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Abstract— Non-rigid medical image registration is an essential 

tool when studying deformable regions such as thorax and 

abdomen. In this paper we propose an algorithm based on 

Fourier transformations with trigonometric Fourier basis 

functions at different orders combined with a subdivision 

scheme in order to attain spatial alignment of two 

corresponding Computed Tomography (CT) volumes, with 

small to moderate deformations. The performance of the 

algorithm was analyzed as a function of the transformation 

order (n) and the number of volume subdivisions along each 

axis (s). The results show that a suitable parameter choice is 

n=2, s=3-4. The algorithm was validated by “correcting” 

clinical images previously deformed with Thin-Plate Splines 

(TPS), and also applied to coregister different scans of a given 

subject after repositioning on the scanner bed. This method is 

automatic and does not require previous segmentation or 

landmark selection. Average registration errors with the 

optimal parameters were estimated in approximately 3 mm, 

and typical computing time is of the order of a few minutes in a 

standard personal computer. We have found that Fourier basis 

functions provide an efficient way to implement non-rigid 

registration. 
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I.  INTRODUCTION 

Image registration has become an extremely important 
and routine procedure, not only for diagnostic applications, 
but also as an essential tool to assist in Radiotherapy 
Planning and adaptive Radiotherapy [1-3].  The search for an 
automatic, fast and reliable method applicable to different 
situations remains an open research field. 
One of the most frequent applications of medical image 

registration is the spatial alignment of two or more scans of 
the same tomographic modality for a given subject. In a 
general classification scheme, this situation corresponds to 
intra-subject, intra-modality registration [4-6]. The time 
elapsed between different scans may range from a few 

seconds up to several months, for instance when follow-up 
studies of a same patient are carried out.  If the subject is 
repositioned between scan sessions, his/her anatomical 
orientation and distribution will change with respect to the 
scanner coordinate system. 
For certain body regions such as the head and limb 

portions, the application of a rigid body transformation 
model is usually satisfactory.  When it comes to thorax and 
abdomen, however, those models only provide a rough 
approximation. Several organs and tissues of interest may 
redistribute or deform considerably because of patient 
repositioning, normal physiological functions or involuntary 
motion (i.e. respiration). In many cases, it is very important 
to take into account such variations, for example for 
fractionated treatment of prostate cancer [7-9]. There are 
several approaches to this problem in the literature which 
propose non-rigid registration algorithms [5,10,11], and this 
remains an active research field given its complexity and 
variety of situations of interest. Unlike rigid model 
registration, the validation of deformable methods is 
particularly challenging, as the outcome after metric 
optimization may turn out to be non-unique or even 
meaningless [12]. 
However, the main difficulty in the application of 

deformable methods lies in the many degrees of freedom for 
the system. In an extreme situation, it would be necessary to 
propose an independent tri-dimensional transformation for 
every image voxel. In this case the number of 
transformations would be three times the number of voxels. 
Optimization in such a parameter space is computationally 
expensive. For that reason, a number of approximations are 
usually implemented, and most non-rigid methods first 
perform a rigid approach and then apply a non-rigid 
transformation using a small set of basis functions. For 
example, spline basis functions are used when fiducial 
markers are available or algorithms based on physical 
models can be also applied (e.g. elastic deformations, 
viscous fluids, etc.)

 
[13-16]. 



 

Figure 1:   Flowchart of the whole registration algorithm. 

Figure 2:   a) Sub-volume assembling method (see Appendix). b) 
sub-volumes before and c) after assembling.  Figures show a 2D 

section of the 3D volume. 

In this work we offer a systematic analysis of this issue 
using trigonometric Fourier basis functions [17-19]. With 
these functions one can easily control the typical size of the 
deformation field in a simple fashion, ranging from long to 
short wavelengths. By combining this approach with a 
volume subdivision scheme, we expect that a very small 
subset of basis functions should be enough. In addition, since 
Fourier functions constitute a complete set, we can 
approximate an arbitrary deformation only by increasing the 
number of basis functions. 
The main purpose of this work is to analyze this issue in 

a systematic way for intra-modality registration for CT 
(Computed Tomography).  For this modality, we determine 
the optimal number of coefficients (transformation order) for 
the basis functions and the number of sub-volumes that 
produce a satisfactory registration in a reasonable computing 
time. 
As the similarity measure, we compute the Normalized 

Mutual Information (NMI) at different transformation orders. 
It has been shown the use of NMI with volume partial 
interpolation allows fast computation and low noise levels 
[20-22]. The algorithm is applied on 3D image data sets of 
deformable parts of the body such as the thorax and 
abdomen. Each volume was artificially deformed using a 
known displacement field and then co-registered to its 
original counterpart, which was taken as the reference image. 
In order to assess its clinical usefulness, we applied the  
 

 
 
method to co-register two CT scans of the same subject on 
different acquisition dates. 
This paper is organized as follows: in the next section the 

theoretical background of algorithm is described. Then we 
present the results of applying the algorithm on the data sets 
as mentioned above, including error estimation. Finally, we 
analyze the performance of the algorithm in the discussion 
section. 

II. MATERIALS AND METHODS 

A. Theoretical Framework and Algorithm 

 
The purpose of a registration method is to find the set of 

parameters of the transformation T:r =(x,y,z) → r’= (x’,y’,z’) 
which maps any point of a floating image F on another 
reference image R. The transformation has to maximize the 
similarity measure that will be described below. We adopt 
the following scheme: 
1. Pre-processing: segmentation, resampling, filtering. 
2. An initial registration is performed using affine 

transformations (rigid+scaling) F → R, optimizing 
the similarity measure. 

3. F is divided into k sub-volumes Fr  (k=8 in 3D). 
4. An independent transformation is applied to each 
portion Fr , with a rigid and a non-rigid component. 



5. The global transformation Tglobal=S (T1 ∪ T2...∪ Tk ) 
is obtained after the assembling the transformations 
Tr . 
 

The above algorithm is depicted in Fig. 1.  The affine 
registration in steps 1 and 3 is parameterized by rotation, 
translation, shearing and scaling. In 3D, this requires 12 
parameters. 
For the non-rigid transformation we applied a Fourier 

expansion up to order n on each dimension: 
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X, Y, Z being the image dimensions along each spatial 

direction and a, b, c, d, e, f  the coefficients to be found up to 
order n. The initial condition is randomly selected with a 

Gaussian distribution with 0 mean and variance σ2
. In order 

to have a smooth initial condition σ  is taken to be 
proportional to n

-1
. 

In this approach, functions ϕijk represent the subset of 
transformations that keep the volume boundary invariant, 

while functions ψijk represent the transformations with null 
gradient on that boundary. 
 

B. Assembling and subdivision scheme 

 
Usually, the assembling of independent sub-volumes 

after rigid transformations is achieved by the interpolation 

of quaternions [23]. To the best of our knowledge, however, 

no interpolation method is yet regarded as standard for non-

rigid transformations. In this work, we propose the strategy 

shown in Fig. 2. We build for each point a consistent global 

transformation from the weighted average transformations 

of the corresponding sub-volume and its nearest neighbors. 

It is a hierarchical scheme, where each volume is divided 

into 8 equal sub-volumes, and this process is repeated s 

times. With this method we obtain a smooth continuous and 

differentiable global transformation. A full description of 

the assembling method is offered in the Appendix. 

C. Similarity measure 

 
The Normalized Mutual Information was adopted in this 

work [22,24,25]: 
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where pij is the joint probability distribution of the voxel 
values of the reference and floating images and pi and pj  are 
the marginal probability distributions. 
The partial volume method was used as interpolator [26] 

and the extended Downhill Simplex [27,28] is chosen as 
optimizer. We consider that the termination criterion is met 
when the change in the NMI between two consecutive 
iterations is < 10-4. The algorithm was implemented in C++ 
programming language and run on a PC-Linux platform, 

Intel Core 2 Duo - 3 GHz. 
 

D. Image data 

 
The CT scans were performed with a HiSpeed scanner 

(GE, Milwaukee, USA). (matrix size: 512×512×47, voxel 
size: 0.7×0.7×7 mm3).  
Each selected data set was slightly deformed using TPS 

(Thin-Plate Splines) [29,30] with a regular grid of 432 
control points and a average displacement of 27 mm 
(maximum displacement: 40 mm), simulating a moderate 
body expansion (e.g. exhalation-inhalation phase).  This 
artificially deformed volume was selected as the Floating 
Image to be registered to the original one (Reference Image). 
After determining the optimum order and number of 

subdivisions for each modality, we applied the registration 
algorithm for co-registering two studies of the same subject, 
each done on the same scanner but on different days. In this 
way, we made sure that the patient had been repositioned on 
the scanner table between scan sessions, causing visible soft 
tissue displacements in the thoraco-abdominal region. 
 

E. Error estimation 

 
For non-rigid registration, a measure of error can be 

provided by the average voxel-to-voxel absolute 
displacement between the reference and registered images. In 
case of perfect alignment, such displacements are equal to 
zero.  
The average displacement over the whole image is: 
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N
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1
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where pi and qi  are the voxel coordinates of floating and 

reference image, respectively and N is the total number of 
voxels. It is important to keep in mind that both the initial 
deformation field (after the application of TPS) and the 
resulting field (after registration) are known. 



Figure 3: CT vs. CT deformed with TPS (a) Rigid registration. (b) Fourier registration, n=2, s=4 (c) NMI (circles) and error ε (squares) vs. 

Fourier order for s=1. (d) NMI and error ε vs. number of subdivisions for n=2. (e) Computing time for Fig. 3c. (f) Computing time for Fig. 

3d. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. RESULTS 

A. Image registration of TPS-deformed volumes 

 
We applied the registration algorithm previously 

described to a set of image slices that conform a 3D volume, 
setting different initial conditions for the parameters in Eqs. 
1-3. The original image volume was selected as reference, 
and its TPS-deformed version as floating. In Fig. 3a we show 
as example an overlay of two transaxial CT slices 

corresponding to the initial rigid registration of a CT volume 
and its deformation using TPS. Fig. 3b shows the 
corresponding overlay after non-rigid, Fourier registration. 
Fig. 4 further illustrates the registration for sagittal and 
coronal views. Remarkably, bone structures do not deform 
after the process.  
To study the behaviour of the NMI and the registration 

error ε as a function of the transformation order, we ran the 
algorithm for  increasing values of n, treating the whole 
image volume without subdivisions (s=1). As expected, the 

NMI increases with n while ε decreases (Fig. 3c).  Searching  



Figure 4:  Coronal and sagittal views of CT vs. TPS-deformed 

CT before (a) and after (b) Fourier registration with order n=2 
and subdivision s=4. 

 

 

 

for further optimization in the parameter space and 
reasonable computing time, we then selected n=2 and plotted 

NMI and ε as a function of the number of subdivisions (Fig. 

3d).  The optimum was found for (n=2, s=4), where ε ∼ 3 
mm. 
For all graphs, values at n,s=0 and n,s=0.5 stand for 

initial volume alignment and rigid registration, respectively.  
Let us note that the rigid registration takes longer time than 
the registration with n=1. This is because for the rigid 
registration is initialized 3 times in order to avoid local 
maxima. In contrast, only a rough registration was performed 
in the rigid stage of the algorithm for n≥1, because its result 
was just the starting point of the registration with Fourier 
functions. 
Every registration cycle was run 12 times each one with a 

different initial deformation. The graphs show average 
values with their corresponding standard deviations (error 
bars). 
The computation time for each registration stage is 

plotted in Figs. 3e and 3f. The total computation time can be 
evaluated by adding up the corresponding points. For 
example, for a second order registration we have to add the 
rigid part (n=0.5), the first order registration (n=1) and the 
second order registration (n=2). As the computation time 
grows exponentially with the order (except between n=0.5 
and n=1), the values shown in the graph are already very 
close to the total computation time.    
From these figures we choose n=2 as a suitable order, 

since for n>2, the computation time increases considerably 

even when the error ε is almost constant. Similarly, both the 

NMI and ε improve with the number of subdivisions, at the 
expense of execution time. For this reason, a convenient 
number of subdivisions was selected as s=3, 4. 

 

 

 

B. Intra-subject registration:  clinical studies 

 
In addition to the systematic analysis presented above, 

we evaluated how the algorithm accounts for real 
deformations in the thoraco-abdominal region. Two clinical 
CT scans corresponding to a given subject were selected, 
each acquired on different dates. The first scan was taken as 
reference, to which the second one was co-registered, using 
the optimum n and s as obtained above. Two medical experts 
examined the reference, floating and registered volumes slice 
by slice, looking for selected anatomical landmarks. They 
qualified the results as “fairly acceptable” and encountered 
only minor misalignments by visual inspection, which were 
estimated to be 2 mm. Results are shown in Fig. 5. 
 

IV. DISCUSSION AND CONCLUSION 

We presented a detailed analysis of a registration method 
based on the maximization of mutual information. A subset 
of Fourier functions is used as basis for the transformation. 
We systematically analyzed the behavior of the algorithm as 
a function of the order of the transformation and the number 
of subdivisions of the image. 
Our systematic analysis shows how the similarity 

measure (NMI) behaves with both the order of the 
transformation n and the number of subdivisions s. For CT-
CT registration, we found that maximum NMI is attained for 

n ≥ 3 (s=1).  For n=2 the NMI is only slightly inferior, 
however the computing time becomes an order of magnitude 
longer if calculation is performed up to n = 3 (Fig. 3e), as the 
number of Fourier parameters to be optimized is 6n3 in 3D 
(Eqs. 1-3).   
As expected, the similarity measure increases with the 

number of subdivisions s, accompanied by a decrease in 

error ε (Fig. 3d). The improvement in registration quality 
was also confirmed by visual assessment by comparing 

 
 Figure 5: Intra-modality registration of two clinical scans 

(same subject, different sessions). Left column: rigid registration. 
Right column: Fourier registration. Top row: image fusion. 

Bottom  row: image difference. 

 



results using s=3 versus s=4. Only slight improvements in 

the NMI and ε were recorded for n>3 and s>3, but at a very 
high computational cost and providing negligible visual 
improvements. One issue of concern is that rigid structures 
such as bone in CT should remain so after registration. Since 
the characteristic size of the deformation applied is greater 
than typical bone structures, they do not deform noticeably 
(Fig. 4). 
Regarding computing time, setting optimal parameters 

(n=2, s=3), and using an ordinary computer, the time for co-
registering two CT volumes (matrix dimensions 

512×512×47) is ~ 600 secs. (~ 200 secs. if s=2). (Fig. 3f). 
Such computation times were attained without any specific 
optimization technique. Let us note that the algorithm leads 
naturally to parallelization because the sub-volumes can be 
processed independently. In that way, the computing time 
can be substantially reduced. 
In principle, the use of Fourier basis functions allows 

arbitrary deformations on any given image volume; the 
combination of this method with a subdivision scheme 
allows to accommodate small image portions in a 
progressive fashion, without affecting the rest of the image 
data [23,31].   
In general, the proposed registration method rendered 

acceptable results for small and moderate deformations (~ 25 
mm). A preliminary study suggests that it is fairly robust, 
even in the presence of Gaussian noise. We evaluated its 
performance using clinical images after deformation with 
Thin-Plate Splines, as well as image pairs corresponding to 
different scan sessions for a same subject. The selected 
studies were thoracic and abdominal scans for three common 
tomographic modalities. Obviously, not only organ 
deformations and displacements may come about between 
scan sessions, but also significant variations in anatomy and 
function, due to normal or pathological conditions. In these 
cases, the outcome of any non-rigid registration method 
offers an approximation whose usefulness must be assessed 
for each particular situation. 
We found that near maximum NMI is attained for n=2 

and s=3 or 4 in a reasonable computing time for CT-CT 
registration, with an average error ~ 3mm. We have tested 
our method with several data sets and the optimal parameters 
are typically similar (data not shown). 
 These results are of the same order as the ones found in 

recent approaches [32,33], using more complex methods 
such as a combination of cross-correlation  and mutual 
information in the former and local matching of anatomical 
features in the latter. The computing time is between 400 
secs and 1000 secs, which is also of the same order as the 
time reported in [32]. 
The applied basis functions involve only “smooth” 

transformations, with wavelengths of the order of sub-
volume that is being analyzed. Therefore, these 
transformations cannot deform small structures such as 
bones. 
The algorithm was successfully applied to moderately 

deformed volumes using Thin-Plate Splines in 3D for co-
registering pairs of CT scans of a same subject, each on 
different dates. The performance was qualified as “fairly 

acceptable” by medical experts.  Although the current study 
shows results for intra-modality situations only, the method 
can be extended and applied to inter-modality cases without 
substantial change. 
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APPENDIX 

After the different sub-volumes are registered it is 
typically found that the displacement on the borders is not 
the same for contiguous sub-volumes. This would imply that 
the transformation is not continuous, which is physically 
unacceptable. A simple solution for this problem is to use the 
previous transformations to build a continuous global 
transformation by linear combination, with weights that 
depend on the distance from the border of the sub-volume.  
Let us consider the simple case of two 2D sub-volumes 

U1 and U2, with transformations T1 and T2 (see Fig. 2a). We 
denote the borders of each volume as C1 and C2. We look for 
a continuous and differentiable global transformation Ts. In 
order to do that we propose a weighted average with the 
conditions that on the border itself Ts must be equal to 
(T1+T2)/2, while well inside of the sub-volumes Ts must 
converge to T1 or T2. We use the function fh(x)=tanh(x). We 
define Ts as: 
 

),()(),()(),( 1221 yxTxpyxTxpyxTs

γγ +=
 (A1) 

 
where 















Ω∈

+
−

Ω∈

+
−

=

2

0

1

0

1

),(
2

1)(

),(
2

1)(

)(

yxif

xx
f

yxif

xx
f

xp

h

h

γ

γ

γ

 















Ω∈

+
−

Ω∈

+
−

=

2

0

1

0

2

),(
2

1)(

),(
2

1)(

)(

yxif

xx
f

yxif

xx
f

xp

h

h

γ

γ

γ

 

 

The parameter γ controls the distance inside a sub-
volume where the transformation is affected by the 
neighbors and x0 is the coordinate of the border between the 
two sub-volumes. This parameter is taken as ¼ of the 
average length of the sub-volume. This means that for the 
opposite half of the sub-volume the transformation will have 
almost no effect. These sections, denoted in Fig. 2 by U’1 
and U’2 will be connected to the sub-volumes that are to its 
left and to its right respectively. It is very easy to check that 



this transformation satisfies the continuity and 
differentiability requirements and that has the correct limits. 
In the more general case of 4 sub-volumes in 2D, Ts has he 
form: 
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where (x0,y0) is the coordinate where the 4 sub-volumes 

intersect.  The same procedure can be easily generalized to 

3D, where there are 8 transformations pi
γ
(x,y,z): 
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