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Abstract—We extend the visualization technique of high- pattern from the intermediate feature space to the finahllysu

dimensional patterns conceived by Sammon to the case when thelow-dimensional Euclidean feature space, where is passibl
patterns have been previously mapped to an implicitly defined apply common visualization techniques.

Hilbert feature space in which distances can be measured by A h t k Is in S .
kernels. The principal benefit of our technique is the possibility N approach 1o use kernels In sammon mapping Wwas

to gain insight into the distribution of the patterns, even in this Presented by Mingbo Ma et al.I[6]. The mapping of training

generally non-accessible feature space. patterns and the interpolation of new patterns are combined
Keywords-Sammon map, Hilbert feature space, Kernels, Visu- in a unique mapping function which is a Iine_ar combination
alization, Kernel Principal Component Analysis. of the kernel expanded unknown pattern with the Sammon
mapped training patterns. Our work is motivated by the

|. INTRODUCTION fact that the distances between two patterns that have been

he visualizati ¢ iding i hiah di mapped to the implicit feature space prior to the Sammon
,T e visualization o patterns resi ing In a hig Imenr'napping can be included directly into the stress functiat th
sional feature space is one of the main concerns of pattgfilaq res the quality of the Sammon mapping. Besides, we
recognition. Van der Maaten et al. [17] give an overview,,, <o an interpolation method for new patterns based on
of dimensionality reduction techniques. A classical méthq, |ihear combination of already mapped patterns. Our main
to map patterns fLom e:j-h|gh-Q|men.S|orr]1al continuous featulEyintion is the direct formulation of the Sammon stress
space to two or three dimensions is the Sammon map [1¢]ction based on kemel-based distances in the impliatufe

A stress function is defined which measures the discrepangy, e and a novel linear interpolation of new patterns based
between the mutual distances in the original feature spade g o mapped training patterns

the mutual distances in the projected feature space. Ysuall tq rest of the paper is organized in the following manner:

the projected feature space has two or three dimensionsglg:(ion) reviews the nonlinear mapping proposed by Sam-
permit the visualization, but in general the dimension & thy,,, 1 sectiodTIl implicit kernel mapping and the distance
projected space is not restricted. . . measure in the kernel mapped space is discussed. SEclion IV

In recent years, the use of feature mapping into Hilbefioomorates the kernel mapping into the subsequent Sammon
space, together with kernel based inner product similania- mapping. Sectiof )V analyzes the important case when new,
surel has gained considerable attention, because its intmd”ﬁ?éviously unseen patterns have to be Sammon mapped.
an additional, in general non-linear, mapping from theio8l  gyperimental results for the visualization of kernel erteah

feature space to an intermediate space which should impr?}éﬁtern mappings are presented in sedfioh VI and finally the
regression (cf. for example, [16]) and/or classificatiomldy .qnclusions are drawn in sectibm VII.
of the new features. Especially the Support Vector Machine

has drawn much attention to kernel-based implicit feature Il. SAMMON PLOT
mapping, although many other classification techniquesiean In its original form [11], the Sammon mayp
enhanced by kernels, for instance the Kernel Nearest-Heigh

classifier or Kernel Principal Component Analysis mentgbne y:&—=Y
later in this paper. Xy (1)

If we war_lt to iptrod_uce_ kernel—bgsed mapping into the Sank 5 nonlinear projection of patternsx;,i = 1,...,nin a D-
mon mapping visualization technique, consequently we deginensional Euclidean spade onton corresponding patterns
with two different mappings, from the original, eventuatign- ..i=1,....n in anotherd-dimensional Euclidean spagé
numeric feature space to the intermediate implicitly defing; D, that should preserve the notion of mutual geometric
Hilbert space where inner products can be calculated by §i@ances among the patterns. For direct visualizatiopgaes
kernel, and finally the Sammon map which transforms thge mapped dimension is setdo= 2 or d = 3. The faithful-

. N _ , ness of the mapping is naturally limited by the intrinsic dim
For the sake of simplicity, we will use the term “kernel mappirig

identify the mapping from the original feature space intdeiit space where SION Of the data. The end points, 0,0), (0,1,0), (0,0,1) Of.
kernels can be used to calculate an inner product to measuiiarsy. the axes ofR3, for example, can be mapped onto the vertices
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of an equilateral triangle ifR? without error, but not onto exclusively be expressed as an inner prodhict;) - ¢(x;) of

the x-axis of R! anymore, because there it is impossible tthe mapped versions of the original feature vectorandx;

position three distinct points with equal mutual distantbese. when implementable calcullibas to be done. This constraint
We will use the following abbreviations, witha — b|| = enables the use of kernélsthat implement the inner product

[(a—b)T(a— b)]l/2 as the Euclidean distance between twi the transformed space as

column vectorsa andb:

k(xi,x;) = p(x;) - P(x;). ®)
D;; = i — X Distance in original feature space . . .
J i = ;1 . . g P As examples consider the commonly employed Radial Basis
d;j == |ly: —y;|| Distance in mapped feature spaye Function kernelk(x;,x;) = exp(—|[x; — x;|[2/(202)) with

@) spread parameter> or the inhomogeneous polynomial kernel

A stress function k(x;,x;) = (x; - x; + 1)? which maps to all possible
1 " (D, — d)? monomials up to degreg see e.gl[12]. The mapped spd¢e

E({y1,....yn}) = ST D /]D»‘ ’ (3) is a Hilbert space where an inner product is defined, whereas
1< T i< Y the features in the original pattern spateare not restricted to

expresses a discrepancy between all mutual distances in lecontinuous values. By virtue of an appropriate kerne, th
original X and mapped spac®. In Sammon’s original original features can be of symbolic, discrete or contirsuou
work the stress function is minimized by an unconstrainethture, or any mix of these.
optimization method, namely gradient descent. Note that t
n(n —1)/2 mutual distanced;; in X’ have to be calculated
only once, whereas the distances)inhave to be constantly ~The idea of kernels does appear early as Potential Functions
updated during the minimization of the stress functibh (3)} Aizerman et al.[[2]. The same authors do also present the
since the positions of thg; change (they are the parameters dfléa of a kernel version of the Nearest Neighbor Classifier
the gradient descent). The normalizing const’ahE;;j D;; [3]. The kernel version of the Euclidean distance was called
has no influence on the determination of a minimum[@f (3Feneralized Distance ir[1] and redefined by Yu et al. as
since it does not affect the gradient descent with respecttf® Nearest Neighbot [19]. The idea can easily be seen by
the necessary condition of a minimuRE — 0, and could expanding the (quadratit)Euclidean distancd|x; — x;||?
consequently be omitted froril(3). between a patterr; and a patterrx; as

An observation when comparing our method with the
method proposed by Mingbo Ma et al.l [6] is the nonlinear
nature of the Sammon map, i.e. in general there is no affiagd then substituting the pattexrby its mapped versiog(x)
function, implementable as a matrix multiplication (pluge- to get
tually a constant offsety(x) = M - x + y, that produces the
mapping defined in{1). D}y = |lp(x:) — d(x)[]> =

[1l. DISTANCES BETWEEN KERNEL MAPPED PATTERNS b(xi) - p(xi) = 20(xi) - (x;) + P(x) - P(x5) =
Kernel based regression and classification has gained a lot k(% xi) = 2k(xi, %5) + k(x5 %;). - (7)

of attention, especially in the context of the Support Vect@onsequently distances between patterns in Hilbert spate ¢
Machine (SVM) [5], [18]. There are more fundamental patterhe measured by virtue of the kernel function, although the
recognition methods that were enhanced by the implicitdszlerqJroper patterns are not accessible.

mapping principle prior to the proper technique, such abéfis | the context of the Kernel Nearest Neighbor Classifier,
Linear Discriminant Analysis_[7], Multilayer PerceptroB][ the patternx; assumes the role of an unknown pattern to be
Mahalanobis Distance [10], Mean Squared Erfor [10], Kemglassified andx;, the role of a class-labeled training pattern.
Principal Component Analysis (kernel PCA) [14] or Nearegence we can measure distances in the mapped space between
Neighbor Classifier [19], without being exhaustive. unknown patterns and the training patterns by using the
A. Implicit kernel map employed kernel thus implementing the Kernkl-Nearest
Neighbor classifier)’ > 1. In the context of the Sammon map,
we are however only concerned with unsupervised mapping.

E. Kernel based distances of mapped patterns

D =lxi — x> =xi % — 2% %5 +%;-%;  (6)

The basic idea is to use a map
d: X —>H

x = ¢(x) (4) : . -

] ] . ] We combine the mapping of (@) from the original feature
which projects a feature vector of dimensionD to a new gpacex to the kernel-based implicitly mapped Hilbert space
feature vectorp(x) of dimension < co. This map however 3/ with the Sammon mapping of (I), now from the Hilbert
may not be defined explicitly in general. The metric of simila
ities and consequently distances in the mam&espac@ must 3 Patternsg(x) in Hilbert space in general cannot be stored in computer

memory explicitly. They can only be handled in analytical ohis.
2 94 stands for theilbert spacebut also suggestsidden since the patterns 4 We keep the distance in the quadratic fcﬂﬁj to simplify the equations
@(x) in this space in general are only implicitly available. (®) and [7). Later, in[{9), we need the distanoe;.

IV. SAMMON MAPPED KERNEL MAPPED PATTERNS



spaceH to the final low-dimensional visualization spa@eto has been done. Note that “error-free” does not mean that the

define a new Sammon map map is globally optimized, but only that the same minimum
is reached.
y: X=>H=Y Omitting the constant/}"7"_. D;; in (3) which does not
x = ¢(x) = y(d(x)). (8) affect the gradient descent determination of the minimum, w

The mapping pipeline is shown in figl 1. From the origina‘iIenne an equivalent stress function

feature spaceX which is not necessarily Euclidean, the y , - (Dij — dij)?
patterns are mapped implicitly to the intermediate feature By =FE({y1,....yn}) = ZT
space# which is not directly visualizable for two reasons. <

Firstly the map¢ is not defined explicitly and secondly thelf we want to include a new patterg,, 1 into the mapping,
dimension of# is generally too high. The patterns # are the new stress functiofy;, , can be decomposed into the the
finally mapped by the Sammon map to the final feature term of the training patterns plus a ternvofew discrepancies
space) . as

9 pe) TN
o ’ Y2hy, = y(p(x:)) This means that we only have to minimize the second term in
(@1), sinceE!, is already optimized, thus avoiding a complete
re-training of the Sammon map. This optimization is a rela-
X y =y(¢(x)) tively cheap operation compared to the global minimizatibn
i y " E; .., namely the(n + 1)-th part of it.
i ) o ] ) ) ] ) B. New patterns as linear combinations
Fig. 1. Mapping pipeline when using an intermediate Hilbgace in the . L o
Sammon plot. Since the Sammon plot of a pattegr(x) in its original
form (@) or in the kernel enhanced versigiigp(x)) of () is

The impact on the stress functidd (3) is minimal. Only theot an affine function, it cannot be implemented as a matrix
distancesD;; in the originally Euclidean spac& of (2) and multiplication. We consider only the more general kernel
(®) have to be substituted by the new distantgs of (7) in  version here, since the linear kernglx;, x;) = x; - x; with
the Hilbert space{ the identity ¢(x) = x as the implicit map specializes to the
original Sammon map. Consequently a mapping

. . .y y(¢(x)) =M ¢(x) (12)
Again, the distance®;; in Hilbert space have to be calculated o o
only once, such that the complexity of the stress functidih only be an approximation 6fl(8). For the sake of simpficit
minimization algorithm is not affected at all. We are nowve have omitted a constant offset tegm in (12),
able to visualize patterns that have previously been mapped Consider an x ¢ matrix @ which contains as itg-th row
implicitly to Hilbert space byg(x), and then measuring the transposed map(x;)" of patternx;, i =1,...,n
distapce; by virtue of a kernel, per.r.nitt.ing to.gair) i'nsi.ghbi ®=[o(x1) - oxn) " (13)
the situation of the pattern separability in the implicityfined
space. For instance, in Support Vector Machine regressidgte that the number of columrigheoretically can be infinite
and classification, the influence of different kernels anel t€-9. using the Radial Basis Function kernel), and tat

variation of their intrinsic parameters can be made visible does only appear in an intermediate, implicit calculus. The
n-dimensional product vector

k= [ k(x,x1) - k(xx,) [T=@-¢(x)  (14)

(10)

n
D ni1 — ding1)?
B =54 S Pintt = dint)” 11
n+1 n ; Di,n+1 ( )

X B(x) 4 : yi = y(o(x;))

Dij = k(x5 %) — 2k(xi,x;) + k(x;,x;)]"/* .

V. MAPPING OF NEW PATTERNS

We consider the case when a previously unseen new pattern
X,4+1 should be Sammon mapped Wy (8) together with ttig the empirical kernel map [13], [10] of the new pattetn
existing n patterns which we will call the training patterns We consider especially the work 6f [6] since it uses kernels
X, i=1,...,n. and Sammon mapping. They define a function

A. Error-free new pattern mapping y(x) = W'k, (15)

As mentioned before, the Sammon map is not an affimehereW is a weight matrix and, the empirical kernel map
function. The only way to guarantee that the new pattern(s) (I4). When we combine thex d weight matrixW with the
Xn4+1 are projected ontqy by the same Sammon map asnapped training pattern matri& in (I3) and define the x ¢
all n training patterns, is to include the new pattern intmatrix M := WT . &, we can identify the kernel enhanced
the same stress functiohl (3) to be minimized as before. TBammon map which should to be able to map the existing
same minimum must be reached, either by including patterntraining and new patterns, as a linear approximation of the
x,+1 beforehand as a training pattern, or after the trainif§ammon map in the form of {112). We can state that [6] is



a linear approximation of already mapped patterns for ngesitive definite kernels which guarantee a diagonizabladle
patternsx,, .1, ... that did not contribute to the generation omatrix with the Singular Value eigendecomposition![10]
the matrix W. Only the n training patternsx,,...x, were K — BOBT (20)
mapped by a nonlinear Sammon map (theows of W). This ’
becomes even more evident when using the linear kernel witlhere the columns of the orthogonal matBxare the eigen-
the identity mappingp(x) = x with all n patterns (called vectors of K and Q is a diagonal matrix withp non-zero
strict interpolation with the number of prototypés = n in  positive real eigenvalues;, on its diagonal andn — p) zero
[6]), sinceWT - X can be identified as the matrM in (I2), eigenvalues. The rank of the Kernel matkxis equal to the
whereX has as itg-th row the transposed training pattetn numberp of non-zero eigenvalues.

andW as itsi-th row the transposed Sammon mapped training The kernel matrixK has no inverse, since its rank by
patterny (x;). We consequently rise the hypothesis, since tlwnstruction is at most ~ p << n, or even smaller when
technique is linear, that for the learning of the weight matr the features are correlated, wheres the number of samples
once then training patterns have been mapped by the Sammand d is the dimension of the original feature vector. It has
mapping in the conventional way, no iterative gradient dasc however a generalized inverse (aka pseudoinvef$eyhich

is needed for the mapping of further test patterns. The matdan be obtained, from the result of the SVD [of](20) as

M can quite probably be obtained by the pseudoinverse based Kt — Bo-1BT 1)
approach presented by ourselves in secfionl V-C. Besides, it o ’
seems that in the work of Mingbo Ma et al., first a geodesighere the matriX2—! is composed of the inverted eigenvalues
function ¢;; between two patterns in the original Euclidean/\; of K at the corresponding diagonal positions and zero
space is defined which is then passed as an argument tareere the eigenvalues were (numerically) zero, Q! =
kernel function, i.e. the kernel is not used to measure amigt diag(1/A,...,1/X,,0,...,0).

in Hilbert space. Considering[(IP) and(18), witB being then-dimensional

L . vector of the coefficients;, we can write
C. Assuming isometry for linear map

In the following we present our own version of a linear k, = KB, (22)
approximation of the kernel enhanced Sammon map. Afjch that the coefficients in a least square approximatigingu
obvious advantage of our method is its linear nature, hengg pseudoinversé (21) become
no unconstrained optimization is needed to learn the map- ;
ping, only linear algebra. Linear interpolation for a sutbse B = K'k,. (23)

nonlinearly mapped patterns was employed by Paulovich et ghying obtained the coefficieni8 permits the linear inter-

[8], restricted however to the conver)tiongl Euclidean 8BaCpolation of new patterns, previously implicitly mapped as
problem of [[1), whereas we want to visualize patterns ngIdld)(X), using [17) asy(p(x)).

in the usually inaccessible Hilbert space.

We express a new patteti(x) in the kernel mapped space VI. EXPERIMENTS
‘H as a linear combination In the following we illustrate the usefulness of the kernel
n enhanced version of the Sammon map by visualizing pattern
P(x) = Bid(x:) (16) sets in the usually inaccessible mapped pattern spaead
i=1 comparing our approach of linear interpolation of new pate

of all n kernel mapped training patterrs(x;) and assume to the error-free orthodox Sammon niap.
that the Sammon mappefl (8) new patterfip(x)) reflects ~ We used the following data sets:
the same linear combination in the final spageusing the 1) Circular Data: A synthetic data set composed of 100

samen coefficientss; as patterns in 3-D space, evenly distributed along a circle
n of radius 2.5.
y(p(x)) = Zﬂiy(qb(xi)). a7) 2) Gaussian distributed data at vertices of a simplex: This
i=1 data set is similar to the one used in Sammon’s original
Multiplying both sides of[{T6) byp(x;), we obtain paper [1:.L]. It cpnsists of 20 points.sample.d from a
normal distribution at each of the five vertices of a
D(x) - P(x;) = Y Bik(xi,%;). (18) 4-dimensional simplex considered as a mean vector,
i totalizing 100 points.
The left hand side of[{18) can be identified as tjh 3) Iris Data: Classical data set used by Fisher, composed
componentk(x,x;) of the empirical kernel mag_(14). The of three times 50 patterns of dimension four (length
real symmetric matrix and width of sepal and petal of three iris flower species

setosa, virginica, versicolor).
K:[k(xhxj)]vivj:lv"wn (19) ( g )

f the d—di . | 1 is defined 5 The Kernel Sammon Map has been incorporated into the 'todldiag
of the d—dimensional patterns;,i = 1,...,n Is defined as jayern recognition toolbox, written in C, and can be ofedinat

the Gram matrix (Kernel matrix) [15]. In our work we use onbhttp://sites.google.comisite/toold|ag.
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Fig. 2. Kernel Sammon mapping and linear interpolation tesst Fow is for 2-D projection and second row for 3-D projenso (a) and (d) for Circular
data, (b) and (e) for simplex set and (c) and (f) for Iris. Thiédsmarks represent the interpolated test patterns and thenhmarks the training set.

A. Stress function evaluation 66/33 training/test split and for the iris data the rate i6/50.

The quality criterion of the Sammon map is the stresde used a RBF kernel withr = 1 for the simplex set and
function [3). In order to measure the approximation erroa of? = v/5 for the circular and Iris data. The results are presented
new test patternx with respect to the: training patternsg;, 1N fig. 2. The solid marks are our linear interpolation method
we define its stress (@2) for the test set, while the hollow marks are the mapped

. " (D training set using the kernel Sammon mAp (8). In the Iris set
S(X) 7,X

dix) the blue circles represent Iris-setosa, red squaresilggica

(24)

Z?:l Divx i=1

7
Di,x

and green diamonds mark Iris-versicolor.

where the distanc®; x in kernel mapped space respectively
in the Sammon mapped pattern spakg between the new
patternx and thei-th training patternx; are

TABLE

STRESS FUNCTION EVALUATION FOR THE MAPPING OF TRAINING
PATTERNS TEST PATTERNS USING THESAMMON MAPPING AND TEST
PATTERNS USING THE LINEAR INTERPOLATION OR[L7). THE KERNEL IS

D . — [k:(x X‘) —Qk(x‘ x) +k(x x)]1/2 RBFWITH ¢ = 1 FOR THE SIMPLEX SET ANDo = /5 FOR THE
hx L v ’ CIRCULAR AND |RIS DATA.
dix = ly(é(x:)) —y(@(x))][.  (25)
The stress for a sef’ of m test patternsc,, p = 1,...,m, Mapping Training Error Error-free Our Method
assuming a uniform probability of observing a test pattern, IRIS 2-D 1.67x 1072 2.08x 1072 2.18 x 10~ 2
can be defined as the expected valiig(x)] of the stress IRIS 3-D 413x 1073 601 x107%  7.81x 1077
im he mean over th m GAUSSIAN 2-D  1.21 x 10~ 1.30 x 1071 1.32 x 10—
23). estimated as the mean over theséest patterns as GAUSSIAN 3-D 597 x 1072 6.78 x 1072  7.07 x 1072
1 CIRCULAR 2-D  2.06 x 1072 2.06 x 1072  2.06 x 102
s(T) = — Z 5(xp). (26) CIRCULAR 3-D 578 x 103  5.78 x 10~3  5.78 x 103
m

p=1

First we compare the original Sammon map and our linearThe numerical results for the stress function evaluati@an ar
approximation[(1]7), considering the mean stress (26 ¢ést shown in Tabléll. We calculated the stress function (26)Her t
patterns. We expect the Sammon map to deliver the lowasst sets for our linear interpolation method and for efree-
mapping of new test patterns by the kernel Sammon mapping.

stress and the linear approximations to perform worse.

For the circular data we chose a set of 50 patterns as theour tests, as expected, the error-free Sammon mapping had
training set and the 50 immediate neighbors of each trainitige lowest stress for the Iris and Gaussian data. However,
pattern as the test set. For the simplex data we do a randfum the Circular data the linear approximation delivered an



identical stress value compared to the orthodox Sammand o = +/5 for the Iris set. A similar result as described
mapping. This suggests that the Circular data probably has[11], where Sammon compares his technique to PCA, is
a linear nature in the RBF kernel mapped space, permittingdbserved for the simplex data. When projected to 2-D, five
express it as a linear transformation, but the theoreticadfp clusters can be observed (figl 3 (c)). However, when we
is outside the scope of this paper. compare KSM to KPCA using the two largest eigenvectors,
we observe only three clusters (fig. 3 (a)), suggesting &t lea
for this example that KSM provides a more homogeneous and
In his original paper[[11], Sammon compared his newonsistent agglomeration. For the 3-D projection, KPClegiv
technique to the visualization of high-dimensional paiein 5 good clustering behaviour, the KSM however does reflect the
Euclidean space from which the first two or three Princip@lrcular nature of the Radial Basis kernel much better esthe
Components were extracted [3]. In analogy to that juxtapgiapped patterns are basically mapped onto a sphere surface,

sition, we compare the Kernel Sammon map (KSM) of thigyggesting that the patterns in the hidden sgfcke on the

B. Sammon map vs. PCA

©
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map of a patterrx defined in [I4) andk,, is the empirical , - Egﬁg o
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08 o éé Fig. 4. KPCAvs.KSM for iris data. First row is KPCA for (a) 2-D projection
06 %% %2 and (b) 3-D projection. Second row is KSM for (c) 2-D projectiand (d)
0.4 o

3-D projection.

C. Visualization of intrinsic kernel parameter variation

The aim of the next experiment is the analysis of the
variation of the intrinsic parameter of a kernel, for ingtarthe
spreads of the Radial Basis Kernel. This assists for instance
with the evaluation of the behavior of class separability in
a classification task. One could imagine a Support Vector
Machine as the classifier and the need to study the influence
of a kernel parameter on the generation of the separating
hyperplane. With the help of KSM this is possible in the
usually hidden feature space.

Since we would like to visualize the effect of the kernel
parameters, we used an artificial data set (fig. 5), similar

Fig. 3. KPCAvs.Kernel Sammon Mapping (KSM) for the simplex data. Firsto the circular data set used in the previous experiments.

3-D projection. RBF kernel witlr = /5.0 is used.

row is Kernel Principal Component Analysis (KPCA) for (a) 2pBojection
and (b) 3-D projection. Second row is KSM for (c) 2-D projectiand (d)

It is composed of 150 points distributed in circles of radii
6, 5, 4, 3, 2 and 1 units plus one pattern at the center of
all circles. Each circle has 25 points, evenly spaced, in a

We used the simplex set and Iris data to compare KSM 8dimensional space. Different markers are used to provide
KPCA. The results are shown in fig] 3 and fig. 4. For both better distinguishability of the mapped patterns. The red
tests, we used a RBF kernel, with= 1 for the simplex data squares markers represent the circle with the biggestsaitie



green diamonds the circle with the smallest radius and gentt.
and the intermediate circles are represented by the blaesir
marker. ‘

300 200 100 0
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Fig. 5. Data set used for kernel parameter variation tests. © )
. . Fig. 7. Parameter variation for the polynomial kernel of degre= 2. (a)
The results for different spreads using a RBF kernel 4 =1, c=1andp=2, (b)y=1,c=10andp =2, (€) v = 10, c = 10
are shown in fig[16. We also used the polynomial kernedndp =2, (d)~ =100, c =10 andp = 2.
k(x;,x;) = (vx; - x; + ¢)P for which the results are shown
in fig. [@ for the polynomial degreg = 2 and in fig.[8 for the
polynomial degree = 3.
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(d)

Fig. 8. Parameter variation for the polynomial kernel of degre= 3. (a)
y=1,c=1landp=3,(b)y=1,c=10andp =3, (c)y =10, c =10
andp = 3, (d) vy = 100, ¢ = 10 andp = 3.

enhanced Sammon mapping, seelfig. 9,[fig. 10 andfig. 11.

VIl. CONCLUSION AND FUTURE WORK

We have extended the classical technique of nonlinear high
dimensional pattern mapping for visualization proposed by
Sammon in the sense that an intermediate nonlinear map-
ping into Hilbert space is introduced where distances can be
measured by virtue of a kernel. We incorporate the distances
Fig. 6. Parameter variation for the RBF kemnel. ¢ay- v2.5, () o = 10, among the patterns in the intermediate space directly into
() o =5, (d) o =+50, (€) o = V75, (f) o = V/87.5. the stress function proposed by Sammon which provides

a straightforward extension of the original concept with a

We conclude our experiments with the visualization ahinimal impact onto the gradient descent based learninigeof t
three standard UCI Machine Learning data sets [4], “wineSammon map. We furthermore propose a linear interpolation
“WDBC” and “pendigits”, comparing conventional and kernebf new patterns based on the combination of already mapped
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Fig. 9. Wine data. Three classesc(= 3) with n = 178 samples and
dimensiond = 30. (a) Original Sammon

with o = 1/0.0025
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Fig. 10. WDBC,nc = 2,n = 569, d = 30. (a) Original Sammon map, (b’
KSM using RBF kernel withr = 1/0.025

training patterns. The benefits of our technique are obvikiu
is now possible to visualize more faithfully the kernel teth
mapping, compared to Kernel PCA, for instance. Future w
will study different kernels and potential applications.
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