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Abstract—Finite element bases defined by sampling points
were used by J. Lehtinen in 2008 for the efficient computation
of global illumination in virtual scenes. The bases provide
smooth approximations for the radiosity and spontaneous
emission functions, leading to a discrete version of Kajiya’s
rendering equation. Unlike methods that are based on sur-
face subdivision, Lehtinen’s method can cope with arbitrarily
complex geometries. In this paper we present an experimental
validation of Lehtinen’s meshless method by comparing its
results with an independent numerical solution of the rendering
equation on a simple three-dimensional scene. We also compare
Lehtinen’s special finite-element basis with two other similar
bases that are often used for meshless data interpolation,
namely a radial basis with a Gaussian mother function, and
Shepard’s inverse-square-distance weighted interpolation. The
results confirm the superiority of Lehtinen’s basis and clarify
why the other two bases provide inferior-looking results.

I. I NTRODUCTION

Realistic rendering usually requires modeling the indirect
illumination, due to light that interacts two or more times
with the scene’s surface [1], [2]. For most scenes, the
total light flow (including direct and indirect lighting) is
adequately described by therendering equationproposed
by Jim Kajiya in 1986 [3].

Radiosity[2] is a general method for realistic rendering
that uses finite element modeling to solve the rendering
equation with Lambertian scenes. In this formulation, the
surface of the scene is divided into a large number of
surface elements. The light flow in the scene is found by
solving a large system of linear equations(I − R)λ = ε,
where the vectorε gives the spontaneous light emission,
λ gives the total emission (spontaneous plus scattered) of
each element,I is the identity matrix andR represents the
radiance transfer matrix.

Traditionally, the surface elements were the cells of a
polygonal mesh approximating the scene’s surface. A major
source of difficulty in this approach is the complexity and
variety of scene models, which called for rather complicated
meshing algorithms. For one thing, the high computational
cost of solving the system usually places a lower limit on
cell size that is larger than many scene objects. Another
source of difficulty was the need to smooth out the inherent
discontinuity of the radiosity between adjacent cells.

In 2007, Jaako Lehtinen proposed an alternative approach,
where the surface patches are replaced by “fuzzy” finite
elements, defined by a collection of sampling points on the

surface [4], [5]. Lehtinen’smeshless radiosityapproach does
not require an approximating mesh, but only the ability to
find a point of the surface along a given ray. Therefore,
it can cope with arbitrarily complex geometries, and can
be used for almost any scene that can be rendered by ray
tracing. Moreover, the representation is inherently smooth
and provides fairly good results even with relatively coarse
approximations.

Lehtinen’s model for the radiosity function is a modified
radial basisapproximation [6], using a Gaussian-like kernel
multiplied by a term that depends on the surface normal, and
then adjusted to have the partition-of-unit property. Given the
many approximations that are embedded in the method, its
quantitative accuracy is not easy to analyze. Furthermore,
there seems to be no published comparison of Lehtinen’s
basis with other finite-element bases that have often been
used for meshless data interpolation.

In this work we provide an experimental validation of
Lehtinen’s method by comparing its result on a simple scene
with an independent numerical solution of the rendering
equation for the same scene. We also compare Lehtinen’s
basis with two other scattered-data interpolation methods,
namely a radial basis [6] with Gaussian mother function,
and Shepard’s inverse-distance-squared interpolation for-
mula [7]. For these two, we use a normal-sensitive distance
function that captures Lehtinen’s directional factor in a more
systematic manner. The results validate Lehtinen’s approach
and provide insight on what qualities of a finite-element
basis are most important for radiosity computations.

II. T HE RENDERING EQUATION

Kajiya’s rendering equation can be written as

L = E +RL (1)

where:
• L(x, u) is the (unknown)total radiance function, the

total light power emitted or scattered by the scene near
the surface pointx along directions near the unit vector
u;

• E(x, u) is the spontaneous emittance function, the
light power emitted by the scene nearx and alongu,
independently of incident light;

• R is the light transfer operator, that expresses how
incident light is scattered by the scene’s surface.



Informally, the radianceL(x, u) is the apparent intensity
of the light emitted by the surface nearx, as seen by an
observer located towards the directionu. It is the value that
should be encoded in the corresponding pixel of a synthetic
image of the scene, rendered assuming that the observer is in
the directionu from x. The emittanceE(x, u) is the part of
L(x, u) that is due to light generated, rather than scattered,
by the surface atx; it is therefore nonzero only on light
sources that are part of the scene, such as lamps; or parts
that scatter light from sources external to the scene, such as
a sunlit floor or wall.

The emittance and radiance functions usually depend on
the wavelength band (color channel). However, in most
applications one can render each channel independently.
Therefore, in this paper we consider the rendering of single
color channel, that is, with essentially monochromatic light.

The transfer operatorR models the transport of light
between the points of the scene and how that light interacts
with the scene’s objects. Its effect on an arbitrary function
Z(x, u) is

(RZ)(x, u) =

∫

S2

ρ(x, v, u)Z(x↑v,−v)H(x, v) dv (2)

(see figure 1), where:

• S
2 is the set of all directions (i.e. the unit sphere);

• x↑v is the first point of the scene’s surface along the
ray that leavesx in the directionv.

• ρ(x, v, u) is the bi-directional radiance distribution
function(BRDF), that gives the fraction of the incident
light at the pointx, coming from the directionv, that
is re-emitted along directions nearu;

• H(x, v) is the light spread factorfor the pointx and
direction v, that depends on the angle between the
normal n(x) of the surface atx and the light source
directionv.
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Figure 1. Parameters of the rendering equation, integrated
over the directionv.
The factorH(x, v) accounts for the fact that light coming
from directionv gets spread over a larger or smaller portion
of the scene surface at pointp, depending on the angle
betweenv and the surface normaln(x) at x:

H(x, v) = n(x) · v (3)

Note that the visibility between the points of the surface is
implicitly taken into account by the↑ operation. Note also
that this model allows translucent surfaces, if they are visible

from both sides. By integrating over the scene’s surface,
instead over all directions, we get an alternative formulation
of the light transfer operatorR:

(RZ)(x, u) =
∫

C

ρ(x, x→y, u)Z(y, x→y)V (x, y)G(x, y) dy
(4)

where

• V (x, y) is the visibility factor, defined as 1 if light
scattered or emitted at pointx can illuminate pointy,
and 0 if that light is blocked by some other part of the
scene strictly betweenx andy;

• G(x, y) is the geometric factor, defined asG(x, y) =
H(x, x→y)K(x, y) whereH is the light spread fac-
tor (3), that accounts for the local inclination of the
light reachingx from the direction ofy, andK is the
apparent size factor

K(x, y) =
1

4π

n(y) · (y→x)

|x− y|
2

(5)

accounts for the apparent size (solid angle) of the area
elementdy as seen fromx.

For an opaque Lambertian diffuse surface, the function
ρ(x, v, u) is 2β(x) if v and u are pointing out the object,
and 0 otherwise; whereβ(x) is thescattering coefficientor
albedo(“intrinsic color”) of the surface at the pointx. See
figure 2.
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Figure 2. Parameters of the rendering equation, integrated
over the surface pointq.

The rendering equation, as described above, is still only an
approximation to reality. It fails account for several physical
phenomena, like diffraction, interference, polarization, and
fluorescence. Fortunately, these phenomena are of little im-
portance in the modeling of everyday ambients and objects.

A. Solving the rendering equation

In image synthesis, all elements of this equation are known
except the radiance functionL. Formally, the solution of
the rendering equation isL = (I − R)−1E, whereI is
the identity operator and−1 denotes operator inversion. In
favorable circumstances, therendering operator(I −R)−1

can be computed by Neumann’s formula

(I −R)−1 = (I +R+R2 +R3 + · · ·) (6)

Each termRk accounts for light that interactedk times with
the surface of the scene before being observed.



III. F INITE ELEMENT RADIOSITY

We use the termsite to mean a pairp = (ṗ, ~p) of a point ṗ
and a unit vector~p. We will denote byΓ the set of all sites,
that is,R3 × S

2.
From now on we consider the emittance and radiance

functions as being functions of pairs site-direction(p, v)
instead of point-direction(x, v). We are only interested in
the values ofE(p, v) and L(p, v) for the subsetS of all
sitesp that belong to the scene, namely whereṗ is a point
on the scene’s surface and~p is the corresponding unit normal
vector. However, this formulation makes it possible to use
a representation for the functions that is independent of the
geometry of the surface.

For Lambertian radiosity, the emittance and radiance
functions are independent of the directionv, so we can
consider them as functions of the sitep alone.

A finite elementis a functionφ defined on the scene’s
surface sites, such thatφ(p) is nonzero only for a relatively
small and compact set of sites (thesupportof φ). A finite
element basisfor radiosity is a collectionφ = {φ1, φ2, ...φn}
of finite elements. A real-valued function of the surface sites,
such asL orE, can be approximated by a linear combination
B of basis elements

B(p) =
n

∑

i=1

βiφi(p) (7)

whereβ1, β2, . . . βn are real coefficients. For this purpose,
the supports of the basis elements must cover the whole
surface of the scene, and the functionsφi must be linearly
independent.

IV. GENERAL PROPERTIES OF FINITE ELEMENT BASES

A. Interpolating bases

An interpolation basisis a function basisφ1, φ2,....φn

with the property thatψ(pj) is 1 if i = j, and 0 otherwise.
With such a basis, iff is any combination

∑

i ciφi, the value
of f at eachpi is just ci.

B. Partition-of-unity bases

We say that a basisφ1, φ2, ..., φn is a partition of unity if
and only if

φi(x) ≥ 0 (8)

for all i and allx in the domainΓ, and
n

∑

i=1

φi(x) = 1 (9)

for all x ∈ Γ. Such a basis has thesmoothingproperty,
namely

cmin ≥

n
∑

i=1

ciφi(x) ≥ cmax (10)

wherecmin, cmax are the minimum and maximum among
the coefficientsc1, c2, . . . , cn.

From any basisφ1, φ2, ..., φn with non-negative elements,
one can define a basis with the partition-of-unity property
φ̃1, φ̃2, ...φ̃n by thenormalizationformula

φ̃i(x) =
φi(x)

∑n
j=1

φj(x)
for all x in Γ. (11)

V. GENERALIZED RADIAL BASES

The bases we use in this paper aregeneralized radial bases.
A basis of this kind is defined by the following parameters:

• a list of sitesP = (p1, p2, ....pn) on the scene’s surface,
the element centroids;

• a list of reals(α1, α2, ....αn), the nominal radii of the
elements;

• a mother functionΦ from R to R;
• a distance metric‖·, ·‖ between sites;
• the elementscaling and placementformula; and
• a normalizationmethod applied to the basis elements.

In Lehtinen’s method, the centroids are chosen randomly
on the surface of the scene, as in figure 3; and each nominal
radiusαi is such that there is a fixed numberm of centroids
pj ∈ P with ‖pi, pj‖ < αi. In this paper, we takem = 10,
as used by Lehtinen.

Figure 3. A simple scene (top) and a set of element centroids
p1, . . . , pn randomly chosen on its surface (bottom). Note
that invisible surfaces are sampled too.

The scaling and placement rules define araw elementψi for
each centroid, whose valueψi(p) depends on the distance
‖p, pi‖, the radiusαi, and the mother functionΦ. The raw
elements are usually defined so thatψi(p) is maximum
(or nearly so) whenp = pi, and is zero (or nearly so) if
‖p, pi‖ > αi. Finally, the normalization formula (11) may
or may not be used to produce a partition-of-unity basis,
yielding the final basis elementsφi.

A. Mother functions

A commonly chosen mother function is the Gaussian bell

G(r) = e−r2/2 (12)



which, for the purposes of image synthesis, can be assumed
to be zero forr > 4. For efficiency reasons, however, it is
preferable to use a polynomial spline approximation

K(r) =

{

2r3 − 3r2 + 1 if r ≤ 1
0 if r ≥ 1

(13)

Another important alternative is theShepard’s quadratic
mother function

S(r) =
1

r2
(14)
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Figure 4. Three mother functions: Gaussian bell (left), spline
bell (middle), and quadratic Shepard (right).

B. Site distance function

In typical scenes, the radiance (apparent color) of most
points depends strongly on the local orientation of the
surface. For this reason, one should take the normals into
account when interpolating the radiance, at a pointp, so that
centroids with the same orientation asp get more weight
than centroids that are closer top but have different orienta-
tion. Therefore, when computing the distance between two
sitesp andq, we use thenormal sensitive site distance

‖p, q‖ =
|ṗ− q̇|

max{0, ~p · ~q}
(15)

where~p·~q is the scalar product of the two normals. (This not
a true distance function (metric) forΓ, because it fails the
triangle inequality; however, that property is not necessary
for interpolation.) The difference between formula (15) and
the plain Euclidean distance|ṗ− q̇| is illustrated in figure 5.
Note that‖p, q‖ is +∞ if the angle between~p and~q is 90
or greater.

Figure 5. Visualization of the Euclidean distance (left) and
normal-sensitive site distance (right) in a simple scene. The
color used at each sitep of the scene’s surface is1/(1+ d),
where d is the distance from the siteq on the back wall
marked with ‘X’.

VI. BASES USED IN THE TESTS

In our tests we used three generalized radial basesφS, φG,
and φL. The basisφS uses the Shepard mother function
S (14), applied to the absolute site distance, with partition-
of-unit normalization:

ψS
i (p) = S(‖p, pi‖) =

1

‖p, pi‖
2
; φS

i (p) =
ψS

i (p)
∑n

j=1
ψS

j (p)
(16)

Note that S(r) = 1/r2 is positive for all r and tends
to +∞ when r approaches 0. This property together with
formula (16) ensures that Shepard’s basis is always inter-
polating. See figure 6(top).

The basisφG, shown in figure 4(left), uses the Gaussian
mother function (12), applied to the relative site distance
from the centroid (site distance divided by the nominal
radius), without partition-of-unit normalization:

ψG
i (p) = G

(

‖p, pi‖

αi

)

; φG
i (p) = ψG

i (p) (17)

The basisφL is the basis described by Lehtinen [4]. It
uses the polynomial mother functionK (13), but applied
to the relative Euclidean distance, instead of our normal-
sensitive site distance, with an external factor to accountfor
the difference in the normals:

ψL
i (p) = K

(

|ṗ, ṗi|

α̇i

)

max {0, ~p · ~pi} (18)

Here α̇i is computed like our radiusαi, but with Euclidean
distances instead of site distance. The raw basisψL was then
normalized by formula 11 to yield a partition-of-unity basis
φL. See figure 6 (bottom).
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Figure 6. One-dimensional plots of the three test basesφS,
φG, andφL (light lines) for four collinear sites on a flat
surface, and the corresponding interpolationf(x) to the
four values shown (solid line).

VII. D ISCRETIZING THE RENDERING EQUATION

When the functionsL, E of the rendering equation (1)
are represented in terms of a finite basesφ1, φ2, ..., φn, the
transfer operatorR is replaced by ann×n radiance transfer
matrixR and the equation becomes a linear equation system

λ = ε+Rλ (19)

where λ = (λ1, λ2, . . . , λn)⊤ is the column coefficient
vector ofL in the chosen basis, andε = (ε1, ε2, . . . , εn)⊤

is the coefficient vector ofE.
Each elementRjk of R represents the fraction of photons

radiated (emitted or scattered) by elementφk that are sub-
sequently scattered by elementφj , without any intermediate
scattering. That is, columnk of R is the coefficient vectorλ
that describes the appearance of the scene when elementφk

is the only source of light in the scene, without considering
multiply-scattered light. See figure 7.

Figure 7. A simple scene (left), and the radianceL of its
surface due to single-scattered photons emitted by the basis
elementφk whose centroid is marked with ‘X’ (right).

Lehtinen observed that one can estimate the matrixR by
assuming a point light source of appropriate intensitywj

located at each sitepj, and computing the radianceNi,j =
L(pi) due to single-bounce photons from that source, as in
plain ray-tracing.

The intensitywj of the point light can be approximated by
the total radiance of the elementφj , that iswj =

∫

φj(p)dp
where the integral is taken over the whole surface of the
scene. If the centroids are sufficiently dense, we can assume
that the scene surface nearpj is a plane with normal~pj . For
an un-normalized radial basis likeφG, the integral is a fixed
constant timesα2

j . For a partition-of-unity basis likeφL and
φS, the expected value of the integral is1/δ whereδ is the
local density of centroids per unit of area. If the radiusαj

is chosen so that it containst other centroids, then we can
use the estimatewj = 1/δ = πα2

j/t.

The matrixR is not very sparse in general, and the inverse
(I − R)−1 is usually full. Therefore, the coefficientsλi of
the radiance functionL are usually computed iteratively,
by settingλ ← (0, ..., 0) and then iteratingλ ← ε + Rλ
until convergence. Note that this iteration is equivalent to
evaluating Neumann’s formula (6).

The most time-consuming part of this computation is the
construction of the radiance transfer matrixR. Note thatR
depends only on the scene, not on the lighting. Therefore,
in an animation sequence where most of the scene is static
and only the lighting change, one can save a lot of time by
precomputingR, and then using it to render each frame with
the proper illumination vectorε. With the current graphics
processors, the iterationλ ← ε + Rλ can be done in
real-time. This approach, known asprecomputed radiance
transfer [8], [9], [4], allows real-time radiosity rendering of
fairly complex scenes.

Figure 8 shows a test scene rendered with plain ray-
tracing and with meshless finite-element radiosity, using 10
iterations of formula (19).



Figure 8. Images of a test scene. From top: the direct lighting
component (represented in theφL basis), and the meshless
radiosity results using the basesφS, φG, andφL.

VIII. V ALIDATION

In order to validate our implementation of Lehtinen’s
method and compare its accuracy when using each of the
three bases, we compared its results with an independent
solution of the radiance equations for a specific scene. The
latter consists of a sphere of radiusr and a disk of radius
R with the center of the ball on the disk’s axis, at some
distanceh from its top surface. See figure 9(left). Both
objects have Lambertian finish, with uniform albedoβ. The
primary illumination in this test case is due to a single
point source with intensityµ, on the vertical axis, at infinite
distance above the disk.

Let p(θ, ζ) be the point on the sphere’s surface at longi-
tude θ and latitudeζ; and let q(ϕ, u) be the point on the
cylinder’s top surface at distanceu from the center and
azimuth ϕ. Due the symmetry of the scene and lighting

around the vertical axis, we can conclude that the radiance
functionsL andE are also symmetric (independent of the
azimuthsθ andϕ).

r

h

R

Figure 9. The reference scene (left) and the element centroids
used in the meshless radiosity computation (right).

Therefore we denote byB(ζ) the total radiance (apparent
color) of the sphere pointp(θ, ζ), and byD(u) the radiance
of the disk pointq(ϕ, u). It is convenient to consider the
photons that have been scattered only once as being emitted
at the scattering point, so that the external source can be
ignored. We will denote this “emission” component ofB
andD asB∗(ζ) andD∗(u), respectively.

B∗(ζ) = βµmax {0 , sin ζ}

D∗(u) =

{

β µ if r ≤ u ≤ R
0 otherwise

(20)

From symmetry it also follows that the form fac-
tor F (q(ϕ, u), p(θ, ζ)) can be written F̂ (u, τ, ζ) =
F (q(0, u), p(τ, ζ)) whereτ = θ−ϕ. With these assumptions,
the rendering equation can be rewritten as two coupled
integral equations

B(ζ) = B∗(ζ) + β
R
∫

0

D(u)
2 π
∫

0

F̂ (u, τ, ζ)u dτ du

D(u) = D∗(u) + β
π/2
∫

−π/2

B(ζ)
2π
∫

0

F̂ (u, τ, ζ) r2 cos ζ dτ dζ

(21)
Note that the visibility factor ofV (q(ϕ, u), p(θ, ζ)) is 0 only
if the ball normal at the pointp(θ, ζ) makes an obtuse angle
with the directionq(ϕ, u)→p(θ, ζ); but in this case the form
factor F is 0. Therefore, we do not need to includeV in
these formulas.

A. Discretization of the reference solution

In order to discretize the equations (21), we choose
latitudes ζ1, . . . , ζm in the interval [−π/2 , π/2], radii
u1, . . . , un in [0 , R], and azimuth differencesτ1, . . . , τk in
[0 , 2π], all equally spaced, and introduce the unknowns
bi = B(ζi), dj = D(uj), and the known parameters
b∗i = B∗(ζi), d∗j = D∗(uj), Fisj = F (p(0, ζi), q(τs, uj))
andGjsi = F (q(0, uj), p(τs, ζi)). Then the integrals (21)



can be approximated by sums:

bi = b∗i + β
R

n

n
∑

j=1

dj
2π

k

k
∑

s=1

Fisj uj (22)

dj = d∗j + β
π

m

m
∑

i=1

bi
2π

k

k
∑

s=1

Gjsi r
2 cos ζi (23)

We can write the equations (22) and (23) in the matrix form
λ = ε + Rλ, whereλ = (b1, b2, . . . , bm, d1, d2, . . . , dn)⊤,
ε = (b∗1, b

∗
2, . . . , b

∗
m, d

∗
1, d

∗
2, . . . , d

∗
n)⊤,

R =

(

0 M
N 0

)

(24)

and

Nji = β

k
∑

s=1

Fisj Mij = β

l
∑

s=1

Gjsi (25)

Each elementNji represents the influence of the radiance
of bandj of the disk on the radiance of each point of the
ring i of the sphere. Similarly,Mij represents the influence
of ring i of the sphere at each point of ringj of the disk.

The parameters we used wereR = 40, r = 5, h = 20,
µ = 0.9, β = 0.9, n = m = k = 100. We solved the
system by iteratingλ ← ε + Rλ (which converged after a
few iterations). See figure 10
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Figure 10. Reference solution, showing the radianceB(ζ) on
the sphere as a function of latitudeζ (left), and radiance
on the diskD(u) as a function of the radial positionu
(right). TheB+ andD+ are the radiance components due
to indirect lighting.

B. Comparison

The reference solution obtained as described in sec-
tion VIII-A was compared with the output of the meshless
radiosity algorithm described in section VII, using each of
the three bases described in section VI, for the set of cen-
troids shown in figure 9(right), chosen so that their minimum
separation is 3. The results are shown in figures 11, 12,
and 13. The red line show the radiance along the meridian
with latitude θ = 0 of the sphere, and along the ray with
azimuthϕ = 0 of the disk. The black lines are the radiances
averaged over all latitudesθ and all azimuthsϕ, namely over
each parallel of the sphere and each circle on the disk.
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Figure 11. Meshless radiosity solution with the basisφS
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Figure 12. Meshless radiosity solution with the basisφG

Further tests (not shown here) [10] imply that the radiance
computed with any of the three bases tends to the same
values as the number of elements increases.

IX. CONCLUSIONS

Comparing the solutions obtained with the three bases
with the reference solution, we conclude that Lehtinen’s ba-
sisφL not only produce better-looking images (section VII)
but also more accurate radiance values (section VIII). We
believe that the validation strategy proposed in section VIII
can be used for the validation of other global illumination
algorithms.
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Figure 13. Meshless radiosity solution with the basisφL

Our analysis also shows that the inferior-looking results
obtained by the other two bases are not due to systematic
errors in the computed radiance values, but rather to the
oscillations that they introduce in the approximation, which
are magnified by the human visual system.

As already discussed, our implementation works only
with diffuse surfaces. This limitation is due to the use of
spatial bases that can not represent the variation of lighting
in function of the direction. A possible solution to this
weakness would represent the flow of light in the scene of
bases elements ofφ(p, d) which depends on the positionp
and the directiond, and have limited support in bothp as
in d. Then we would combine the elements described in
this work with the spherical harmonics [11], [12] or with
other directional basis. This approach would allow the use
of mirror specular surfaces.
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