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Abstract—We extend the visualization technique of high-
dimensional patterns conceived by Sammon to the case when the
patterns have been previously mapped to an implicitly defined
Hilbert feature space in which distances can be measured by
kernels. The principal benefit of our technique is the possibility
to gain insight into the distribution of the patterns, even in this
generally non-accessible feature space.
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I. I NTRODUCTION

The visualization of patterns residing in a high dimen-
sional feature space is one of the main concerns of pattern
recognition. Van der Maaten et al. [17] give an overview
of dimensionality reduction techniques. A classical method
to map patterns from a high-dimensional continuous feature
space to two or three dimensions is the Sammon map [11].
A stress function is defined which measures the discrepancy
between the mutual distances in the original feature space and
the mutual distances in the projected feature space. Usually
the projected feature space has two or three dimensions to
permit the visualization, but in general the dimension of the
projected space is not restricted.

In recent years, the use of feature mapping into Hilbert
space, together with kernel based inner product similaritymea-
sures1 has gained considerable attention, because its introduces
an additional, in general non-linear, mapping from the original
feature space to an intermediate space which should improve
regression (cf. for example, [16]) and/or classification quality
of the new features. Especially the Support Vector Machine
has drawn much attention to kernel-based implicit feature
mapping, although many other classification techniques canbe
enhanced by kernels, for instance the Kernel Nearest-Neighbor
classifier or Kernel Principal Component Analysis mentioned
later in this paper.

If we want to introduce kernel-based mapping into the Sam-
mon mapping visualization technique, consequently we deal
with two different mappings, from the original, eventuallynon-
numeric feature space to the intermediate implicitly defined
Hilbert space where inner products can be calculated by the
kernel, and finally the Sammon map which transforms the

1For the sake of simplicity, we will use the term “kernel mapping” to
identify the mapping from the original feature space into Hilbert space where
kernels can be used to calculate an inner product to measure similarity.

pattern from the intermediate feature space to the final, usually
low-dimensional Euclidean feature space, where is possible to
apply common visualization techniques.

An approach to use kernels in Sammon mapping was
presented by Mingbo Ma et al. [6]. The mapping of training
patterns and the interpolation of new patterns are combined
in a unique mapping function which is a linear combination
of the kernel expanded unknown pattern with the Sammon
mapped training patterns. Our work is motivated by the
fact that the distances between two patterns that have been
mapped to the implicit feature space prior to the Sammon
mapping can be included directly into the stress function that
measures the quality of the Sammon mapping. Besides, we
propose an interpolation method for new patterns based on
a linear combination of already mapped patterns. Our main
contribution is the direct formulation of the Sammon stress
function based on kernel-based distances in the implicit feature
space and a novel linear interpolation of new patterns based
on the mapped training patterns.

The rest of the paper is organized in the following manner:
Section II reviews the nonlinear mapping proposed by Sam-
mon. In section III implicit kernel mapping and the distance
measure in the kernel mapped space is discussed. Section IV
incorporates the kernel mapping into the subsequent Sammon
mapping. Section V analyzes the important case when new,
previously unseen patterns have to be Sammon mapped.
Experimental results for the visualization of kernel enhanced
pattern mappings are presented in section VI and finally the
conclusions are drawn in section VII.

II. SAMMON PLOT

In its original form [11], the Sammon mapy

y : X → Y
x 7→ y (1)

is a nonlinear projection ofn patternsxi, i = 1, . . . , n in aD-
dimensional Euclidean spaceX onton corresponding patterns
yi, i = 1, . . . , n in anotherd-dimensional Euclidean spaceY,
d ≤ D, that should preserve the notion of mutual geometric
distances among the patterns. For direct visualization purposes
the mapped dimension is set tod = 2 or d = 3. The faithful-
ness of the mapping is naturally limited by the intrinsic dimen-
sion of the data. The end points(1, 0, 0), (0, 1, 0), (0, 0, 1) of
the axes ofR3, for example, can be mapped onto the vertices
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of an equilateral triangle inR2 without error, but not onto
the x-axis ofR1 anymore, because there it is impossible to
position three distinct points with equal mutual distancesthere.

We will use the following abbreviations, with||a − b|| =
[

(a− b)T(a− b)
]1/2

as the Euclidean distance between two
column vectorsa andb:

Dij := ||xi − xj || Distance in original feature spaceX
dij := ||yi − yj || Distance in mapped feature spaceY

(2)

A stress function

E({y1, . . . ,yn}) =
1

∑n
i<j Dij

n
∑

i<j

(Dij − dij)
2

Dij
(3)

expresses a discrepancy between all mutual distances in the
original X and mapped spaceY. In Sammon’s original
work the stress function is minimized by an unconstrained
optimization method, namely gradient descent. Note that the
n(n− 1)/2 mutual distancesDij in X have to be calculated
only once, whereas the distances inY have to be constantly
updated during the minimization of the stress function (3),
since the positions of theyi change (they are the parameters of
the gradient descent). The normalizing constant1/

∑n
i<j Dij

has no influence on the determination of a minimum of (3),
since it does not affect the gradient descent with respect to
the necessary condition of a minimum∇E = 0, and could
consequently be omitted from (3).

An observation when comparing our method with the
method proposed by Mingbo Ma et al. [6] is the nonlinear
nature of the Sammon map, i.e. in general there is no affine
function, implementable as a matrix multiplication (plus even-
tually a constant offset)y(x) = M · x+ y0 that produces the
mapping defined in (1).

III. D ISTANCES BETWEEN KERNEL MAPPED PATTERNS

Kernel based regression and classification has gained a lot
of attention, especially in the context of the Support Vector
Machine (SVM) [5], [18]. There are more fundamental pattern
recognition methods that were enhanced by the implicit kernel
mapping principle prior to the proper technique, such as Fisher
Linear Discriminant Analysis [7], Multilayer Perceptron [9],
Mahalanobis Distance [10], Mean Squared Error [10], Kernel
Principal Component Analysis (kernel PCA) [14] or Nearest
Neighbor Classifier [19], without being exhaustive.

A. Implicit kernel map

The basic idea is to use a mapφ

φ : X → H
x 7→ φ(x) (4)

which projects a feature vectorx of dimensionD to a new
feature vectorφ(x) of dimensionℓ ≤ ∞. This map however
may not be defined explicitly in general. The metric of similar-
ities and consequently distances in the mappedH space2 must

2 H stands for theHilbert spacebut also suggestshidden, since the patterns
φ(x) in this space in general are only implicitly available.

exclusively be expressed as an inner productφ(xi) ·φ(xj) of
the mapped versions of the original feature vectorsxi andxj

when implementable calculus3 has to be done. This constraint
enables the use of kernelsk that implement the inner product
in the transformed space as

k(xi,xj) := φ(xi) · φ(xj). (5)

As examples consider the commonly employed Radial Basis
Function kernelk(xi,xj) = exp(−||xi − xj ||2/(2σ2)) with
spread parameterσ2 or the inhomogeneous polynomial kernel
k(xi,xj) = (xi · xj + 1)p which maps to all possible
monomials up to degreep, see e.g. [12]. The mapped spaceH
is a Hilbert space where an inner product is defined, whereas
the features in the original pattern spaceX are not restricted to
be continuous values. By virtue of an appropriate kernel, the
original features can be of symbolic, discrete or continuous
nature, or any mix of these.

B. Kernel based distances of mapped patterns

The idea of kernels does appear early as Potential Functions
in Aizerman et al. [2]. The same authors do also present the
idea of a kernel version of the Nearest Neighbor Classifier
[3]. The kernel version of the Euclidean distance was called
Generalized Distance in [1] and redefined by Yu et al. as
the Nearest Neighbor [19]. The idea can easily be seen by
expanding the (quadratic)4 Euclidean distance||xi − xj ||2
between a patternxi and a patternxj as

D2
ij = ||xi − xj ||2 = xi · xi − 2xi · xj + xj · xj (6)

and then substituting the patternx by its mapped versionφ(x)
to get

D2
ij = ||φ(xi)− φ(xj)||2 =

φ(xi) · φ(xi)− 2φ(xi) · φ(xj) + φ(xj) · φ(xj) =

k(xi,xi)− 2k(xi,xj) + k(xj ,xj). (7)

Consequently distances between patterns in Hilbert space can
be measured by virtue of the kernel function, although the
proper patterns are not accessible.

In the context of the Kernel Nearest Neighbor Classifier,
the patternxi assumes the role of an unknown pattern to be
classified andxj the role of a class-labeled training pattern.
Hence we can measure distances in the mapped space between
unknown patterns and the training patterns by using the
employed kernel thus implementing the KernelK-Nearest
Neighbor classifier,K ≥ 1. In the context of the Sammon map,
we are however only concerned with unsupervised mapping.

IV. SAMMON MAPPED KERNEL MAPPED PATTERNS

We combine the mappingφ of (4) from the original feature
spaceX to the kernel-based implicitly mapped Hilbert space
H with the Sammon mappingy of (1), now from the Hilbert

3 Patternsφ(x) in Hilbert space in general cannot be stored in computer
memory explicitly. They can only be handled in analytical calculus.

4 We keep the distance in the quadratic formD2

ij to simplify the equations
(6) and (7). Later, in (9), we need the distanceDij .



spaceH to the final low-dimensional visualization spaceY to
define a new Sammon mapy

y : X → H → Y
x 7→ φ(x) 7→ y(φ(x)). (8)

The mapping pipeline is shown in fig. 1. From the original
feature spaceX which is not necessarily Euclidean, the
patterns are mapped implicitly to the intermediate feature
spaceH which is not directly visualizable for two reasons.
Firstly the mapφ is not defined explicitly and secondly the
dimension ofH is generally too high. The patterns inH are
finally mapped by the Sammon mapy to the final feature
spaceY.

Fig. 1. Mapping pipeline when using an intermediate Hilbert space in the
Sammon plot.

The impact on the stress function (3) is minimal. Only the
distancesDij in the originally Euclidean spaceX of (2) and
(6) have to be substituted by the new distancesDij of (7) in
the Hilbert spaceH

Dij = [k(xi,xi)− 2k(xi,xj) + k(xj ,xj)]
1/2

. (9)

Again, the distancesDij in Hilbert space have to be calculated
only once, such that the complexity of the stress function
minimization algorithm is not affected at all. We are now
able to visualize patternsx that have previously been mapped
implicitly to Hilbert space byφ(x), and then measuring
distances by virtue of a kernel, permitting to gain insight into
the situation of the pattern separability in the implicitlydefined
space. For instance, in Support Vector Machine regression
and classification, the influence of different kernels and the
variation of their intrinsic parameters can be made visible.

V. M APPING OF NEW PATTERNS

We consider the case when a previously unseen new pattern
xn+1 should be Sammon mapped by (8) together with the
existing n patterns which we will call the training patterns
xi, i = 1, . . . , n.

A. Error-free new pattern mapping

As mentioned before, the Sammon map is not an affine
function. The only way to guarantee that the new pattern(s)
xn+1 are projected ontoY by the same Sammon map as
all n training patterns, is to include the new pattern into
the same stress function (3) to be minimized as before. The
same minimum must be reached, either by including pattern
xn+1 beforehand as a training pattern, or after the training

has been done. Note that “error-free” does not mean that the
map is globally optimized, but only that the same minimum
is reached.

Omitting the constant1/
∑n

i<j Dij in (3) which does not
affect the gradient descent determination of the minimum, we
define an equivalent stress function

E′
n := E′({y1, . . . ,yn}) =

n
∑

i<j

(Dij − dij)
2

Dij
. (10)

If we want to include a new patternxn+1 into the mapping,
the new stress functionE′

n+1 can be decomposed into the the
term of the training patterns plus a term ofn new discrepancies
as

E′
n+1 = E′

n +

n
∑

i=1

(Di,n+1 − di,n+1)
2

Di,n+1

. (11)

This means that we only have to minimize the second term in
(11), sinceE′

n is already optimized, thus avoiding a complete
re-training of the Sammon map. This optimization is a rela-
tively cheap operation compared to the global minimizationof
E′

n+1, namely the(n+ 1)-th part of it.

B. New patterns as linear combinations

Since the Sammon plot of a patterny(x) in its original
form (1) or in the kernel enhanced versiony(φ(x)) of (8) is
not an affine function, it cannot be implemented as a matrix
multiplication. We consider only the more general kernel
version here, since the linear kernelk(xi,xj) = xi · xj with
the identityφ(x) = x as the implicit map specializes to the
original Sammon map. Consequently a mapping

y(φ(x)) = M · φ(x) (12)

can only be an approximation of (8). For the sake of simplicity,
we have omitted a constant offset termy0 in (12),

Consider an × ℓ matrix Φ which contains as itsi-th row
the transposed mapφ(xi)

T of patternxi, i = 1, . . . , n

Φ := [ φ(x1) · · · φ(xn) ]T. (13)

Note that the number of columnsℓ theoretically can be infinite
(e.g. using the Radial Basis Function kernel), and thatΦ

does only appear in an intermediate, implicit calculus. The
n-dimensional product vector

kx := [ k(x,x1) · · · k(x,xn) ]T = Φ · φ(x) (14)

is the empirical kernel map [13], [10] of the new patternx.
We consider especially the work of [6] since it uses kernels

and Sammon mapping. They define a function

y(x) = W
Tkx, (15)

whereW is a weight matrix andkx the empirical kernel map
of (14). When we combine then×d weight matrixW with the
mapped training pattern matrixΦ in (13) and define then× ℓ
matrix M := W

T · Φ, we can identify the kernel enhanced
Sammon map which should to be able to map the existing
n training and new patterns, as a linear approximation of the
Sammon map in the form of (12). We can state that [6] is



a linear approximation of already mapped patterns for new
patternsxn+1, . . . that did not contribute to the generation of
the matrixW. Only the n training patternsx1, . . .xn were
mapped by a nonlinear Sammon map (then rows ofW). This
becomes even more evident when using the linear kernel with
the identity mappingφ(x) = x with all n patterns (called
strict interpolation with the number of prototypesH = n in
[6]), sinceWT · X can be identified as the matrixM in (12),
whereX has as itsi-th row the transposed training patternxi

andW as itsi-th row the transposed Sammon mapped training
patterny(xi). We consequently rise the hypothesis, since the
technique is linear, that for the learning of the weight matrix,
once then training patterns have been mapped by the Sammon
mapping in the conventional way, no iterative gradient descent
is needed for the mapping of further test patterns. The matrix
M can quite probably be obtained by the pseudoinverse based
approach presented by ourselves in section V-C. Besides, it
seems that in the work of Mingbo Ma et al., first a geodesic
function δij between two patterns in the original Euclidean
space is defined which is then passed as an argument to a
kernel function, i.e. the kernel is not used to measure a distance
in Hilbert space.

C. Assuming isometry for linear map

In the following we present our own version of a linear
approximation of the kernel enhanced Sammon map. An
obvious advantage of our method is its linear nature, hence
no unconstrained optimization is needed to learn the map-
ping, only linear algebra. Linear interpolation for a subset of
nonlinearly mapped patterns was employed by Paulovich et al.
[8], restricted however to the conventional Euclidean spaces
problem of (1), whereas we want to visualize patterns residing
in the usually inaccessible Hilbert space.

We express a new patternφ(x) in the kernel mapped space
H as a linear combination

φ(x) =
n
∑

i=1

βiφ(xi) (16)

of all n kernel mapped training patternsφ(xi) and assume
that the Sammon mapped (8) new patterny(φ(x)) reflects
the same linear combination in the final spaceY using the
samen coefficientsβi as

y(φ(x)) =

n
∑

i=1

βiy(φ(xi)). (17)

Multiplying both sides of (16) byφ(xj), we obtain

φ(x) · φ(xj) =
∑

i

βik(xi,xj). (18)

The left hand side of (18) can be identified as thej-th
componentk(x,xj) of the empirical kernel map (14). The
real symmetric matrix

K = [k(xi,xj)] , i, j = 1, . . . , n (19)

of the d−dimensional patternsxi, i = 1, . . . , n is defined as
the Gram matrix (Kernel matrix) [15]. In our work we use only

positive definite kernels which guarantee a diagonizable Kernel
matrix with the Singular Value eigendecomposition [10]

K = BΩB
T, (20)

where the columns of the orthogonal matrixB are the eigen-
vectors ofK and Ω is a diagonal matrix withp non-zero
positive real eigenvaluesλk on its diagonal and(n− p) zero
eigenvalues. The rank of the Kernel matrixK is equal to the
numberp of non-zero eigenvalues.

The kernel matrixK has no inverse, since its rankp by
construction is at mostd ≈ p << n, or even smaller when
the features are correlated, wheren is the number of samples
and d is the dimension of the original feature vector. It has
however a generalized inverse (aka pseudoinverse)K

† which
can be obtained, from the result of the SVD of (20) as

K
† = BΩ

−1
B
T, (21)

where the matrixΩ−1 is composed of the inverted eigenvalues
1/λk of K at the corresponding diagonal positions and zero
where the eigenvalues were (numerically) zero, i.e.Ω

−1 =
diag(1/λ1, . . . , 1/λp, 0, . . . , 0).

Considering (19) and (18), withβ being then-dimensional
vector of the coefficientsβi, we can write

kx = Kβ, (22)

such that the coefficients in a least square approximation, using
the pseudoinverse (21) become

β = K
†kx. (23)

Having obtained the coefficientsβ permits the linear inter-
polation of new patternsx, previously implicitly mapped as
φ(x), using (17) asy(φ(x)).

VI. EXPERIMENTS

In the following we illustrate the usefulness of the kernel
enhanced version of the Sammon map by visualizing pattern
sets in the usually inaccessible mapped pattern spaceH and
comparing our approach of linear interpolation of new patterns
to the error-free orthodox Sammon map.5

We used the following data sets:
1) Circular Data: A synthetic data set composed of 100

patterns in 3-D space, evenly distributed along a circle
of radius 2.5.

2) Gaussian distributed data at vertices of a simplex: This
data set is similar to the one used in Sammon’s original
paper [11]. It consists of 20 points sampled from a
normal distribution at each of the five vertices of a
4-dimensional simplex considered as a mean vector,
totalizing 100 points.

3) Iris Data: Classical data set used by Fisher, composed
of three times 50 patterns of dimension four (length
and width of sepal and petal of three iris flower species
(setosa, virginica, versicolor).

5 The Kernel Sammon Map has been incorporated into the ’tooldiag’
pattern recognition toolbox, written in C, and can be obtained at
http://sites.google.com/site/tooldiag.

http://sites.google.com/site/tooldiag
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Fig. 2. Kernel Sammon mapping and linear interpolation test. First row is for 2-D projection and second row for 3-D projections. (a) and (d) for Circular
data, (b) and (e) for simplex set and (c) and (f) for Iris. The solid marks represent the interpolated test patterns and the hollow marks the training set.

A. Stress function evaluation

The quality criterion of the Sammon map is the stress
function (3). In order to measure the approximation error ofa
new test patternx with respect to then training patternsxi,
we define its stress

s(x) =
1

∑n
i=1

Di,x

n
∑

i=1

(Di,x − di,x)
2

Di,x
, (24)

where the distanceDi,x in kernel mapped space respectively
in the Sammon mapped pattern spacedi,x between the new
patternx and thei-th training patternxi are

Di,x = [k(xi,xi)− 2k(xi,x) + k(x,x)]
1/2

di,x = ||y(φ(xi))− y(φ(x))||. (25)

The stress for a setT of m test patternsxp, p = 1, . . . ,m,
assuming a uniform probability of observing a test pattern,
can be defined as the expected valueE[s(x)] of the stress
(24), estimated as the mean over thesem test patterns as

s(T ) =
1

m

m
∑

p=1

s(xp). (26)

First we compare the original Sammon map and our linear
approximation (17), considering the mean stress (26) ofm test
patterns. We expect the Sammon map to deliver the lowest
stress and the linear approximations to perform worse.

For the circular data we chose a set of 50 patterns as the
training set and the 50 immediate neighbors of each training
pattern as the test set. For the simplex data we do a random

66/33 training/test split and for the iris data the rate is 100/50.
We used a RBF kernel withσ = 1 for the simplex set and
σ =

√
5 for the circular and Iris data. The results are presented

in fig. 2. The solid marks are our linear interpolation method
(17) for the test set, while the hollow marks are the mapped
training set using the kernel Sammon map (8). In the Iris set
the blue circles represent Iris-setosa, red squares Iris-virginica
and green diamonds mark Iris-versicolor.

TABLE I
STRESS FUNCTION EVALUATION FOR THE MAPPING OF TRAINING

PATTERNS, TEST PATTERNS USING THESAMMON MAPPING AND TEST

PATTERNS USING THE LINEAR INTERPOLATION OF(17). THE KERNEL IS

RBF WITH σ = 1 FOR THE SIMPLEX SET ANDσ =
√
5 FOR THE

CIRCULAR AND IRIS DATA.

Mapping Training Error Error-free Our Method

IRIS 2-D 1.67× 10−2 2.08× 10−2 2.18× 10−2

IRIS 3-D 4.13× 10−3 6.01× 10−3 7.81× 10−3

GAUSSIAN 2-D 1.21× 10−1 1.30× 10−1 1.32× 10−1

GAUSSIAN 3-D 5.97× 10−2 6.78× 10−2 7.07× 10−2

CIRCULAR 2-D 2.06× 10−2 2.06× 10−2 2.06× 10−2

CIRCULAR 3-D 5.78× 10−3 5.78× 10−3 5.78× 10−3

The numerical results for the stress function evaluation are
shown in Table I. We calculated the stress function (26) for the
test sets for our linear interpolation method and for error-free
mapping of new test patterns by the kernel Sammon mapping.
In our tests, as expected, the error-free Sammon mapping had
the lowest stress for the Iris and Gaussian data. However,
for the Circular data the linear approximation delivered an



identical stress value compared to the orthodox Sammon
mapping. This suggests that the Circular data probably has
a linear nature in the RBF kernel mapped space, permitting to
express it as a linear transformation, but the theoretical proof
is outside the scope of this paper.

B. Sammon map vs. PCA

In his original paper [11], Sammon compared his new
technique to the visualization of high-dimensional patterns in
Euclidean space from which the first two or three Principal
Components were extracted [3]. In analogy to that juxtapo-
sition, we compare the Kernel Sammon map (KSM) of this
work to Kernel PCA (KPCA) [14]. Let

Kc = K− 1K− K1+ 1K1 = BcΩcBc
T (27)

be the spectral decomposition of the centered versionKc of
the Kernel matrixK of (19), where1 is a matrix with the value
1/n at each position andBc andΩc have the same meaning
as in (20). The Kernel PCA is defined [10] as the function

y(φ(x)) = Ωc
−1/2

Bc
T(kx − kµ). (28)

The matrix Ωc
−1/2 is composed of the element-wise in-

verted square roots of thep nonzero eigenvalues of
Ωc, ignoring the zero-valued eigenvalues, i.e.Ωc

−1/2 =
diag(1/

√
λ1, . . . , 1/

√

λp, 0, . . . , 0), kx is the empirical kernel
map of a patternx defined in (14) andkµ is the empirical
kernel map of the mean vectorµ = n−1

∑n
i=1

xi of all
patterns, defined as then-dimensional vector

kµ = [ k(µ,x1) · · · k(µ,xn) ]T. (29)

(a) (b)

(c) (d)

Fig. 3. KPCAvs.Kernel Sammon Mapping (KSM) for the simplex data. First
row is Kernel Principal Component Analysis (KPCA) for (a) 2-Dprojection
and (b) 3-D projection. Second row is KSM for (c) 2-D projection and (d)
3-D projection. RBF kernel withσ =

√
5.0 is used.

We used the simplex set and Iris data to compare KSM to
KPCA. The results are shown in fig. 3 and fig. 4. For both
tests, we used a RBF kernel, withσ = 1 for the simplex data

and σ =
√
5 for the Iris set. A similar result as described

in [11], where Sammon compares his technique to PCA, is
observed for the simplex data. When projected to 2-D, five
clusters can be observed (fig. 3 (c)). However, when we
compare KSM to KPCA using the two largest eigenvectors,
we observe only three clusters (fig. 3 (a)), suggesting at least
for this example that KSM provides a more homogeneous and
consistent agglomeration. For the 3-D projection, KPCA gives
a good clustering behaviour, the KSM however does reflect the
circular nature of the Radial Basis kernel much better, since the
mapped patterns are basically mapped onto a sphere surface,
suggesting that the patterns in the hidden spaceH lie on the
surface of a hypersphere.

(a) (b)

(c) (d)

Fig. 4. KPCAvs.KSM for iris data. First row is KPCA for (a) 2-D projection
and (b) 3-D projection. Second row is KSM for (c) 2-D projection and (d)
3-D projection.

C. Visualization of intrinsic kernel parameter variation

The aim of the next experiment is the analysis of the
variation of the intrinsic parameter of a kernel, for instance the
spreadσ of the Radial Basis Kernel. This assists for instance
with the evaluation of the behavior of class separability in
a classification task. One could imagine a Support Vector
Machine as the classifier and the need to study the influence
of a kernel parameter on the generation of the separating
hyperplane. With the help of KSM this is possible in the
usually hidden feature space.

Since we would like to visualize the effect of the kernel
parameters, we used an artificial data set (fig. 5), similar
to the circular data set used in the previous experiments.
It is composed of 150 points distributed in circles of radii
6, 5, 4, 3, 2 and 1 units plus one pattern at the center of
all circles. Each circle has 25 points, evenly spaced, in a
3-dimensional space. Different markers are used to provide
a better distinguishability of the mapped patterns. The red
squares markers represent the circle with the biggest radius, the



green diamonds the circle with the smallest radius and center,
and the intermediate circles are represented by the blue circles
marker.
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Fig. 5. Data set used for kernel parameter variation tests.

The results for different spreadsσ using a RBF kernel
are shown in fig. 6. We also used the polynomial kernel,
k(xi,xj) = (γxi · xj + c)p for which the results are shown
in fig. 7 for the polynomial degreep = 2 and in fig. 8 for the
polynomial degreep = 3.
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Fig. 6. Parameter variation for the RBF kernel. (a)σ =
√
2.5, (b) σ =

√
10,

(c) σ = 5, (d) σ =
√
50, (e) σ =

√
75, (f) σ =

√
87.5.

We conclude our experiments with the visualization of
three standard UCI Machine Learning data sets [4], “wine”,
“WDBC” and “pendigits”, comparing conventional and kernel

-50

0

50

-40-200204060
-70

-60

-50

-40

-30

-20

-10

0

10

20

30

(a)

-100

-50

0

50

100

-100-50050100150

-40

-20

0

20

40

(b)

-500

0

500-400 -300 -200 -100 0 100 200 300 400

-200

-100

0

100

200

300

400

500

(c)

-5000

0

5000
-4000 -2000 0 2000 4000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

(d)

Fig. 7. Parameter variation for the polynomial kernel of degree p = 2. (a)
γ = 1, c = 1 andp = 2, (b) γ = 1, c = 10 andp = 2, (c) γ = 10, c = 10
andp = 2, (d) γ = 100, c = 10 andp = 2.
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Fig. 8. Parameter variation for the polynomial kernel of degree p = 3. (a)
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enhanced Sammon mapping, see fig. 9, fig. 10 and fig. 11.

VII. C ONCLUSION AND FUTURE WORK

We have extended the classical technique of nonlinear high
dimensional pattern mapping for visualization proposed by
Sammon in the sense that an intermediate nonlinear map-
ping into Hilbert space is introduced where distances can be
measured by virtue of a kernel. We incorporate the distances
among the patterns in the intermediate space directly into
the stress function proposed by Sammon which provides
a straightforward extension of the original concept with a
minimal impact onto the gradient descent based learning of the
Sammon map. We furthermore propose a linear interpolation
of new patterns based on the combination of already mapped



(a) (b)

Fig. 9. Wine data. Three classes (nc = 3) with n = 178 samples and
dimensiond = 30. (a) Original Sammon map, (b) KSM using RBF kernel
with σ =

√
0.0025

(a) (b)

Fig. 10. WDBC,nc = 2, n = 569, d = 30. (a) Original Sammon map, (b)
KSM using RBF kernel withσ =

√
0.025

training patterns. The benefits of our technique are obvious. It
is now possible to visualize more faithfully the kernel related
mapping, compared to Kernel PCA, for instance. Future work
will study different kernels and potential applications.
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Fig. 11. Handwritten digits,nc = 10, n = 5620, d = 64. (a) Original
Sammon map, (b) KSM using polynomial kernel withγ = 1, c = 1 and
p = 3, only 50 samples shown of each class to avoid overloading of the
graph. Compare, for instance, the classes “0” and “3”, where less dispersion
can be observed, if the polynomial kernel is used.
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[16] A. J Smola and B Scḧolkopf. A tutorial on support vector regression.

NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College,
University of London, UK, 1998. To appear in Statistics and Computing,
2001.

[17] L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik. Dimen-
sionality Reduction: A Comparative Review. Unpublished, published
online, 2007.

[18] V Vapnik. The Nature of Statistical Learning Theory. Springer, N.Y.,
1995.

[19] Kai Yu, Liang Ji, and Xuegong Zhang. Kernel nearest-
neighbor algorithm. Neural Processing Letters, 15:147–156, 2002.
10.1023/A:1015244902967.


	Introduction
	Sammon plot
	Distances between kernel mapped patterns
	Implicit kernel map
	Kernel based distances of mapped patterns

	Sammon mapped kernel mapped patterns
	Mapping of new patterns
	Error-free new pattern mapping
	New patterns as linear combinations
	Assuming isometry for linear map

	Experiments
	Stress function evaluation
	Sammon map vs. PCA
	Visualization of intrinsic kernel parameter variation 

	Conclusion and Future Work
	References

