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Abstract—We present a method to couple particle-based fluid
simulation methods such as Smoothed Particle Hydrodynamics
(SPH) and volume rendering in order to visualize the fluid. A
volume is generated from the fluid’s implicit density field so
volume raycasting can be performed to render the surface on
the GPU. The volume generation algorithm is also implemented
in the GPU and is suitable to be used with both SPH simulations
implemented on CPU and GPU. We compare different imple-
mentations of fluid simulation, demonstrating the modularity of
the volume generation method and concluding that it can be used
together with other particle-based simulation models and other
volume rendering techniques.

Index Terms—graphics processors; fluid simulation; sph; ray-
casting;

I. INTRODUCTION

Simulation of physical phenomena can be employed in a
wide area of applications, from engineering to health, and they
have different requirements, ranging from precision to inter-
activity. Engineering applications typically simulate situations
without user interference during calculations, while surgical
simulators, for example, must support user interaction during
the simulation. The possibility of user interaction improves the
perception of reality, since in the real world we can observe
the consequences of an action right on time.

In this work we propose the coupling of a fluid simulation
based on a particle system with the raycasting algorithm to
render the fluid simulation for interactive applications. The
fluid’s particles are represented by a set of spheres that
have their movement calculated by the Smoothed Particle
Hydrodynamics (SPH) method. The simulation is performed
in a separate step from the visualization. To demonstrate the
modularity of our approach we present a CPU and GPU
implementation of the SPH method.

After calculating particles’ positions, we arrange them all in
a tridimensional grid and build a voxel model, where a region
that has no particles represents an empty cell in the grid. The
raycasting algorithm is applied in the volume comprised by
this grid. In order to achieve an acceptable frame rate in our
simulation we decided to use a raycasting implementation in
the GPU.

In the second section we discuss fluid simulation and visual-
ization. In the third section we describe the SPH method while
the fourth section deals with our raycasting implementation
and the volume generation from a set of particles. In the fifth

session we show our results obtained in the SPH’s CPU and
GPU versions and perform a comparison between the results
with and without raycasting. The last section contains our final
remarks and future works.

II. RELATED WORK

The scientific literature is rich in both fluid simulation us-
ing the Smoothed Particle Hydrodynamics model (henceforth
called SPH) and in volume rendering through raycasting. Gin-
gold and Monaghan[1] presented the SPH model in the 70’s
for astronomical modeling and since then various authors used
it to model a variety of different, smaller-scale phenomena,
such as arbitrary highly-deformable bodies[2], lava flows[3],
[4], viscoelastic fluids[5], [4], and melting[6]. Müller et al.[7]
used SPH to simulate fluids at interactive rates. Amada et al.[8]
initially attempted to perform the SPH simulation on the GPU,
an endeavor further pursued by Harada et al.[9], [10].

Visualization of the fluid can be accomplished by extracting
the isosurface from the fluid’s implicit function, evaluated on
a discrete tridimensional grid, using Marching Cubes[11] and
then rendering the generated polygons. In order to render the
fluid with high quality the grid must be subdivided in very
small cells, which will make the algorithm generate a lot of
small polygons. The amount of these small polygons can be
much higher than the amount of pixels on the screen, resulting
on bottlenecks on polygon processing. Iwasaki et al.[12] used a
point-based method to render the fluid surface and also created
a method to create the volume grid on the GPU, but it requires
multiple rendering passes.

Raycasting is used as a direct volume rendering technique in
applications such as visualization of medical imaging[13], [14]
and fluid simulation[9]. Volume raycasting can be accelerated
by modern graphics hardware[15], [16], being adequate for
interactive applications.

III. INTERACTIVE SIMULATION OF FLUID PARTICLES

The SPH model is an interpolation method in which the
state of the fluid in a point in space is a function of the fluid’s
state in that point’s immediate vicinity. The contribution that
each point has around it is weighted by radial, symmetrical
functions called smoothing kernels. The model we use is
based on the work of Müller et al.[7] which does not enforce
incompressibility, making the result less accurate but fast.



Figure 1. The shaded circular region contains the particles that exert an
influence over the shaded central particle.

In the SPH model, a scalar quantity A is interpolated at a
point in space r by a weighted sum of contributions from all
points around r:

A (r) =

n∑
j=1

mj
Aj

ρj
W (r − rj , h) , (1)

where j iterates over the space around r, W is the
smoothing kernel and m and ρ represent mass and density,
respectively. For a particle-based simulation, the summation
is done over all the particles within a range h of the particle
located at r (Figure 1). Particles beyond this radius exert zero
influence over each other, and the value h is therefore known
as the smoothing kernel’s support radius. To simulate a fluid
with the SPH model means to apply the interpolation equation
to solve the Navier-Stokes equation of momentum:

∂v

∂t
=
−∇p+ ρfext + µ∇2v

ρ
. (2)

In our implementation, the first stage of each simulation
step is the definition of each particle’s neighborhood, that is,
the set of particles that are within h units of distance from
each particle. Both our CPU and GPU implementation use a
grid to accelerate the neighborhood query. Next, each particle’s
density is computed by replacing A with ρ in Equation 1 and
by defining a smoothing kernel:

ρ (r) =

n∑
j=1

mjWpoly6 (r − rj , h) ,

where the Wpoly6 kernel has the following form[7]:

Wpoly6 (r, h) =
315

64πh9
(
h2 − |r|2

)3
.

Therefore, the density computation is simply a summation
of each neighbor particle’s mass, weighted by the smoothing
kernel. The steps that follow compute the pressure, viscosity
and external forces components from Equation 2.

We implemented the fluid simulation on the GPU using the
method developed by Harada et al.[9]. A grid is constructed

on the GPU and the steps that follow use this grid to find
the neighbor particles. The grid is stored as a RGBA texture,
each color channel storing a particle. This leads to a limitation
that each cell holds a maximum of 4 particles, requiring more
grids to support more particles per cell. All the steps of the
simulation runs on the fragment shader.

Note that in the work of Harada et al.[9] there are exper-
iments with hundreds of thousands of particles and the pro-
cessing time for each frame takes less than 100 milliseconds.
In order to support that many particles the time step must
be very small to keep the simulation stable, demanding more
simulation frames per simulation time.

This work focus on interactive simulations, meaning that the
simulation must be fast and have high response time. Ideally
the simulated time would have to be the same as the processing
time spent to execute the simulation step, i.e., having a ratio
of simulated time per processing time at least equal to 1.
However, higher values for the time step make the simulation
less stable. For that reason we use a constant time step high
enough for interactivity but that makes the choice of fluid
parameters more strict to keep the simulation stable.

IV. INTERACTIVE FLUID’S SURFACE VISUALIZATION

We use two approaches to visualize the fluid: rendering the
SPH particles as spheres or rendering the implicit density field
by volume raycasting. Figure 2 compares both approaches side
by side. The notion of continuity given by the fluid’s surface
results in a more realistic visualization compared to the sphere
rendering approach, although the latter is less time consuming.
In this section we detail surface rendering.

In order to render the fluid surface a volume is generated
from the SPH data after each step of simulation and stored as
a 3D texture on the GPU. Both the volume generation and the
raycaster algorithms are implemented as shaders and all the
necessary data are stored in the video memory, so the whole
process happens only on the GPU.

A. Volume Generation

After SPH simulation is performed we must obtain a scalar
field to be used with a volume rendering technique. This scalar
field can be discretized in a grid where each cell has its value
F (r) as the result of Equation 3. F (r) is a sum over the
particles where r is the position in world space of the center
of the grid cell,Wpoly6 is the smoothing kernel and rj and Vj
are the position and volume of particle j.

F (r) =
∑
j

VjWpoly6(r − rj,) (3)

The values of the scalar field can be calculated on the fly
when sampling it from a volume rendering technique or ex-
plicitly generated and stored in a discrete grid. The advantage
of storing it on a discrete grid is that the sampling, on a GPU
volume rendering implementation, is just a texture fetch with
trilinear interpolation instead of fetching all the neighboring
particles and applying the above equation. Another advantage
is modularity: any GPU implementation of volume rendering



Figure 2. Comparison between rendering the particles’ spheres and the
surface rendered from the generated volume. These pairs of pictures were
taken on the same frame on a simulation with 4096 particles.

or isosurface extraction can be used without modification,
assuming its input already is a tridimensional texture.

We use a similar approach that is used in the work of
Iwasaki et al.[12]. Their idea is to create texture-mapped disks
for each intersection between the grid planes and the particles.
These disks are then projected on the corresponding layer of
the volume grid as shown in Figure 3. On the fragment shader
a parcel of F (r) is calculated for each fragment inside the
disk. The particles are sent as point sprites and this rendering
process is repeated for each grid plane. The result of each
rendering is a volume layer that is transferred to the main
memory, so the frame buffer can be cleared and the process
repeated. Since the frame buffer can hold 4 scalars (RGBα)
per pixel, it is possible to calculate 4 grid planes per rendering.

The main disadvantage of the method described by Iwasaki
et al.[12] is that it makes multiple rendering passes. For each
rendering pass the intersecting disks must be sent and the
result copied to the computer main memory. In order to find
the intersecting particles a clustering step must be performed.
Since a particle intersect multiple grid planes, the particle must
be sent again to the GPU on each rendering pass. Another
efficiency issue is the transfer of the frame buffer into the
main memory. When using a volume rendering technique on
the GPU, it is desirable that the volume is stored on the video
memory, so the generated volume would have to be transferred
to the GPU on the end.

We use OpenGL and GLSL to implement the volume
generation algorithm on the GPU. The algorithm’s inputs are
the particles’ position and volume. The particles are sent as
point sprites positioned according to their position in world
space and their volume are sent as the color of the point sprite.
The result is a 3D texture with F (r) evaluated for each voxel.
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x
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Figure 3. A disk is formed by the projection of a particle on a grid plane[12].
The virtual camera is set so when the disk is sent as a point sprite the generated
fragments on the virtual screen correspond to the grid cells of the grid plane
being processed. This must be done for every grid plane in order to build the
volume grid.

The method we propose runs entirely on the GPU and is
implemented with OpenGL and GLSL. All the particles are
sent as point sprites and in a single rendering step a 3D texture
is filled with the generated volume. We use the geometry
shader to generate all the disks for each particle and then
write the results of the fragment shader directly onto a 3D
texture. This is accomplished by sending only one disk, as a
point sprite, for each particle. Then on the geometry shader
additional sprites are created for that particle, i.e. the other
disks of the particle intersection with the grid planes. Working
with point sprites instead of quads is advantageous because
only one vertex is sent to the GPU instead of four. Also, the
sprite’s texture coordinates can be automatically generated to
be used in the fragment shader.

The texture coordinates are values inside the range [0, 1]
where the extreme values represent the extremities of the
sprite, therefore the center of the disk is the coordinate
(0.5, 0.5). While the 2D texture coordinates of the sprite are
calculated automatically, we need to calculate on the geometry
shader a third coordinate that varies along the grid planes, i.e.
are the same for a whole disk. The size of the sprite is defined
to be the radius of the kernel smoothing length, so the distance
to the center of the particle can be calculated in terms of world
coordinates. On the fragment shader this distance is used to
evaluate the kernel and calculate the corresponding parcel of
the equation 3.

With the depth test disabled and the blending equation set to
sum the fragments, the particle contributions are accumulated
and the fragments are composed on the corresponding volume
layer, previously specified on the geometry shader. The result
is F (r) evaluated for each voxel.

Note that the position of the particles are specified as
point sprites, but their position and volume don’t necessarily



Table I
AVERAGE TIMES (IN SECONDS) TAKEN BY EACH STAGE IN A SIMULATION FRAME, WITH RAYCASTING FOR THE RENDERING.

Raycasting, 1024 Particles Fluid Simulation Volume Generation Raycasting Rendering Total
CPU Simulation 0.022 0.0075 0.0076 0.00051 0.038
CPU Simulation % 59.0% 19.6% 20.1% 1.4% 100%
GPU Simulation 0.0029 0.020 0.034 0.0013 0.058
GPU Simulation % 5.1% 34.3% 58.3% 2.3% 100%

Raycasting, 2048 Particles Fluid Simulation Volume Generation Raycasting Rendering Total
CPU Simulation 0.042 0.0098 0.0078 0.00097 0.061
CPU Simulation % 69.4% 16.1% 12.9% 1.6% 100%
GPU Simulation 0.0025 0.021 0.034 0.0053 0.063
GPU Simulation % 4.0% 33.5% 54.0% 8.5% 100%

Raycasting, 4096 Particles Fluid Simulation Volume Generation Raycasting Rendering Total
CPU Simulation 0.078 0.013 0.0078 0.00062 0.099
CPU Simulation % 78.3% 13.3% 7.8% 0.6% 100%
GPU Simulation 0.0034 0.024 0.034 0.0056 0.067
GPU Simulation % 5.1% 35.4% 51.1% 8.4% 100%

Raycasting, 8192 Particles Fluid Simulation Volume Generation Raycasting Rendering Total
CPU Simulation 0.19 0.037 0.010 0.00087 0.24
CPU Simulation % 79.7% 15.6% 4.3% 0.4% 100%
GPU Simulation 0.0075 0.033 0.032 0.0014 0.074
GPU Simulation % 10.2% 45.0% 42.8% 1.9% 100%

Figure 4. Rasterization of front and back faces of the volume’s bounding
box.

need to be stored and transferred from the main memory.
Considering a SPH simulation implemented on the GPU that
stores the position and volume of the particles in textures,
we can setup a Frame Buffer Object with that texture, read
its contents into a Pixel Buffer Object and then use it as
a Vertex Buffer Object. That way the point sprites can be
drawn using data already available on the video memory. Since
both input and output are located on the GPU, the volume
generation effectively bridges the simulation and rendering
with no significant transfer overhead.

B. Raycasting

The product of the volume generation is a 3D texture which
can be rendered by volume rendering techniques such as
raycasting. Our raycaster is based on the work of Kruger and
Westermann[15] and Scharsach[16].

The rays’ start and end coordinates are determined by
rasterizing the front and back faces of the volume’s bounding
box in world space. The normalized coordinates of the corners
of the box are encoded in the color channel as RGB values.
The resulting images look like Figure 4. Each pixel of the
image generated from the front faces represent the normalized
volume coordinates where the corresponding ray enters the

Table II
AVERAGE TIMES (IN SECONDS) TAKEN BY EACH STAGE IN A SIMULATION

FRAME, WITH SPHERES FOR THE RENDERING.

Spheres, 1024 Particles Fluid Simulation Rendering Total
CPU Simulation 0.021 0.013 0.034
CPU Simulation % 62.5% 37.5% 100%
GPU Simulation 0.0015 0.0077 0.0091
GPU Simulation % 16.1% 83.9% 100%

Spheres, 2048 Particles Fluid Simulation Rendering Total
CPU Simulation 0.083 0.046 0.129
CPU Simulation % 64.4% 35.6% 100%
GPU Simulation 0.0024 0.017 0.019
GPU Simulation % 12.3% 87.7% 100%

Spheres, 4096 Particles Fluid Simulation Rendering Total
CPU Simulation 0.080 0.044 0.124
CPU Simulation % 64.4% 35.6% 100%
GPU Simulation 0.0033 0.033 0.036
GPU Simulation % 9.1% 90.9% 100%

Spheres, 8192 Particles Fluid Simulation Rendering Total
CPU Simulation 0.199 0.091 0.291
CPU Simulation % 68.5% 31.5% 100%
GPU Simulation 0.0058 0.060 0.066
GPU Simulation % 8.9% 91.1% 100%

volume. The other image has the exit information of the rays.
The rays are then marched on the fragment shader with early
ray termination when the pixel is opaque enough, according
to a predefined threshold.

V. RESULTS

The experiments were performed on a computer with an
Intel Core 2 Duo P8400 2.26GHz as the processor and a
NVIDIA GeForce 9800M GS with 512MB GDDR3 VRAM as
the GPU. The operating system used was Linux 2.6.31 with the
proprietary NVIDIA driver version 190.29. The resolution of
the generated volume in the CPU simulation is 128x128x128,
while in the GPU it is 128x512x512. In all experiments the
raycaster rendered a 512x512 image.
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Figure 5. Percentage of time taken up by the fluid simulation when rendered
with raycasting, with different number of particles.

Table I and Table II show the time taken by different
stages in a simulation frame, respectively with raycasting and
spheres for visualization. The “Fluid Simulation” stage takes
up the majority of the frame when the stage is performed on
the CPU, while the visualization-related processes (“Volume
Generation”, “Raycasting” and “Rendering”) dominate the
frame time when the whole simulation is performed on the
GPU (Figure 5). This is to be expected because the fluid
simulation is a fairly parallelizable process and hence very
suited for the GPU.

Since the visualization portion dominates the frame, we
experimented with performing more than one fluid-simulation
step per simulation frame. For example: instead of performing
one simulation step with ∆t = 0.01s, we can perform 10
steps and use ∆t = 0.001s for each. The graph on Figure 6
shows that, for a simulation with 8192 particles, although 10
simulation steps are performed instead of only one, the total
simulation time roughly only doubles.

Figure 7 shows the visual difference between each scenario.
The screenshots were taken at the same simulation time for
both the single ∆t = 0.01s simulation step and the ten ∆t =
0.001s simulation steps, i. e., the the bottom row calculated
more simulation frames. A smaller time step tends to yield a
more stable simulation, as depicted by the smaller “splashes”.

The video1 shows a simulation of SPH running on CPU
inside an invisible box. When the user moves the box a force
is applied on the particles and they react in real time. This
is important because the simulation must not be only fast,
but also have a high response time. The video also contains a
comparison in real time of the simulation with both single and
multiple time steps, in order to compare performance impact
and stability of these approaches.

VI. FINAL REMARKS AND FUTURE WORKS

Analyzing the experiments and the results we can conclude
that:

1http://150.162.202.1/~renan/sibgrapi2010/fluid_video.avi

Figure 6. Average time taken up by the fluid simulation on the GPU with
raycasting, with both the 1-step and the 10-step configurations and 8192
particles simulated.

• The so-called voxelization of the particles fits as a
good approach in coupling a particle-based fluid simulation
technique with different visualization techniques. Assuming
the output of the simulation can be represented as particle
positions with properties to define a implicit field, it can
be used with this method. The generated volume could be
rendered as a surface through a mesh generation algorithm
(Marching Cubes, NURBS) or oher direct volume rendering
techniques.

• The prototypes allow real time user’s interaction. The
effects of a fluid vs. solid collision are visually represented
just as they occur.

• The results achieved an acceptable interactivity level,
considering the time step constraints discussed at the end of
Section 3. The rendering by raycasting did not penalize the
execution time in a relevant manner, so the appeal obtained in
the visual aspect is worth it.

Using a volume as an intermediate data between the fluid
simulation and the rendering decoupled the logic between the
two steps. This decoupling helped in coding many tests with
different parameters, allowing the developer to deal only with
local updates in the prototypes’ source code.

In every test that the simulation was performed in the CPU,
the rendering was not the most time consuming task. In fact the
simulation took around 60% or more. Analyzing the results of
the raycasting experiments, it can be seen that in the 1024
particles experiment the CPU version took less time than
the GPU in the experiments with 1024 and 2048 particles.
However, we can observe that in the following experiments
the opposite occurred, with the GPU version executing a time
step in less than one third of the time of the CPU version in
the 8192 particles’ experiment.



Figure 7. Comparison between one step of fluid simulation with ∆t = 0.01s (top row) and ten steps with ∆t = 0.001s (bottom row).

The SPH method runs more efficiently in the GPU due to
characteristics of this processor, which can perform the same
instructions for different data inputs at the same time. The
method is parallel by its own nature in which each particle’s
position can be calculated separately for a given simulation
step. When more particles are applied on a simulation, this
difference tends to grow. The raycasting algorithm runs effi-
ciently in the GPU for the same reason, because every ray task
can be calculated in separate.

The experiments’ pictures demonstrate the difference in the
plasticity obtained through the raycasting algorithm. The fluid
has a more appealing aspect in comparison with the spheres
representation, as can be observed in Figure 9, even if we
compare the 8192 spheres representation with the 1024 par-
ticles simulation using raycasting. If a simulation application
requires more accuracy, it makes sense applying more particles
to represent the fluid motion. More particles means that the
fluid is more subdivided for the simulation. On the other hand
if the application claims for visual effect, e.g. video games,
the developer could adapt it in a fluid simulation with less
particles (less memory consuming solution) to achieve a more
interesting visual result. The transfer function of the raycaster
also affects the visual quality as can be observed in Figure
8, where the fluid was rendered with lower opacity on the
surface.

For future works we intend to simulate fluid’s contact
with more complexes solid structures and to take advantage

Figure 8. Raycasting the fluid surface by using a translucent transfer function.

of SPH’s inner characteristic in providing the variation in
physical quantities during its own calculations[17]. We also
aim to take advantage on the raycasting transfer function to
codify through colors the fluid’s physical condition such as
pressure and velocity that are not observed just in the surface
visualization.

Finally, we could try to apply the voxelization of the model
on solids and tissues’ simulation in real time, considering
the proper adaptations. The raycasting algorithm provides a
relevant enhancement of the visual characteristics and since it
presents a regular behavior representing volatile objects like
fluid’s particles, it seems reasonable to think about adapting it
to models that do not suffer of such unpredictability regarding
their spatial parameters.



Figure 9. From the left to the right, surface renderings of the same simulation step using 1024, 2048, 4096 and 8192 particles.
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