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Abstract—This paper presents a novel patch-based approach Some experimental results are provided in Section IV, and

for object tracking robust to partial and short-time total occlu- g discussion of the proposed method is given in Section V.

sions. Initially, the original template is divided into rectangular Finally, the conclusions are drawn in Section VI
subregions (patches), and each patch is tracked independently. ’ ’

The displacement of the whole template is obtained using a Il. RELATED WORK

weighted vector median filter that combines the displacement

of each patch and also a predicted displacement computed based There are several approaches for object tracking in video
on the previous frames. An updating scheme is also applied to sequences, and region-based techniques try to match thee sam
cope with appearance changes of the template. Experimental jaqion in adjacent frames, using a variety of matching func-

results indicate that the proposed scheme is robust to partial .. - . .
and short-time total occlusions, presenting a good compromise tions. A classical approach is the KLT (Kanade-Lucas-Tomas

between accuracy and execution time when compared to other tracker [1], which is based on minimizing the squared erfor o

competitive approaches. a (usually small) window centered at corner-like featuidse
Keywords-Object tracking; Occlusion; Multiple patches: minimization procedure i; performed iteratively, b'eingyv.e
Weighted Vector Median Filter; Bhattacharyya Distance fast, but facing problems in the presence of occlusionsimith
the window.
. INTRODUCTION Another popular approach for region-based object track-

Nowadays, with the widespread use of cameras in olﬂg is histogram m?“Ching- In_[2], the a_uthors explore_o_l the
society, the need for automated video analysis has becofrﬁ'@c'ple of color _hlstogram d|stan_ce W.'th".] a probabidist
imperative. This need has greatly increased the interest riﬁmework. In _thelr approach, particle f||ter|qg was used.tc.)
object tracking algorithms, which main goal is to identif>jﬁandle clutter in the background and occ!usmns. Comaniciu
objects (or parts of objects) in a succession of frames. ThE al. [3]. deyeloped a I_<ernel-b_aseq tracking scheme, whgre
object to be tracked is usually referred to as theet each region is characterized by its histogram, and maskibd wi

There are several different approaches to address the p@g_lsotropm kernel that assign smaller weights to pixefs fa

lem of object tracking relying on a variety of mathematic om the ce?ter ((j)ft';]he rer?lon. .tS|m|tI_ar ten;]platesbm a((j:ijacetnr:
tools. However, there are still several factors that infagethe rames are foun rough an iterative scheme based on the

performance of tracking algorithms, such as noise, compl )pattacharyya coefficient. This approach is very fast and ca

. . : : : - eal with partial occlusions on the peripheral regions &f th
object motion, occlusions, varying scene illuminationpegr- . .
) ying w Eget, but tends to fail when the occlusion gets closer ¢o th

ance changes and real-time requirements. In fact, the Iaige : )
: : L nter of the target (where the weights for the histogram are
f lish h . . . .
number of papers published on this subject indicates treat ﬁarger). An important issue is that object kernels shouldkeha

roblem is still open. . : ) .
P b certain overlap in the consecutive frames, despite recent

This workl presents a novel patch-based approach 8 . : .
object tracking. The initial template is split into smaller&forts to improve convergence issues [4], [5]. Lerdsudhaic

non-overlapping patches, which are tracked individuallye and collaborators [6] proposed a face tracking algorithm

results of afacge% atcr;es are combined in a robust Wusing the Bhattacharyya coefficient as a similarity measure
. p @/{ template matching, where each template is represented

to deterr_mne the _dlsplacement of the whole template, su ! color histograms @bCr components in thé’CbCr color

that partial occlusions can be handled. Moreover, a pm'crrnngdel) modulated by Epachinekov kernels. The value of the

scheme is included in the tracking process, o that, in so imilarity metric is used to detect total occlusions exij
cases, even complete occlusions can be handled. Finaﬂyxa? y . >NPYE
and the color of the shirts are used to recover individual

updating scheme is applied to cope with appearance changggés after the occlusion. Porikli [7] proposed a fast way
The remainder of this paper is organized as follows. Sec- - L : :
. . 10, extract multidimensional histograms based on integral i
tion Il presents some related work on region-based Ob]ea}cgtes allowing exhaustive search for object tracking based

tracking, and Section Il describes the proposed approach. . : : .
9 prop PP ?nstogram matching with low computational cost. Marimon
1Author Claudio Jung would like to thank CNPq for partiallydircing this and E_brah'm' [8] combined gradlent orientation _h|5t09ram
work. matching and template matching through Normalized Cross



Correlation, aiming to estimate rotation along with regioresult in the presence of partial occlusions, particularhen
matching. Porikli et al. [9] used the covariance matrix as f@ortions of the template containing a higher density of jpagc
parametric representation of the target, and adopted andist are occluded (so that just a few non-occluded patches would
metric for covariance matrices based on generalized eddenwemain).
ues to compute region similarity. As it will become clear in Section 1lI-B, each patch is
Multiple patches have been adopted to overcome this prakpresented through a mean vector and a covariance matrix.
lem, since some patches may present tracking errors whégence, the selected patches must be sufficiently large to
analyzed individually, but the non-occluded patches mayl leprovide reliable estimates of these statistical pararae@iven
to robust template tracking. Hager et al. [10] proposed a nele minimum desired side for each patefy the user-selected
iterative scheme for matching kernel-modulated histogramarget is divided uniformly into squares which sizes are as
and introduced objective functions optimizing more elaber close ton, as possible. Figure 1 illustrates the selection
parametric motion models based on multiple spatially disf patches for some video sequences analyzed later in this
tributed kernels. Adam et al. [11] proposed a fragmentethasvork, wheren, = 20 was experimentally defined as the
tracking algorithm based on histogram matching using thiefault desired patch side. The outer (thicker) rectargthé
Earth’s Mover Distance (EMD). In their approach, differentanually inserted template, and the smaller squares are the
template fragments are used to build a single robust distarubtained patches.
map, where occluded fragments present a smaller weight.
Their approach presents good tracking results in subatanti
partial occlusions, but fails as the number of occludedtpedc
increases. The approach in [12] employs the same basic ide
of covariance matching as [9], but using multiple overlagpi
templates to cope with partial occlusions, and focused Imain s
on object recognition. Zhu et al. [13] dealt with occlusions Y q
by dividing the object in smaller blocks, and explored the ‘-
similarity in local color and texture features for each of o
the blocks. Despite the good results, the approach in [13]
uses a background subtraction algorithm, which limits ifg9- 1. Automatic selection of patches from the user-defiredtangular
.. . . template.
application to static cameras. Liu and colleagues [14] use a
local sparse representation to model the appearance @it targ
patches, and a sparse coding histogram is used to reprbeenbt
basis distribution of the target. Despite the promisingiitss
computational time was not informed by the authors. There are several methods for template matching based
Although the use of multiple patches tends to present mava pixel statistics, such as direct histogram matching gusin
robust tracking results, the presence of occlusions (paatily ~different similarity measures [8], [11], kernel-weightéais-
total occlusions) is still a challenge. This work presents tagrams [3], or comparing statistical parameters that rilssc
patch-based tracking approach, where each patch is trackegh region, such as the covariance tracking algorithm pro-
individually, and the individual displacement vectors aoen- posed in [9].
bined in a robust manner to obtain the overall displacementOne problem of histogram-based methods is the rapid
of the object. The proposed method is described next. growth in the computational complexity as the dimension of
the feature space increases:Nf bins are used to represent
each of thel dimensions, the histogram requirdy bins for a
A. Patch-Based Templates full representation. For example, only intensity valuesased
The use of multiple patches presents additional informatién the histogram-based tracking algorithm proposed in,[11]
for object tracking, that can be used to resolve ambigyitiesince the authors claim that using 3 color channels would
model complex motion, and improve robustness w.r.t. otead to an expensive algorithm. On the other hand, statlstic
clusions. Clearly, this selection is highly dependent oe tHeature descriptors usually require a small amount of mgmor
dissimilarity measure used to compare the patches. Thé idead matching metrics which are cheaper to implement, but the
patch selection is a complex task, and it is out of the scopedafoice of the features and the statistical descriptorsilisast
this paper. In fact, our work follows the idea of [11] regaugli challenge. For example, the tracking algorithm describg@]i
patch selection. The original rectangular template, sgT8ng Uses a compact representation of each region (the covarianc
the region to be tracked, is split into a gridofx m adjacent matrix, requiringd(d + 1)/2 parameters) to perform region
rectangular patches. Although this subdivision may predumatching. However, it is clear that distinct regions mayehav
ambiguous patches presenting erroneous tracking residts, the same covariance matrix, leading to possibly erroneous
remaining patches that present a correct match help to cdempmatching.
the displacement of the whole template in a robust manner.The definition of the dissimilarity measure for object match
Also, a non-uniform patch distribution could bias the tiagk ing is also a disputed issue. Rubner and collaborators [15]

(a) Woman (b) Facel

Patch Matching

1. THE PROPOSEDMODEL



performed an empirical comparison of several matching al-To obtain the individual displacement vectof for each
gorithms (including the Bhattacharyya distance, Kullbaclkpatchi, a search region with dimensidf), x S,, is placed at
Leibler divergence and EMD, among others) focused on colibre center of the patch in the current frame. The Bhattaglaary
and texture features, and concluded that “there is no measdistance between the patch and every candidate in the search
with best overall performance, but the selection depends mgion is computed exhaustively, and the selected patdieis t
the specific task”. one presenting the smallest distance.

For some parametric models, there are closed-form expres-
sions for classical measures for comparing two probabilify- Motion Prediction
density functions (such as the Bhattacharyya distance) thamotion prediction can be very useful to reduce the search
involve only the statistical parameters of both distriboti. If area or to eliminate spurious movements under heavy occlu-
the estimation of these parameters is cheap (in the compuin. There are two important issues with motion prediction
tional point of view), such closed-form expressions areyvehow to do it fast, and how to use the information in a easy
fast to evaluate. and coherent way. In this work, we adopted the Double Ex-

One model that can be computed very fast and that leadspishential Smoothing technique proposed in [16] for positio
a closed-form expression for the Bhattacharyya distantieeis prediction, which is very fast and has prediction perforoean
multivariate Gaussian distribution. This distributioncisarac- equivalent to Kalman filters.
terized by the sample mean vecgoand covariance matrie’, Given a temporal series of vectars, the prediction at time
which can be computed efficiently in any rectangular regiany r is given by
using the integral representation described in [12]. In, féoe
cost for computing an integral image in a rectangular region ., _ <2+ O‘T) Sv, — (1 LT > sv2. (2
with dimensionsH x W using feature vectors of dimension e 1
d is O(HWd?), and the cost to estimaje and C within any
rectangular subregion of arbitrary size@¥d?).

whereSw; andSv?] are auxiliary variables computed through

Given two Gaussian distributions with parametgrs C, Sv, = av; + (1 — a)Sv,_1, 3)
andu., Cs, the Bhattacharyya distance between them is given
by Svl¥ = aSv, + (1 - a)Svl?,. @)
1 C,+Cy 7" i i
B — g(ul _M)T[ 1 : 2} (1 — o) + Here, o is the degree of the exp_ongnﬂal decay (smaller
values fora produce smoother predictions). In the proposed
1 I(Cy + C3)/2) approach, we used = 0.1 to get a smooth prediction, and
+ §1H W 1 =1 (to get a prediction at each frame) to generate a
1 2

predicted vectow, = v;1.

The matrix inversion is the most expensive operation when

evaluating the dissimilarity, and it is traditionally comtpd D. Combining Patch Information and Motion Prediction

with O(dS) operations. Also, if the features are uncorrelated, The matching measure and the motion prediction described

the covariance matrix is diagonal, and the cost to evalugifeviously generate a set df, displacement vectors; (where

Equation (1) reduces t®(d). N, is the number of patches) and one predicted displacement
One problem with the Gaussian assumption is that, ectorv,, in a total of N,, + 1 individual motion information.

general, the distribution of features vectors (€RIBG color For sakes of simplicity, we will definey, 11 = v,.

channels) is not even unimodal for most objects. In peopleFor translational only movements, all these vectors should

tracking, for instance, the person may have a shirt in onercobe similar. However, partial occlusions, patches on unifor

and the pants in another, leading to a bimodal distributiofsgions and illumination changes may corrupt the displace-

Other models (such as a mixture of Gaussians) would hfent vectorw; for one or more patches. Computing the mean

more adequate, but at a greater computational cost. In @igplacement vector would be aima approach, since the

approach, since the region of interest is split into small@fiean can be significantly affected by a single outlier. A more

patches, the distribution of feature vectors within eacttipa adequate approach, commonly used in color image denoising

is more likely to be roughly homogeneous, and the deviatign7], is the use of Weighted Vector Median Filters (WVMF),

from the normal may not be very large. A possible drawbagkat implicitly account for outlier rejection. In the origil

of using patches is that large homogeneous regions in fa@mulation of the WVMF [17], the first step consists of

template could accommodate different similar patchesc'whicomputing the distance from each vector to all others:

could lead to tracking errors for these patches. However, th

overall displacement of the whole template is computedgusin .

a robust weighted average of individual displacementshab t j = D)) = Z lvj —will, j=1,.. Np+1, (3)

a few patches with wrong results are overwhelmed by the =t

remaining ones. In fact, the experimental results shown where N, + 1 is the total number of vectors, ard- || is a

Section 1V indicate the robustness of the proposed teckniguector norm (in this work, we employed the; norm). The

Np+1



filtered vectorvy is then defined according to values. The first situation is adequate during total ocohsi
since the patches do not provide reliable information. Gn th

Nfil wv; other hand, the second situation is suited for normal tregki
P conditions, where the information provided by the patches
L/ (6) should dominate. In our approach, the value Bf;, +, is
Z ws computed adaptively in time, based on the patch errors in the
P previous frames.

For each frame, there arelV,, + 1 Bhattacharyya distances
B;(t) related to theN, patches and the predicted veétor
vn,+1. The representative errds(t) for whole template at
framet is retrieved from the individual displacement informa-

Asit can be ob_served, the weighis n the quglnal WVMF tion that is most coherent with the displacement of the whole
formulation [17] include only geometrical distances betwe template, i.e

pairs of vectors. In this paper, we propose a modification
of the weightsw; by also including the matching error (i.e. B(t) = B;(t), where j = argmin|lv; — v;||. 9)
the Bhattacharyya distance}; of each patch according to i
Equation (1) in the filtering process, so that patches Wilh normal tracking conditionsB(t) is expected to represent
smaller matching errors carry more weight. More preciselje Bhattacharyya distance of an existing patch. On ther othe
the proposed weights for the WVMF are given by hand, during total occlusions, the patches are expected to
w; = g(Di, Bi), @) produge spurious displacement vectors (probably withelarg
’ matching errors), andB(t¢) tends to represent the Bhat-
whereg(z, y) is a nonnegative monotonically decreasing funeacharyya distance of the predicted vector at the previous
tion when considering the variablesandy individually, i.e., frame.
0z9(z,y) < 0 and dyg(w,y) < 0, Yo,y > 0. With this Finally, the selected erraBy, ., for the predicted vector
choice forw;, vectors that present smaller matching errBfs vN,+1 IS given by
and that are also geometrically consistent with the remgini _
vectors (i.e., present a smaller distanieg are prioritized in BN, 41 = ke{T—erlant}B(k)’ (10)
the weighted average. e
One class of 1D functions that has shown good resukéere 7, is the temporal window (in this work, we used
for removing outliers in color image denoising [18] isl» = 30 for videos acquired at 30 FPS, so that the median er-
exp(—z"/f3), where 8 and r are parameters that are chosefPr in the past second is retrieved). Again, the rationatetfis
to give a good general purpose filter. Our choice for the 2¢hoice is that when the object starts being occludeg, ;1

wherew; = f(D;), and f is a nonnegative monotonically
decreasing function (so that vectors that are farther frioen t
median carry less weight).

function ¢ follows the same idea, and it is given by should retrieve the matching errors of correctly matched
patches in the previous frames, tending to present smaller
—[(@/B)* + (y/7)?] .
g(z,y)=e , (8) errors than those of currently tracked patches (which adeun

occlusion). Hence, the prediction vector tends to carryemor
weight during occlusions.
It should also be noticed that there is only one predicted

where 5 and ~ control the decay ofy as a function ofz
and y, respectively. Smaller values fg8 and ~ prioritize
displacement vectors; that preser_1t the smallest Q|stanDe displacement vectowy .1, and N, displacement vectors
and Bhattacharyya errds;, respectively. As3 and~ increase, ¢

. . . nerated from the patches. N, is large, the overall dis-
the W\./MF gets closer to the_smple average filter, since 6%i‘sacement of the template tends to be dominated by the patch
the weightsw; tend to be similar. In this work, we selecte

> o . displacementw;, i = 1,..., N, even if By, 1 is small. To
f tri?}?;g’fg;&;ﬁ;i& \22}(;@ : };Ofrt:r?]t tt:g r?wtiarﬁamyu(rﬁ \'Z‘Iucope with this issue, we also introduced a compatibilitdac
We also propose to use = 0.15, since our experimental scslto r(_a—welghtvNPH as qfunctmp OfN,. More
o e X exactly, the weightwy 11 in Equation (6) is re-computed
results indicated that non-occluded patches typicallysgme through i
Bhattacharyya errors around or belévi5. The Bhattacharyya
coefficienth = e~ P relates to a bound for the classification

error between two equiprobable classes [19], and it is usedSmaller values for decrease the weight afy, 41, and the

a similarity measure in other works [3], [6]. Hendg8,= 0.15  gpposite happens for larger valuescoin this work, we used

leads tob ~ 0.86, which is coherent with the similarity metrics. — ¢.5 in all experiments.

reported in [6]. An example of the procedure for combining the individual
It should be noticed that there is no matching et¥, 1 displacement vectors for each patch to obtain the overall

associated to the predicted motion vectoy, .1, which is  displacement of the whole template is illustrated in Fig. 2.

required in Equation (7). If a small value is assigned tpjg. 2(a) shows the initial template (outer red rectange) a
Bn, 41, the predicted displacement will carry more weight

in the WVMF, and the opposite happens for largex, 1 2Except for the first frame, wherBy,, 11 (t) is not defined.

wn,+1 = cNpg(Dn,+1, BN, +1)- (11)



the individual patches (smaller subrectangles). The vecto The computational cost of this procedure @s(d?), and
in blue indicate the individual displacement vectors foctea it does not depend on the dimensions of the template. Fur-
patch, and the green vector at the center refers to the gloti@rmore, as Equations (12) and (13) are applied recuysivel
displacement of the template. The displaced template in teeery frame, the resulting mean and covariance matrix embed
subsequent frame is illustrated in Fig. 2(b). It is intaéregst information about all previous frames to which the updating
to notice that the bottom patches were occluded from onde is applied. The proposed scheme is also very efficient in
frame to the other, and erroneous displacement vectors wesens of memory storage: only the previous descriptprs (
created. Also, some unoccluded patches presented misieadi’;) and the current descriptorg:{, C3) are used, and the
displacements. However, the WVMF discarded the influensamples used to compute the model in the previous frames
of these vectors, leading to a correct displacement for thee not required.
whole template.

IV. EXPERIMENTAL RESULTS

This Section presents some experimental results obtained
with the proposed algorithm, called the Coherent Patch Dis-
placement (CPD) Tracking algorithm. The experimental val-
idation was performed qualitatively, by visual inspectioh
tracking results, and also quantitatively, by comparing th
tracking errors produced by the proposed approach and by
two state-of-the-art techniques, namely the MeanShifb-alg
rithm [3] and the FragTrack algorithm [11].

All the results presented in this Section were computed
Fig. 2. Example of the procedure adopted to obtain the dispiaat of the ,ging C++ implementations of the algorithms (the code for
whole template based on the displacement of each individuahpghrough . . . .
WVMFs. FragTrack was kindly provided by Amit Adam), running

on a PC computer with a Pentium Core 2 Duo 2.33GHz
processor, 1GB RAM and windows XP operational system.
E. Model Update To compare the techniques we used five different video

To cope with object changes (appearance, illuminatior),etS€duenceswoman Caviar, Facel Face3 and Person The
the model must be updated to improve tracking results. A sifffomansequence is a video of a woman walking on a side-
ple and direct approach would be to compute the covariant/g/k: sometimes partially occluded by different cars (ke
using tracked templates in different time steps, as notised for download at http://www.cs.technion.ac-iéimita/fragtrack/

Porikli et al. [9]. However, as indicated by the same autho,gagtrack.htm). The&aviar sequence is_ one of the videos of the

the cost to compute the covariance matrix directly using CAVIAR project (http:/homepages.inf.ed.ac.uk/rbf/GAR

templates with dimensiof/s x Ny is O (NTMTTd2)y which )» and it consists of some pepple walking through a r_ﬂF{aitel

is very expensive and requires great amounts of memory.3Ad Face2 are two facial video sequences, containing head

fact, they proposed an updating scheme based on Lie Algebif§: turns and occlusions. Finally, tfigersonvideo sequence

to overcome this problem. illustrates a full body person moving behind several trees
In this work, we use a fast and memory-efficient updatini an outdoor environment with illumination changes (from

scheme for both the mean vector and covariance matrix, baSidy to partly sunny), shot with a moving camera. The

on an iterative recomputation of these statistical desmgp WomanandCaviar video sequences are available with ground

Let u;, andC, be the mean and covariance of the model franf@th data, while the remaining sequences were manually

t—1, and letu, andC, denote the same parameters for curreground truthed by our group. Tracking results for all video

frame t. The updated meap and covariance matriC' are Seduences, as well as the original versionsatel, Face2
and Personsequences with ground truth data can be accessed

(b)

iven b
g Y at http://www.inf.ufrgs.brtcrjung/cpd/cpdvideos.html.

C = (1-w)(Ci+ ,ul,ulT) +w (Cy + usz) — pnid2) For these five video sequences we computed the execution
po= (1—w)p + whs, (13) time and the tracking error (Euclidean distance between the

actual position and the tracked position) for each frame. In
where0 < w < 1 is the update rate of the model, such thall experiments, we used the same search regdonx(30)
w = 1 leads to a faster update, and~ 0 leads to a slower for CPD Tracking and FragTrack (Meanshift does not require
update of the model. If+;, C; relate to a sef5S; containing a search region). For FragTrack, we used 16 histograms bins
N feature vectors, ands, C, relate to a seb, containingd  (only luminance information), and the EMD distance as the
feature vectors, it can be shown that the mean and covariahégtogram matching procedure. For CPD Tracking, we used
using all vectors ir5;US5 can be obtained with Equations (12fhe same set of 5 features for all sequences: the 3 color
and (13) usingw = M/(M + N) and1 —w = N/(M + channels and the 2 components of the gradient computed from
N). Our experimental results indicated that= 0.1 produced the luminance component. It is important to emphasize that,
good results, and it was selected as a default value. although CPD presents other tunable parametess «, 1),



~, andc), the same default values described in the previopsocedure instead of exhaustive search. However, its acgur
Section were used in all experiments, although, even bettard robustness to occlusions (either partial or total) veas f
results could be achieved by fine tuning those parametersbhind FragTrack and CPD.
each individual video sequence. TABLE |

The plOtS in Flg 3 ShOW the traCking errors Obtained WithTRACKING ERROR(IN PIXELS) AND EXECUTION TIME (IN SECONDS PER
the algorithms for the video sequences. As it can be obsgrve@drame) For THE TRACKING METHODS CPD TRACKER, FRAGTRACK
Meanshift presents larger errors for all videos, mostly thue AND MEANSHIFT. SMALLEST VALUES ARE DISPLAYED IN BOLD.

occlusions. Under partial occlusions (which happen fregye | cPD | FT30| MS | FT70
in the Womanand Caviar sequences), FragTrack and CPD Average Error | 6.03 553 =50 =

imi i ifi Max. Error 15.86 17.57 23.28 —
Traqker presgnt similar errors. However, upder_ significant Woman ||gax. =ror___| 158 o o -
partial occlusions (as the final portion of tRaviar video) or Avg. Time 0.055 2892 T 0.036 —
total occlusions (as the regions marked with gray rectangle Average Error | 530 | 7.33 | 10.05 -
. . Max. Error 12.04 71.18 19.31 —
in the Facel Face2and Personsequences), FragTrack gets Caviar | —=~paviaion T 2.60 T 1038 | 456 —
lost, and it can only recover the target if it reappears withi Avg. Time 0.050 | 2.323] 0.034 —
. . Average Error 6.44 33.19 15.13 10.15
its search region. On the other hand, CPD Tracker can handle Max_ Error 520 T 13202 8515 4134

Facel

Std. Deviation | 4.90 45.35 16.48 9.35
Avg. Time 0.121 2.648 0.032 14.68
Average Error 6.49 19.94 10.95 —

those situations efficiently. and in the first total occlusiaf
the Personsequence (around frame 230 in Fig. 3(e)). For these

three video sequences, We also tried to run FragTrack with .., |[Max Eror 34.I37[ 10560 | 65.00 -

; : o Std. Deviation | 5.96 23.75 12.06 —
an expanded search region0(x 70) to evaluate its ability Avg. Time 0061 2819 T 0.031 —
to recover the target. The target was effectively recovered Average Error | 450 | 20.04 | 120.65 | 24.53
for the Facel sequences after the occlusion, but FragTrack  Person g"tadf-D'if\:gﬁon 42_-2; 12;‘_-23 zggz 112_-23
failed to find the target after the second total occlusion of Avg. Time 0.049 | 2204 0.03T| 7.53

the Personsequence (around frame 330). In fact, the code
for FragTrack (provided by the authors of [11]) halted for Fig. 4 shows some frames of the five video sequences, along
the Personsequence during the execution, when the templatgth the tracking template produced by each technigue. én th
reached the boundary of the image after getting lost. THisst frame of each video, all techniques were initializedhwi
happened at frames 2830( x 30 search region) and 404the same template (so that only one template is visible). In
(70 x 70 search region). The same happened after the fifsime 17 of theWomansequence, when part of the woman’s
occlusion of theFace2video sequence. Since there was nbody is covered by the car, MeanShift has its template dis-
improvement when using the extended search region for tligiced, showing that it presents difficulties to deal withtiph
sequence, the error plot was not included in Fig. 3(d). It tcclusions. On the other hand, both FragTrack and CPD are
also interesting to note that MeanShift may recover or nable to follow the woman correctly. The same happens in
from total occlusions, depending on the color distribusi@f occlusion situations for th€aviar sequence. However, at the
the target and its neighborhood at the time of the occlusiognd of this sequence (see frame 366), the partial occlusion
If the iterative process that guides MeanShift pushes tig substantial, and FragTrack misses the target. The other
template towards the target right after the total occlug@s three sequences present situations of total occlusionst As
in FacelandFace2sequences), the target can be successfullgn be observed, CPD is usually able to estimate the target
recovered. On the other hand, if the template is pushed awaysition under complete occlusions, while both Meanshitt a
from the real target (as in tieersonsequence), the target carFragTrack wrongly find the best match on the background
not be recovered. (for instance, see frame 360 of tRacelsequence). In some

A summary of the results is illustrated in Table I, that showsases (as in thEacel, Face2andPersonsequence), Meanshift
the mean error, maximum error and standard deviation fand/or FragTrack can not recover the target after the cicrius
each technique and video sequence, as well as the average the matching template wanders around the image. Since
running time. As it can be observed, Meanshift presented tMeanshift is based on an iterative procedure, it may not
largest errors, followed by FragTrack and CPD Tracker. tecover the target if it reappears sufficiently far from the
is interesting to note that both FragTrack and CPD trackeurrent position of the template. The ability to recover the
achieved similar results in terms of accuracy when onlyiglarttarget for FragTrack is highly dependent on the search negio
occlusions appeatfomanand Caviar sequences), but CPDbut the computational cost increases as the search region is
Tracker clearly outperforms FragTrack during total ocidos  expanded. In fact, CPD also presents the same drawback,
(the three other sequences). In terms of execution time, CBD since it predicts the motion during occlusions, the clear
was much faster than FragTrack: more than fifty times fastesgion can be kept relatively small.
in the best case and more than twenty times faster in the
worst case, considering the same search region< 30. )
amplified when comparing CPD with the extended searéh Selection of Feature Vectors
size for FragTrack. The MeanShift tracker is the fastest of It is important to note that several combinations of feature
them all, mostly because it is based on an iterative seangrtors can be used to build the model for each patch. Such

V. DISCUSSION
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Fig. 3. Tracking error for the analyzed techniques (MeaftSRragTrack and CPD) for the five video sequences. Grayangies indicate portions of total
occlusion.

typically a little larger than those obtained wiRGB plus
gradient, but running times are considerably lower (in most
cases, even lower than MeanShift). A theoretical analysis o
the computational cost is provided next.

TABLE I
TRACKING ERROR(IN PIXELS) AND EXECUTION TIME (IN SECONDS PER
FRAME) FOR THECPD TRACKER USING ONLY RGBFEATURES

Initial frame Woman || Caviar | Facel I Face2 I Person
Fratrach Avg. | Max. || Avg. | Max. || Avg. | Max. || Avg. | Max. || Avg. | Max.
508 | 13.89 || 7.42 | 19.70 || 6.31 | 26.63 || 11.14 | 43.10 || 4.99 | 47.54
Std. | Time [| Std. | Time [[ Std. [ Time [[ Std. [ Time [[ Std. [ Time

3.09 | 0.029 || 467 | 0.031 || 5.19 | 0.049 || 7.80 | 0.03L || 5.20 | 0.018

B. Computational Cost

To analyze the computational cost of the proposed approach,
let us consider that the initial template is split im patches,
and the patch statistics are computed usiiidimensional
feature vectors. Also, let us consider a search region with
dimensions,, x S,,.

=== - : The cost for computing the integral image representation
" initial frame  Frame 229 Frame 331 Frame 461 restricted to the search region @&(S,,S,,d?), and the com-
i e o e o vacig oo ey sy PIexty for obtaining the mean and covarance of al,
FragTrack (in Green), and MeanShift (in Blue). Additiogalie included the Patches i<D(N,,d?). The cost to compute the distance between
results of FragTrack (in Yellow) with an extended searchiaed70 x 70) two patches using the Bhattacharyya distancé(g>)3, and
for some of the sequences. the cost for an exhaustive comparison of &ll, patches

within the S,, x S, region is O(N,S,S,,d*). The cost for
obtaining the displacement of the whole template based@n th

features may be color (using different color spaces), gradi individual patches using WVMFs i©(V7), and the updating
second derivatives, textural information, depth inforimrat rule presents a cost of the ord@(d?). Hence, the total cost of
(when stereo cameras are employed), thermal, etc. Clealig Proposed procedure (S, S, d” + Npd® + Sy Sy Npd?® +
the best features are those that present a better sepgrabif, + d°). In practice,S,,S,, N,,d* is by far the largest term,
between the chosen object and the neighborhood, what is vé@ythat the complexity for a sequential implementation oan b
context-dependent. approximated a&(S,,S,, N,d?). It should be noted that, since

We have tested the performance of our method usingegCh p"’.ltCh s tTaCked individually, parallel_ hardwarescifsu
variety of combinations involving different color spacesi¢h as multiple/multicore processors or Graphics Programenabl

as HSV and normalizedRGB, and concluded thaRGB Units) can be explored to further reduce running times.
features plus gradient information presents good results ¢ Limitations

most of the cases (and no additional cost for color spaceAlthough the proposed method performs usually well under

transformation is required). In fact, just usifiRGB features . : )
. ; . artial and short-time total occlusions, there are somaaee
is usually enough to achieve good tracking results, and the L :

10S where it is prone to errors. For example, during longemt

inclusion of grad|eqt mformatlon. appeared 1o Improve thgcclusions, the updating rule would learn the statistic¢hef
results under occlusions. Table Il illustrates the traglérrors

of CPD_ using On_IyR(-_;B feature_s for the video sequences, SHowever, as mentioned previously, there are algorithms thdtice the
along with execution times. As it can be observed, errors af@nplexity toO(d?-376) [20].

Frame 197 Frame 253




occluding object. Also, if the target appearance is sigaifity for region-based tracking could improve the results of the
changed during a total occlusion, it may not be recoverechwhproposed algorithm. In fact, an ideal approach would carsid
it reappears from the occlusion. adaptive online feature selection based on the charaateris

Another issue regards the motion of the target during thé the object and its surroundings at each frame, similarly t
occlusion. The motion prediction scheme utilizes the @dispt the method described in [21]. Also, the use of templates with
ment vectors in the previous frames to estimate the futuadaptive sizes could account for scale variations of thekée
position of the target. If the target changes its motion myri object.
the occlusion (e.g. a person moving behind a wall stops durin

the occlusion), the predicted position would provide a wgron

estimate. [1] J. Shi and C. Tomasi, “Good features to track,'ITBREE Conference on
. Computer Vision and Pattern Recognitjgrp. 593-600, 1994.

It sh_ould also be noticed that the patches are tracked b_as P. Ferez, C. Hue, J. Vermaak, and M. Gangnet, “Color-based piiiab

on estimates of the mean vector and the covariance matrix. If tic tracking,” in European Conference on Computer Visipp. 661-675,

smaller patches are used, the estimation of these parameter 2002.

L . . ] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based objeaxtk-
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which may lead to erroneous tracking results. vol. 25, no. 5, pp. 564-577, 2003.
Examples of situations where the proposed approach ma$l C. Shen, M. J. Brooks, and A. van den Hengel, “Fast globzhél

. - . . . . density mode seeking with application to localisation araking,” in
fail are illustrated in Fig. 5. In Fig. 5(3')’ the target Is yer IEEE International Conference on Computer Visigsp. 1516-1523,

small, and a subdivision into even smaller patches would lea 2005,
to unreliable estimates of the mean vector and covariandel C. Shen, M. J. Brooks, and A. van den Hengel, “Fast gloteh&l

. . . density mode seeking: applications to localisation andkinag’ IEEE
matrix. In Fig. 5(b), the target gets occluded behind the Transactions on Image Processjngl. 16, no. 5, pp. 1457-1469, 2007.
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target after the occlusion. Finally, Fig. 5(c) shows a tatgat [7] F. Porikli, “Integral histogram: A fast way to extract tagrams in

changes completely its motion pattern during the occlysion ' cartesian spaces,” ifEEE Conference on Computer Vision and Pattern
so that the predicted template would be far from the actua[ll] Seiﬁgr}ltlonvol-d 1,TIOE-b 823_33962'005}' it basediahi
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