 training steps. cancer’ and 'glass’ where the linear MLP is as good (97.54%)
Fig.[1 emphasizes the need for the right choice of the iritringor even better (70.09%) than the kernel enhanced MLPs.
kernel parameters, since the accuracy decreases draltgaticehis might suggest that the linear kernel is the best for this
with inappropriatey values. kind of data set, that we did not find the optimal parameters



TABLE Il
EXPLICIT OR 10-FOLD CROSS VALIDATION CLASSIFICATION ACCURACY[%]. FOR KERNEL ENHANCED CLASSIFIERS THE PARAMETER VALUE WITH THE
BEST RESULT IS INCLUDED IN BRACKETS FOR EXPLICIT TRAIN/TEST SEPARATED DATA SETS THEMEAN SQUARED ERROR(MSE) OF THE TRAINING
DATA AND TEST DATA IS GIVEN, FOR CROSS VALIDATION THE VALUE IS THE MEAN OF THELO RUNS OF THEMSE OF THE TRAINING DATA IS GIVEN. FOR
THE LINEAR KERNEL, ADDITIONALLY THE STANDARD DEVIATION o OF THE ACCURACY FOR TEN EXPERIMENTS IS SHOWN IN PARENTHESEBEST
RESULTS FOR EACH DATA SET INboldface.

Kernel Type
Dataset b

Linear (Standard devia- Poly. [degree], MSE RBF+], MSE Sigmoid tanh4], MSE  Sigmoid logistic 4],
tion 10), MSE MSE

breast cancer 0.9754(3.62e-3), 5.47e-2  0.9736 [3], 4.30-3 0.9754[0.009], 1.45e-2 0.9754[2.3], 3.79e-3 0.9736 [1.3], 5.09e-3

glass 0.7009(3.09e-2), 1.85e-2  0.6682 [5], 1.93e-2 0.6122 [0.2], 8:@2e 0.6916 [2.3], 2.24e-2  0.6729 [1.0], 1.85-2

survival 0.6585 (3.41e-2), 2.25e-2  0.6829 [7], 4.40e-2  0.7073[0.33], 1.46e-1  0.6585 [2.3], 5.16e-2  0.6829 [3.0], 5.%2€-

pendigits 0.9320 (1.96e-3), 3.58e-3 0.9224 [5], 3.63e-3 / 0.9706[0.4], 4.50e-3 / 0.9691, [3.2], 9.45e-5 / 0.9291, [0.05], 3.72e-3
/1.0le-1 1.01e-1 1.00e-1 1.01e-1 /1.0le-1

pima 0.7331 (2.17e-1), 6.66e-2  0.7448 [5], 7.69e-2 0.7604 [0.DB9%e-01  0.7682 [0.02], 1.50e-1 0.7695[0.02], 1.62e-1

satimage 0.9060 (4.85e-3), 6.28e-3 0.8900 [3], 1.92e-3 / 0.8905 [0.7], 2.85e-2 / 0.8945 [0.2], 4.20e-3 / 0.9105[0.075], 1.22e-2
/1.79e-1 1.78e-1 1.68e-1 1.78e-1 / 1.74e-1

shuttle 0.9990 (5.44e-4), 1.00e-4 0.9986 [2], 2.04e-4 | 0.9826 [0.3], 1.78e-2 / 0.9994[1.95], 1.02e-4/ 0.9980 [0.6], 4.62e-4 /
/ 1.43e-1 1.43e-1 1.40e-1 1.43e-1 1.43e-1

sonar 0.8461 (1.82e-2), 2.14e-2  0.8654 [3], 3.75e-3 0.8894 [0A51e-4  0.9038[2.2], 1.0e-7 0.8750 [5.0], 1.0e-7

vehicle 0.8357 (7.84e-3), 3.00e-3  0.8286 [3], 1.40-3 0.7565 [8H3e-2  0.8251 [2.3], 8.53e-2  0.8463[0.6], 1.81e-3

wine 0.9888 (6.51e-3), 1.0e-7  0.9831 [2,3,4,7], 1.0e-D.9943[0.008], 6.91e-3  0.9888 [1.9], 2.22e-5  0.9888 [2.0], 170e-

for the nonlinear kernels used here, or that we did not find As mentioned before, applying a hidden-to-output kernel
yet the appropriate kernel and its parameters to improve thmapping is straightforward. Considering] (5) and (23) the
results for the conventional, linear MLP. On the other handhapping of the MLP with input-to-hidden and hidden-to-
there are examples of considerable improvement, for ex@mputput kernel mapping becomes
'survival’ (65.85% to 70.73%), 'pendigits’ (93.20% to 98%)
or 'sonar (84.61% to 90.38%). For each of the three data’ ¥ ~ 7t~ @ > H =V
bases with explicit training/test split (pendigits’, tsmage’, x = P(x) = 0(d(x)) — 9(8(P(x))) = y((0(9(x)))).
'shuttle’) we are able to find kernels that improve the result (23)
of the linear kernel. This provides a potential justificatio The packpropagation step suffers a small modification i) (12
for using our model. Again, it should be said that therghere the partial derivativék; /dw; has now to be specialized
probably are more appropriate classifiers for certain det, s respecting the form of the kernel in table I. This modificatio
but we juxtapose the linear and non-linear kernel version @huld somehow create a new MLP, since the application of
the Multilayer Perceptron and are able to improve perforreanthe kernel mapping in the input-to-hidden part, just asplres
for certain data sets, kernel types and kernel parameters. ysyal MLP algorithm to previously kernel mapped features.
An additional hidden-to-output mapping modifies the MLP
philosophy in the sense that an additional intermediatiifea
We have extended the general purpose function approgpace is created. The input-hidden and hidden-output kerne
mator Multilayer Perceptron in the sense that the argumdgpes even can be different, for instance, a polynomial ddern
x € X of the function that has to be learned can be firsind then a radial basis function kernel defining a first inearm
transformed to an intermediate hidden space, by virtue ofdate spacé{; and then a second intermediate spate We
mapping ¢(x) € H. This flexibilizes this highly adaptive leave this idea for future work. Additionally other benchrina
approximator even more, since an additional nonlinear magata sets and kernels be be experimented which hopefully for
ping is preprocessing the original feature vector. One ef tiparticular applications improve the approximation caliids
advantages of this proposal is that symbolic patterns fromo& the Multilayer Perceptron. We also intend to apply the
spaceX can be processed by the MLP when an appropriaternel MLP to regression problems.
kernel maps the symbolic patterns to an Euclidean implicit Finally, our work can readily be simplified to obtain a
space, where similarity metrics can be used. The price for tkernel version of the Adaline [19], [20] and Perceptron [21]
introduction of the kernel mapping that has to be paid is drowever with an explicit representation of the weight veeto
additional meta-parameter, namely the type of kernel,ttaye different from the dual representation [6] that does onlsnge
with new intrinsic parameters of this kernel, for instanites to express the separating hyperplane (for the Perceptron)
spreadsy in table/l. implicitly in the dual variablesoe. We just have to exclude
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the output layer for the Adaline and further post-process th
results by thesgn function (for the Perceptron). This is also
left for future work.
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