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Abstract—Finite element bases defined by sampling points surface [4], [5]. Lehtinen’sneshless radiositgpproach does
were used by J. Lehtinen in 2008 for the efficient computation not require an approximating mesh, but only the ability to
of global illumination in virtual scenes. The bases provide find a point of the surface along a given ray. Therefore
smooth approximations for the radiosity and spontaneous . . N ; ’
emission functions, leading to a discrete version of Kajiya it can cope with arbitrarily complex geometries, and can
rendering equation. Unlike methods that are based on sur- be used for almost any scene that can be rendered by ray
face subdivision, Lehtinen’s method can cope with arbitraity tracing. Moreover, the representation is inherently smoot
complex geometries. In this paper we present an experimerita  and provides fairly good results even with relatively cears
validation of Lehtinen’'s meshless method by comparing its approximations.

results with an independent numerical solution of the rendeng Lehti . del for th diositv function i dified
equation on a simple three-dimensional scene. We also contpa enhtnen's model for the radiosity function 1s a modinie

Lehtinen’s special finite-element basis with two other simar radial basisapproximation [6], using a Gaussian-like kernel
bases that are often used for meshless data interpolation, multiplied by a term that depends on the surface normal, and

namely a radial basis with a Gaussian mother function, and  then adjusted to have the partition-of-unit property. Gitlee
Shepard's inverse-square-distance weighted interpolain. The 5y approximations that are embedded in the method, its
results confirm the superiority of Lehtinen’s basis and claify o .
why the other two bases provide inferior-looking results. quantitative accuracy is not easy to anal_yze. Further_more,
there seems to be no published comparison of Lehtinen’s
basis with other finite-element bases that have often been
Realistic rendering usually requires modeling the indirec used for meshless data interpolation.
illumination, due to light that interacts two or more times In this work we provide an experimental validation of
with the scene’s surface [1], [2]. For most scenes, thd ehtinen’s method by comparing its result on a simple scene
total light flow (including direct and indirect lighting) is with an independent numerical solution of the rendering
adequately described by thendering equationproposed equation for the same scene. We also compare Lehtinen’s
by Jim Kajiya in 1986 [3]. basis with two other scattered-data interpolation methods
Radiosity[2] is a general method for realistic rendering namely a radial basis [6] with Gaussian mother function,
that uses finite element modeling to solve the renderin@nd Shepard’s inverse-distance-squared interpolation fo
equation with Lambertian scenes. In this formulation, themula [7]. For these two, we use a normal-sensitive distance
surface of the scene is divided into a large number offunction that captures Lehtinen’s directional factor in are
surface elementsThe light flow in the scene is found by systematic manner. The results validate Lehtinen’s ambroa
solving a large system of linear equatiofs— R)\ = ¢, and provide insight on what qualities of a finite-element
where the vectoe gives the spontaneous light emission, basis are most important for radiosity computations.
A gives the total emission (spontaneous plus scattered) of
each element] is the identity matrix and? represents the II. THE RENDERING EQUATION
radiance transfer matrix Kajiya's rendering equation can be written as
Traditionally, the surface.elements were the cells of_a L=FE+RL 1)
polygonal mesh approximating the scene’s surface. A major
source of difficulty in this approach is the complexity and Where:
variety of scene models, which called for rather complidate « L(x,u) is the (unknown)total radiance functionthe
meshing algorithms. For one thing, the high computational  total light power emitted or scattered by the scene near
cost of solving the system usually places a lower limit on the surface point: along directions near the unit vector
cell size that is larger than many scene objects. Another  w;
source of difficulty was the need to smooth out the inherent « E(z,u) is the spontaneous emittance functjothe
discontinuity of the radiosity between adjacent cells. light power emitted by the scene nearand alongu,
In 2007, Jaako Lehtinen proposed an alternative approach, independently of incident light;
where the surface patches are replaced by “fuzzy” finite « R is the light transfer operator that expresses how
elements, defined by a collection of sampling points on the  incident light is scattered by the scene’s surface.

I. INTRODUCTION



Informally, the radiance L(x,«) is the apparent intensity from both sides. By integrating over the scene’s surface,

of the light emitted by the surface near as seen by an
observer located towards the directionlt is the value that
should be encoded in the corresponding pixel of a synthetic
image of the scene, rendered assuming that the observer is in
the directionu from z. The emittanceZ(x, ) is the part of
L(z,u) that is due to light generated, rather than scattered,

instead over all directions, we get an alternative formarat
of the light transfer operatoR:

(RZ)(xz,u) =

i plx, x—y,u)Z(y, x—y)V(x,y)G(z,y) dy )

by the surface at; it is therefore nonzero only on light where

sources that are part of the scene, such as lamps; or parts.
that scatter light from sources external to the scene, sach a
a sunlit floor or wall.

The emittance and radiance functions usually depend on
the wavelength band (color channel). However, in most .
applications one can render each channel independently.
Therefore, in this paper we consider the rendering of single
color channel, that is, with essentially monochromatibtig

The transfer operatoR models the transport of light

V(z,y) is the visibility factor, defined as 1 if light
scattered or emitted at point can illuminate pointy,
and 0 if that light is blocked by some other part of the
scene strictly between andy;

G(z,y) is the geometric factor defined asG(x,y) =
H(z,z—y)K(z,y) where H is the light spread fac-
tor (3), that accounts for the local inclination of the
light reachingz from the direction ofy, and K is the
apparent size factor

between the points of the scene and how that light interacts
1 n(y) - (y—2)

with the scene’s objects. Its effect on an arbitrary functio K(z,y) = 5 (5)
i I Ja—yl
Z(x,u) is Yy
accounts for the apparent size (solid angle) of the area
(RZ)(z,u) = /S2 p(z,v,u)Z(zTv, —v)H(z,v)dv  (2) elementdy as seen fron.

: ) For an opaque Lambertian diffuse surface, the function
(see figure 1), where: ! . S .
2 is the set of all directions (i.e. the unit sphere); pla.v,u) 18 20(x) if v andu are pointing out the object,
« 5%is e P ' and 0 otherwise; wherg(z) is thescattering coefficienor

« v is the first point of the scene’s surface along the 5 heqq (<intrinsic color”) of the surface at the point. See
ray that leaves in the directionv.

_ R _ o figure 2.
e p(z,v,u) is the bi-directional radiance distribution
function(BRDF), that gives the fraction of the incident )
light at the pointz, coming from the direction, that >
is re-emitted along directions near }
e H(z,v) is thelight spread factorfor the pointa and u
direction v, that depends on the angle between the . =
normaln(x) of the surface at: and the light source p
directionwv. ) . . .
Figure 2. Parameters of the rendering equation, integrated
Q . over the surface poinj.
The rendering equation, as described above, is still only an
approximation to reality. It fails account for several plogs
ux v phenomena, like diffraction, interference, polarizatiamd
° — fluorescence. Fortunately, these phenomena are of litde im
D portance in the modeling of everyday ambients and objects.

Figure 1. Parameters of the rendering equation, integrated® Solving the rendering equation

over the directiorv. In image synthesis, all elements of this equation are known

The factor H(x,v) accounts for the fact that light coming except the radiance functioh. Formally, the solution of

from directionv gets spread over a larger or smaller portionthe rendering equation i& = (Z — R)~'E, whereZ is

of the scene surface at poipt depending on the angle the identity operator and' denotes operator inversion. In

betweenv and the surface normail(z) at z: favorable circumstances, tiendering operato(Z — R) !
can be computed by Neumann’s formula

H(z,v) =n(z)- v (3)

Note that the visibility between the points of the surface is ©

implicitly taken into account by thé operation. Note also Each termR* accounts for light that interactédtimes with

that this model allows translucent surfaces, if they ariblds  the surface of the scene before being observed.

Z-R)'=T+R+R*+R*+--)



We use the ternsite to mean a paip = (p, p) of a pointp
and a unit vectop. We will denote byl" the set of all sites,
that is,R? x S2.

FINITE ELEMENT RADIOSITY

From now on we consider the emittance and radiance

functions as being functions of pairs site-directiom v)
instead of point-directioriz, v). We are only interested in
the values ofE(p,v) and L(p,v) for the subsetS of all
sitesp that belong to the scene, namely wherés a point
on the scene’s surface apts the corresponding unit normal

vector. However, this formulation makes it possible to use

a representation for the functions that is independent ef th
geometry of the surface.

For Lambertian radiosity, the emittance and radiance

functions are independent of the directien so we can
consider them as functions of the sjiealone.

A finite elementis a function¢ defined on the scene’s
surface sites, such tha{p) is nonzero only for a relatively
small and compact set of sites (teapportof ¢). A finite
element basifor radiosity is a collectior = {¢1, ¢2, ...dn }
of finite elements. A real-valued function of the surfacesit
such agl or F, can be approximated by a linear combination
B of basis elements

B(p) =Y _ Bidi(p) (7)
i=1

where 31, B2, . .. B, are real coefficients. For this purpose,

the supports of the basis elements must cover the whole

surface of the scene, and the functiafismust be linearly
independent.

IV. GENERAL PROPERTIES OF FINITE ELEMENT BASES
A. Interpolating bases

An interpolation basisis a function basispi, ¢2,...0,
with the property that)(p;) is 1 if i = j, and O otherwise.
With such a basis, if is any combinatio} , ¢;¢;, the value
of f at eachp; is justc;.

B. Partition-of-unity bases

We say that a basig;, ¢, ..., ¢, is apartition of unityif
and only if

¢i(x) >0 (8)
for all ¢ and allz in the domainI’, and
D dilz) =1 ©)
=1

for all x € T. Such a basis has themoothingproperty,
namely

n
Cmin 2 Zcz(bl(x) 2 Cmax (10)
=1
where ¢in, Cmaz are the minimum and maximum among
the coefficients:y, co, . ..

, Cne

From any basi , ¢s, ..., ¢, With non-negative elements,
one can define a basis with the partition-of-unity property
o1, 2, ...0, by the normalizationformula

__ di(@)
Z?:l ¢;j(x)

V. GENERALIZED RADIAL BASES

¢i(x) for all z in T. (12)

The bases we use in this paper gemeralized radial bases
A basis of this kind is defined by the following parameters:

« alist of sitesP = (p1, po, ....pn) ON the scene’s surface,
the element centroids

« a list of reals(aq, as, ....
elements;

« a mother function® from R to R;

a distance metrid|-, -|| between sites;

the elemenscaling and placemerformula; and

« anormalizationmethod applied to the basis elements.

In Lehtinen’s method, the centroids are chosen randomly
on the surface of the scene, as in figure 3; and each nominal
radiusc; is such that there is a fixed numberof centroids
p; € P with ||p;, p;|| < ;. In this paper, we taken = 10,
as used by Lehtinen.

ay,), the nominal radii of the

Figure 3. A simple scene (top) and a set of element centroids
p1,--.,pn randomly chosen on its surface (bottom). Note
that invisible surfaces are sampled too.

The scaling and placement rules definea elementy; for
each centroid, whose valug;(p) depends on the distance
lp, pi||, the radiuswe;, and the mother functio®. The raw
elements are usually defined so that(p) is maximum
(or nearly so) whemp = p;, and is zero (or nearly so) if
llp, pi|| > ;. Finally, the normalization formula (11) may
or may not be used to produce a partition-of-unity basis,
yielding the final basis elements.

A. Mother functions
A commonly chosen mother function is the Gaussian bell
G(r) = (12)

677“2/2



which, for the purposes of image synthesis, can be assu
to be zero forr > 4. For efficiency reasons, however, it is
preferable to use a polynomial spline approximation

23 —3r2 +1 ifr<1
K(T)_{ 0 if r>1 (13)

. o ~ Figure 5. Visualization of the Euclidean distance (left) and
Another important alternative is th8hepard’s quadratic normal-sensitive site distance (right) in a simple scere T

mother function color used at each siteof the scene’s surface is/(1 + d),
1 where d is the distance from the sitg on the back wall
S(r) = — (14) marked with X'.
r

VI. BASES USED IN THE TESTS

2 L
15 | ] L ] L ] In our tests we used three generalized radial baSes®,
and ¢~. The basis¢® uses the Shepard mother function
Ol S (14), applied to the absolute site distance, with partition
of-unit normalization:
0.5
1 PP (p
U50) = S(ppil) = ——5; 5(p) =
0 llp, pill > =1 %7 (p)
P R P P - P (16)

32-10123 -3-2-10123 -3-2-10123 Note that S(r) = 1/r? is positive for all» and tends
0 +oo whenr approaches 0. This property together with
Figure 4. Three mother functions: Gaussian bell (left), spline formu|a (16) ensures that Shepard’s basis is always inter-
bell (middle), and quadratic Shepard (right). polating. See figure 6(top).

The basisp®, shown in figure 4(left), uses the Gaussian
mother function (12), applied to the relative site distance
B. Site distance function from the centroid (site distance divided by the nominal
radius), without partition-of-unit normalization:
In typical scenes, the radiance (apparent color) of most
points depends strongly on the local orientation of the
surface. For th_|s reason, one sho_uld take the r_10rma|s into bC(p) =G (Ilp,pzll> c oS (p) =vC(p) (A7)
account when interpolating the radiance, at a ppijrgo that o
centroids with the same orientation psget more weight
than centroids that are closergdout have different orienta-
tion. Therefore, when computing the distance between twdhe basis¢" is the basis described by Lehtinen [4].

sitesp andg, we use thenormal sensitive site distance uses the polynomial mother functiali (13), but applled
to the relative Euclidean distance, instead of our normal-

sensitive site distance, with an external factor to accéamt

Ip, gl = & (15) the difference in the normals:
max{0,75- ¢}

wherep-7'is the scalar product of the two normals. (This not er(p) = K (M) max {0, 7« p; } (18)
a true distance function (metric) fdr, because it fails the i

triangle inequality; however, that property is not necegsa

for interpolation.) The difference between formula (15Han Hered; is computed like our radiug;, but with Euclidean
the plain Euclidean distandg — | is illustrated in figure 5.  distances instead of site distance. The raw basisvas then
Note that||p, ¢|| is +oo if the angle betweey andg is 90  normalized by formula 11 to yield a partition-of-unity bgasi
or greater. #¥. See figure 6 (bottom).



— Lehtinen observed that one can estimate the mairby
assuming a point light source of appropriate intensity
located at each sitg;, and computing the radianc¥; ; =
L(p;) due to single-bounce photons from that source, as in
plain ray-tracing.

S = N W
T L

S = N W
—T

The intensityw; of the point light can be approximated by
the total radiance of the elemepy, that isw; = [ ¢;(p)dp
where the integral is taken over the whole surface of the
scene. If the centroids are sufficiently dense, we can assume
that the scene surface nggris a plane with normab’;. For
. : : . : an un-normalized radial basis liké*, the integral is a fixed

a4 5 0 ) 4 6 constant times5. For a partition-of-unity basis like™ and
¢°, the expected value of the integralligs whereé is the
Figure 6. One-dimensional plots of the three test bagés  local density of centroids per unit of area. If the radius
¢, and ¢" (light lines) for four collinear sites on a flat is chosen so that it contairtsother centroids, then we can
surface, and the corresponding interpolatiffx) to the  use the estimate; = 1/6 = ma3 /t.
four values shown (solid line).

S = N W
La—

VIl. DISCRETIZING THE RENDERING EQUATION

When the functiond., E of the rendering equation (1)
are represented in terms of a finite bagese,, ..., ¢n, the The matrixR is not very sparse in general, and the inverse
transfer operatoR is replaced by am x n radiance transfer (I — R)~! is usually full. Therefore, the coefficients of
matrix R and the equation becomes a linear equation systenhe radiance function, are usually computed iteratively,
by settingA <« (0,...,0) and then iterating\ — ¢ + RA

A=e+RA (19) until convergence. Note that this iteration is equivalent t
where A = (A, Ae,...,A)7 is the column coefficient €valuating Neumann's formula (6).
vector of L in the chosen basis, and= (¢,¢2,...,6,) "

is the coefficient vector of.

Each element?;;, of R represents the fraction of photons
radiated (emitted or scattered) by elementthat are sub-
sequently scattered by elemefyt, without any intermediate  The most time-consuming part of this computation is the
scattering. That is, columh of R is the coefficient vectoh  construction of the radiance transfer matix Note thatR
that describes the appearance of the scene when elefpent depends only on the scene, not on the lighting. Therefore,
is the only source of light in the scene, without consideringin an animation sequence where most of the scene is static
multiply-scattered light. See figure 7. and only the lighting change, one can save a lot of time by
precomputingR, and then using it to render each frame with
the proper illumination vectoe. With the current graphics
processors, the iteration «— ¢ + RA can be done in
real-time. This approach, known gsecomputed radiance
transfer[8], [9], [4], allows real-time radiosity rendering of
fairly complex scenes.

Figure 7. A simple scene (left), and the radianéeof its Figure 8 shows a test scene rendered with plain ray-
surface due to single-scattered photons emitted by the basfracing and with meshless finite-element radiosity, usifig 1
elementg,, whose centroid is marked with' (right). iterations of formula (19).



around the vertical axis, we can conclude that the radiance
functions L and E are also symmetric (independent of the
azimuthsf and ¢).

Figure 9. The reference scene (left) and the element centroids
used in the meshless radiosity computation (right).

Therefore we denote byB(¢) the total radiance (apparent
color) of the sphere poini(9, ¢), and byD(u) the radiance

of the disk pointg(y,u). It is convenient to consider the
photons that have been scattered only once as being emitted
at the scattering point, so that the external source can be
ignored. We will denote this “emission” component Bf
and D as B*({) and D*(u), respectively.

B*(¢) = ﬂuglaX{?, sin ('} 20
€0y _ p ifr<u<R 20
Dr(u) = { 0 otherwise

From symmetry it also follows that the form fac-
tor F(q(g,u),p(0,¢)) can be written F(u,7,¢) =
F(q(0,u),p(r,¢)) wherer = 6—¢. With these assumptions,
the rendering equation can be rewritten as two coupled
integral equations

R 27
B(() =B*(¢)+ 8 [ D(u) [ F(u,7,{)udrdu
Figure 8. Images of a test scene. From top: the direct lighting 0 /2 0 o
component (represented in th& basis), and the meshless D(u)=D*(u)+8 [ B() [ F(u,T, ¢)r? cos¢drdC
radiosity results using the base8, ¢©, and¢". —m/2 0 21)

VIl V T .
] AL.IDATION , . Note that the visibility factor o¥(q(, u), p(6,¢)) is 0 only
In order to validate our implementation of Lehtinen’s i the ball normal at the poink(¢, ¢) makes an obtuse angle

method and compare its accuracy when_ using _each of th&ith the directiong (e, u)—p(8, ¢); but in this case the form
three bases, we compared its results with an independeflqior F is 0. Therefore. we do not need to includé in
solution of the radiance equations for a specific scene. Thg ,ase formulas.

latter consists of a sphere of radiusand a disk of radius
R with the center of the ball on the disk’s axis, at some
distanceh from its top surface. See figure 9(left). Both A. Discretization of the reference solution
objects have Lambertian finish, with uniform albe@oThe
primary illumination in this test case is due to a single In order to discretize the equations (21), we choose
point source with intensity:, on the vertical axis, at infinite latitudes (i,...,{, in the interval [-7/2, 7/2], radii
distance above the disk. ui,...,u, in [0, R], and azimuth differences, ..., in

Let p(@, ¢) be the point on the sphere’s surface at longi-[0, 2], all equally spaced, and introduce the unknowns
tude # and latitude¢; and letg(p,u) be the point on the b, = B(¢), d; = D(u;), and the known parameters
cylinder's top surface at distance from the center and b; = B*((;), di = D*(uy), Fis; = F(p(0,¢),q(7s,u;))
azimuth ¢. Due the symmetry of the scene and lightingand G;.; = F(q(0,v;),p(7s,(;)). Then the integrals (21)



can be approximated by sums: 1 T pa———
0.8 B* (A) ——
k 06 f
R < 27
R U0 M I
Jj=1 s=1 ok |
m k
. T o -80-60-40-20 0 20 40 60 80 0 5 10 15 20 25 30 35 40
dj = dj—i—ﬁEZbi?z GjsiT?® cos(;  (23) ) .
i=1 s=1 0.6 B+(U) ——
05} B+ (A)
We can write the equations (22) and (23) in the matrix form 8j§ I ] B: EX; -
A =¢e+ R\ whereX = (by,ba,...,bym,d1,do,....dy)7, 021 ]
e=(b},b5,..., b5, d},dy, ..., d)T, () e —
-80-60-40-20 0 20 40 60 80 0 5 10 15 20 25 30 35 40
0 M
ne (9 2
and
k 1 .
N, = F, M;; = Gigi 25 Ok o 0 0 L
7 ﬂ; e " 6; I (25) -80-60-40-20 0 20 40 60 80 0 5 10 15 20 25 30 35 40

Each elementV;; represents the influence of the radiance Figure 11. Meshless radiosity solution with the basis

of bandj of the disk on the radiance of each point of the

ring i of the sphere. Similarly);; represents the influence os |- gggg — ]
of ring i of the sphere at each point of rirgof the disk. 06 |
The parameters we used wefe= 40, r = 5, h = 20, 04 |
w=209 68=09 n=m=k = 100. We solved the 0-3 I
fSyStim l:;y 'te)rats'ng\ ff_ € +1§)‘ (which converged after a -80-60-40-20 0 20 40 60 80 0 5 10 15 20 25 30 35 40
ew iterations). See figure
0.6 Br(U) —— ]
0.5 B+ (A)
04 | 1 D+U) ——
. 03 / Dt (A) ——
6 02} 1
. 0.1 | 1
4 F D*
L D+ G e .
'0 D -80-60-40-20 0 20 40 60 80 0 5 10 15 20 25 30 35 40
-80-60-40-20 0 20 40 60 80 0 5 10 15 20 25 30 35 40 1 ——
08 B(A) — -
Figure 10. Reference solution, showing the radiai@€) on 0.6
the sphere as a function of latitude(left), and radiance 04 |
on the diskD(u) as a function of the radial position 0-3

(right). The BT and D™ are the radiance components due
to indirect lighting.

-80-60-40-20 0 20 40 60 80

0 5 10 15 20 25 30 35 40

Figure 12. Meshless radiosity solution with the bagi§

B. Comparison Further tests (not shown here) [10] imply that the radiance

The reference solution obtained as described in seccomputed with any of the three bases tends to the same

tion VIII-A was compared with the output of the meshless Values as the number of elements increases.
radiosity algorithm described in section VII, using each of
the three bases described in section VI, for the set of cen-
troids shown in figure 9(right), chosen so that their minimum Comparing the solutions obtained with the three bases
separation is 3. The results are shown in figures 11, 12with the reference solution, we conclude that Lehtinen’s ba
and 13. The red line show the radiance along the meridiasis ¢* not only produce better-looking images (section VII)
with latitude & = 0 of the sphere, and along the ray with but also more accurate radiance values (section VIII). We
azimuthy = 0 of the disk. The black lines are the radiancesbelieve that the validation strategy proposed in sectioh VI
averaged over all latitudesand all azimuths, namely over can be used for the validation of other global illumination
each parallel of the sphere and each circle on the disk. algorithms.

IX. CONCLUSIONS
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irregularly-spaced data,” irProc. 23rd ACM Natl. Conf.

1968, pp. 517-524.

[8] P. P. Sloan, J. Kautz, and J. Snyder, “Precomputed radian
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lighting environments,”ACM Trans. on Graphicsvol. 21,

no. 3, pp. 527-536, 2002.

[9] R. Ng, R. Ramamoorthi, and P. Hanrahan, “All-frequency

shadows using non-linear wavelet lighting approximation,

ACM Trans. on Graphigsvol. 22, no. 3, pp. 376-381, 2003.
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0.8 f B(A) — ) . i .
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Figure 13. Meshless radiosity solution with the basis
Our analysis also shows that the inferior-looking results

obtained by the other two bases are not due to systematja2]

errors in the computed radiance values, but rather to the
oscillations that they introduce in the approximation, e¥hi
are magnified by the human visual system.

As already discussed, our implementation works only
with diffuse surfaces. This limitation is due to the use of
spatial bases that can not represent the variation of tighti
in function of the direction. A possible solution to this
weakness would represent the flow of light in the scene of
bases elements af(p, d) which depends on the positign
and the directiond, and have limited support in both as
in d. Then we would combine the elements described in
this work with the spherical harmonics [11], [12] or with
other directional basis. This approach would allow the use
of mirror specular surfaces.
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