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Abstract—Melanoma is the deadliest kind of skin cancer, but
it can be 100% cured if recognized early in advance. This paper
proposes a non-invasive automated skin lesion classifier based
on digitized dermatological images. In the proposed approach,
the lesion is initially segmented using snakes guided by an
edge map based on the Wavelet Transform (WT) computed
at different resolutions. A set of features is extracted from
lesion pixels, and a probabilistic classifier is used to identify
melanoma lesions. The detection rate of the proposed system
can be adjusted to control the tradeoff between false positives
and false negatives, and experimental results indicated that a
false negative rate of 1.89% can be achieved, in a total accuracy
rate of 82.55%.

Keywords-melanoma classification; image processing; feature
reduction

I. I NTRODUCTION

Melanoma is the deadliest form of skin cancer, and its
incidence rate has been increasing over the latest years
throughout the world [1], [2]. This cancer can be totally
cured if diagnosed early. If not, however, it can spread
through the body (metastasis) and be fatal. The survival
rate of the patient is strongly related to the stage of the
disease [3].

Early diagnosis of melanoma is not an easy task, since the
disease can be very similar to other skin lesions in its early
stages. Therefore, the diagnosis relies mostly on the knowl-
edge and experience of a physician and his/her observation
skills. According to [4], a dermatologist is incorrect in 1
of every 3 diagnosis through the simple visual analysis of
a cutaneous lesion. To guarantee a precise diagnosis, other
exams are necessary, such as biopsies, which are expensive
and painful [3]. Another problem towards early diagnosis
of melanoma is the frequency that people, especially in
third world countries, go under periodic revisions with
dermatologists.

Considering the facts presented before, this paper pro-
poses an automated diagnostic system of cutaneous lesions
through the analysis of digitalized images to help a physi-
cian, acting like a second opinion. Many papers have already
proposed solutions to this problem, but, most of them uses
only neural networks to classify the lesion, as in [5]–[9]. In
this paper, we propose a novel approach using a probabilistic

classifier, which allows us to determine the confidence rate
of the results, and that can be fine tuned to control the
compromise between false positives (FP) and false negatives
(FN).

Automated classifiers, besides working as physician as-
sistants, could be also used in teledermatology, which is a
recent field in dermatology. Through teledermatology, there
is no need of a patient being in the same place as the
physician. For instance, a patient can go to smaller health
care outposts, where a trained employee could take a picture
of the lesion and upload it to a server, where a physician can
access the picture some other time and return a diagnosis.
A detailed explanation about teledermatology can be found
in [10]. In this cases, an automated diagnosis system could
be used for preselecting images that have high probability
of being melanoma, setting their priority of being verified
by the specialist higher than the others.

II. RELATED WORK

Automated diagnosis has been getting a lot of attention
from medical and academic communities due to the increas-
ing rate of melanoma. Many papers have already proposed
solutions to the problem presented in this one. In [9], two
sets of images were evaluated, one containing 66 images
and the other containing 300. Eleven features were extracted
from each image: asymmetry index, irregularity, average red,
green and blue inside the tumor, colorbin, local and average
color for RGB and area and elevation (manually estimated).
The features were used in a feedforward neural network,
trained with backpropagation algorithm. Tests were executed
using half of the database for training and the other half
for testing. The results show that the neural network, when
tested with the smaller database achieved a success rate of
92%, while with the larger database, the success rate drops
to 85%.

In [8] two approaches are compared: neural networks
and discrimant analysis. Different databases were composed,
containing approximately 30 images each and the classifiers
were validated using the “leaving-one-out” method. The
features extracted from each image were: two irregularity
indexes and thiness ratio. Besides, statistical data related



to different color spaces, such as RGB, Lab, IHS were
also extracted, totalizing 20 features. In some cases, PCA
(Principal Component Analysis) was applied to reduce the
dimensionality from the database. The experimental results
presented that both classifiers achieved high success rates,
from 85% to 100%.

In [1], 1258 dermoscopy images have been analyzed
and 428 features were extracted from each of them. The
lesion segmentation was performed automatically by using
a threshold method for an initial estimative of the tumor
area followed by a region growing algorithm. From the
segmented lesion, 140 features related to color, 80 to sym-
metry, 32 to border and 176 to texture were extracted. The
classification was performed by an Artificial Neural Network
(ANN) trained with a backpropagation algorithm, and the
results were evaluated by a leave-one-out cross-validation
method. The inputs for the ANN were selected through the
method of hypothesis test of Wilks. The best results achieved
a sensitivity of 85.9% and specificity of 86.0%, when 72
features were selected from the whole group of features and
using an ANN with 6 hidden neurons. The system was made
available on the internet for physicians and dermatologists.

Christensen et al. [2] proposed an approach aiming to
achieve at least 64% of accuracy (the same rate of dermatol-
ogists, when inspecting lesions at naked-eye). They applied
a closing operation to reduce the influence of hair, and
used an adaptive threshold method to segment the lesions.
The features extracted from the images for classification
were: border irregularity, area index, best-fit ellipse index
(melanomas have greater tendency than benign lesions to
have a ellipse-shaped form), standard deviation of mean
radius, roundness and Heywood circularity index. Other
features related to the color of the lesion were also obtained.
Each feature was statistically evaluated to determine if it
contributed in a positive or negative way for the accuracy
of the system. Then, all the features were summed together
in order to create a single score which would describe if
the lesion was benign or malignant. The system achieved an
accuracy of 77%, and although it is not clear in the paper,
it seems that an online image database (Dermis) was used.

Despite the existence of different approaches for auto-
matic lesion classification, there are several aspects that
influence the performance of the classifier, such as the
initial segmentation of the lesion (which may be manual
or automatic), the features that are used in the classifier, the
type of classifier, and the database used for testing (number
of samples, controlled environment for acquiring the images,
etc.). This work presents a novel approach for automatic
classification of skin lesion that presents contributions in
different stages of the process. First, the automatic segmen-
tation of the lesion contour is obtained using snakes guided
by edge maps based on the WT at different resolutions in
a coarse-to-fine manner, getting a rougher estimate of the
contour initially and refining it later on. Then, a new way

to compute the symmetry of the lesion is introduced, and
combined with other features commonly used for classifi-
cation (such as color, irregularity, etc.). Finally, a Bayesian
classifier is employed, providing a statistical framework to
evaluate the confidence of classification results (and also
allowing to control the compromise between FP and FN).
The proposed approach is described next.

III. T HE PROPOSEDAPPROACH

The proposed system architecture can be seen in Figure 1.
A digital image (photograph) of the lesion is given to
the system, which segments the lesion automatically. Then,
eleven key features are extracted, and the Fukunaga-Koontz
Transform (MDA-FKT) is applied for feature reduction. The
features are used in a classifier, which will determine if
the lesion is melanoma or not based on its training using
a specific database. Each step will be detailed in the next
subsections.

Figure 1. System architecture

A. Image Segmentation

The image segmentation step consists on isolating the
lesion from the image background. There are several tech-
niques to solve this problem, such as thresholding, region
growing, snakes and split and merge [11]. These techniques
are usually applied to solve problems involving images in
many fields, such as cardiac, ankle cartilage and skin lesion
images [12]–[14] and many others. In this paper, several
techniques were analyzed.

We have chosen the snake segmentation technique, due
to its widespread use in medical imaging [12], [13], and
flexibility to get the contour accurately. This technique was
proposed by [15], and it consists on a curvec(s, t) =
(x(s, t), y(s, t)), which moves dynamically until it finds the
contour of the object. Therefore, this model deforms the
curve in order do minimize the its energy functional, which
is given by:
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where α is the tension of the snake,β is the rigidity of
the snake,κ is the weight of the external force, andc(s) is
the final curve. The functional energy can be divided in two
parts: the internal and external energies. The former term of
the integral is the internal energy, which represents the curve
itself, and the latter term is the external forceEext, which
consider the image data, guiding the curve to the boundary.



The snake has some convergence problems due its weak
external force. To solve this issue, the Gradient Vector Flow
Snake (GVF snake) was used, proposed by [16]. The GVF
snake has a behavior like the traditional snake, but it solves
the small attraction basin of traditional snakes using a new
external force: the Gradient Vector Flow Field (GVF field).
On the other hand, GVF snakes may be strongly affected
by noise, which can push the snake away from the actual
contour. In this work, an edge map based on the WT is
employed, due to the inherent denoising of the wavelet
decomposition.

To obtain the initial contour, the color image is initially
converted to grayscale and blurred using a Gaussian filter
(with standard deviation10 and size15 × 15), to minimize
the presence of hair and small skin signs. Then, Otsu’s
automatic threshold [11] is applied to the blurred image, and
pixels lower that the threshold are retrieved (it is assumed
that the lesion is darker than the skin). However, shadows
may degrade the thresholding procedure (and they tend
to appear in the boundaries of the image). A connected
components algorithm is applied, resulting in a set of blobs.
The largest blob is then retrieved as the initial lesion region
if it is larger than a minimum area thresholdTA (set
experimentally to 200, based on the resolution of the images
in our database), and if it is not connected to the boundary
(since shadow regions may yield larger connected sets).
If this largest set is not validated, the initial threshold is
reduced by a fixed amount (0.05, set experimentally), and
the process repeats iteratively.

The boundary of the validated blob is used as the initial
contour required for snakes segmentation. To evolve this
contour, the non-decimated wavelet transform described
in [17] is used, resulting in a set of detail images in
the horizontal and vertical directionsWh

2j and W v
2j , for

j = 1, ..., N , and a low-pass imageS2N (here,N is the
coarsest scale). As described in [17], the wavelet used to
compute the WT is similar to the derivative of a Gaussian,
so thatWh

2j andW v
2j act as edge detectors, with magnitude

M2j [n,m] =
√

(Wh
2j [n,m])2 + (W v

2j [n,m])2. (2)

For larger values ofj, M2j provides a coarse edge map
presenting only the most relevant objects in the image, but
also suppressing noise. In our approach to evolve the snake,
the GVF field [16] is computed with the coarsest edge map
M2N , and the initial contour is evolved. When it converges,
the resulting contour is used as input for another snake
evolution, using a finer edge mapM2j (j < N) to build the
GFV field, and the process is repeated until a scaleN0 < N
is reached. In all examples, we used just two scales (N = 6
andN0 = 4), based on the resolution of our database. Also,
we have made an exhaustive analysis of the snake parameters
α , β and κ, and set these parameters respectively to 0.1,
0.1, 0.9 in all experiments.

Figure 2 shows an example of the segmentation procedure.
The original color image is shown in Figure 2(a), and the
blurred grayscale version is shown in Figure 2(b). The
thresholding procedure is illustrated in Figure 2(c), and it
can be seen that the lesion was not separated from the
background (due to uneven illumination). However, such
separation can be achieved after two reductions of the thresh-
old (Figure 2(d)). The final contour obtained with wavelet-
based magnitudes and snakes is shown in Figure 2(e).

B. Feature Extraction

The feature extraction step was based on the ABCDE
rule [3], [18], which is widely used by dermatologists to
visually diagnose melanoma. This rule describes that malig-
nant melanoma lesions are characterized by their asymmetry,
border irregularity, color variance, diameter (greater than
5mm) and evolution over time. Since the images evaluated
in this paper were selected from online databases1, it was
not possible to determine their diameter in centimeters (since
the images do not have any scale), neither their evolution.
However, as it can be seen in [7], [9], there are other relevant
features that can be extracted from the images. Thus, based
on the ABCDE rule and in other similar papers, the features
extracted from the images were: irregularity, asymmetry
index, color variance (RGB), relative chromaticity (RGB)
and average color (Lab color space). The approaches to
extract each feature can be seen below.

1) Asymmetry Index:It represents how asymmetric the
lesion is. In this paper, we propose the following approach
to detect the asymmetry of a skin lesion. An asymmetry
index is calculated with respect to every axis that passes
through the lesion centroid, and the lesion asymmetry is
defined by the smallest value of asymmetry, considering all
the axis. More specifically, consider the lesion centroidc and
its perimeter, containingN pixels pi (whereN depends on
the size of the lesion and the resolution of the image). For
every pointpi, its Euclidean distancedi to the centroid is
computed through:

di = ||pi − c||, i = 1, . . . , N. (3)

To obtain the asymmetryAj of the lesion around a point
pj (i.e., around an axis that passes throughc and pj), we
compute the average of the distances2 di between the points
on the left and the right ofpj :

Aj =
2

N

N/2
∑

i=1

|dj−i − dj+i|, j = 1, . . . , N. (4)

and the lesion asymmetry index is given by the smallest
value ofAj :

A = min
j

Aj . (5)

1Avaliable at: http://www.dermis.net and http://www.dermnet.com.
2In Equation (4), the vector containing distancesdi is extended period-

ically, so thatd
−1 = dN , d

−2 = dN−1, etc.



(a) Original image (b) Blurred version (c) Binary image (d) Binary image after second
thresholding

(e) Segmented lesion

Figure 2. Steps of the segmentation procedure.

2) Irregularity: This feature describes the irregularity
index of the lesion border. According to [7], it can be
calculated by:

I =
N2

4πA
, (6)

whereA denotes the area of the lesion, andN denotes the
perimeter of the lesion, both in pixels.

3) RGB Color Variance:This feature describes the color
variance among all pixels from the lesion. This feature is
calculated for each color component in the RGB color space.
According to [6] and [7], melanoma is characterized by the
mixture of the following colors: tan, brown, red and black,
which implies in high color variation in the RGB channels.
The variance is given by:

σ2
c =

1

n

n
∑

i=1

(xc
i − µc

RGB)2, c ∈ {R,G,B}, (7)

wherexc
i is the value of the componentc from pixel i in

the RGB color space,µc
RGB is the mean value of the same

color component andn is the number of pixels in the lesion.
4) Lab Mean Values:As demonstrated in [6], melanoma

can be very similar to Dysplastic Nevi (a benign skin lesion,
which is a potential beginning of melanoma) in its early
stages, due to the small variation of brightness, color and
chroma between them. According to the authors, the Lab
colors are the most efficient way to distinguish those lesions.
To obtain this feature, the image is converted to the Lab
color scheme and then the average of the Lab components
is calculated through:

µc =
1

n

n
∑

i=1

yc
i , c ∈ {L, a, b} (8)

whereyc
i is the value of the componentc from the pixeli

in the Lab color space, and againn is the number of pixels
in the lesion.

5) Relative Chromaticity:According to [7], this feature
reduces the variation of light, printing and digitalization of
the image, and it also equalizes the variations of individual
human color. This feature is calculated for each component
in the RGB color space, and it is given by:

CRc =
µc

RGB
∑

c∈{R,G,B}

µc
RGB

−
νc

RGB
∑

c∈{R,G,B}

νc
RGB

, (9)

whereµc
RGB are the RGB mean values within the lesion,

and νc
RGB are the mean values computed in healthy skin

parts around the lesion.
As it can be seen in Equation (9), it is necessary a small

portion of the healthy skin from the image to compute this
feature. Since the images used here were selected from
online databases, most images contains logos, which are
not always positioned in the same place of the images.
Therefore, it should be necessary to develop an algorithm
that could detect a part of the healthy skin without any kind
of symbol overlapping it and under good illumination. Since
the process of selecting a small portion of the image is not
complicated and can be easily done manually by a non-
specialist, this step was not automated.

C. Image Classification

The features extracted from each image were used in a
Bayesian classifier. This kind of classifier works with proba-
bilities, which allows a greater flexibility towards the results.
In our problem, we have just two classesω1 and ω2, that
represent melanoma and not melanoma, respectively. The
Bayesian decision rule is based on the posterior probability
that a feature vectorx belongs to a classωi:

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)
, (10)

wherep(x|ωi) is the probability density function (PDF) for
the classωi, andp(x) = p(x|ω1)P (ω1) + p(x|ω2)P (ω2) is
the PDF for the whole distribution of feature vectors. The
classωi is chosen ifP (ωi|x) > P (ωj |x), ∀j 6= i. For a
two-class problem, this reduces to selectingωi if and only
if P (ωi|x) > 0.5.

One interesting property of the Bayesian classifier given in
Equation (10) is the association of a cost to wrong selections.
In particular, in the problem of classifying skin lesions into
melanoma or not, FNs (i.e., the classification of melanoma
lesions as not melanoma) are dangerous, since they may not
be promptly analyzed by the physician. On the other hand,
FPs (i.e., the classification of non melanoma lesions as a
melanoma) are not that bad, since a thorough analysis by
the dermatologist could provide the correct diagnosis.

This cost can be computed by a loss functionλij , that
provides the cost of selecting a classωi when the correct one
was actuallyωj . To avoid penalizing correct classifications it



is desirable to haveλij = 0 if i = j, andλij > 0 otherwise.
With the introduction of the cost functions, the boundary
of the Bayesian classifier changes accordingly [19]. More
specifically, the classω1 is selected overω2 if and only if:

P (ω1|x)

P (ω2|x)
>

λ12

λ21

. (11)

The selection ofλ21 andλ12 depends on how strongly one
wants to avoid FNs (at the cost of possibly increasing the
number of FPs). This issue is analyzed in the next section.

Another challenging task is the determination of the
underlying PDFs for the two classes of the problem. For
sakes of simplicity, we assumed a multivariate Gaussian
model for each of the two classes.

D. Data Dimensionality Reduction

To characterize a multivariate Gaussian distribution, the
mean vectorµ and covariance matrixΣ are needed. Al-
though their computation is straightforward, the number of
samples required to compute them reliably increases as the
dimensionality of the problem grows. To avoid this kind of
problem, several techniques to reduce the dimensionality of
the problem have been proposed, and the main approaches
are Principal Component Analysis (PCA) and the Fisher’s
Linear Discriminant Analysis (FLDA). PCA is useful to find
linear combinations of features that contain large variance,
not accounting for the individual distribution of each class.
In FLDA, the main goal is to reduce a multidimensional
feature to a scalar through a linear transformation that
maximally separates class patterns according to the Fisher
Criterion, being optimal only for two Gaussian distributions
with equal covariance [19].

In this work, we explore the Multiple Discriminant Anal-
ysis based on the Fukunaga-Koontz Transform (MDA-FKT),
that maximizes the Bhattacharyya distance between two
Gaussian distributions with same mean but possibly different
covariance matrices [20]. Another advantage of the MDA-
FKT over the FLDA is that it allows to reduce ad-
dimensional feature vector to af -dimensional feature vector,
for 1 ≤ f < d, whereas FLDA allows only the reduction to
a scalar (in a two-class problem).

As in [20], the first step is to reformulate the classification
problem to generate two distributions with the same mean.
This is done by defining the intraclass spaceΩI and the
extraclass spaceΩE through

ΩI = {xi − xj |L(xi) = L(xj)},
ΩE = {xi − xj |L(xi) 6= L(xj)},

(12)

whereL(x) is the label of samplex. Since both distributions
have zero mean, it was shown in [20] that the optimal
subspace with dimensionf that maximizes the Bhatacharyya
distance is characterized byf generalized eigenvectors of the
pair of covariance matricesΣI , ΣE (related toΩI andΩE ,

respectively) corresponding to the largest valuesλ + 1/λ,
whereλ are the generalized eigenvalues.

Once the original dataxi are reduced tof -dimensional
feature vectorsyi using the MDA-FKT approach, the result-
ing vectors are used to obtain the corresponding Gaussian
distributions of the melanoma and non-melanoma classes,
characterized the the mean vectors and covariance matrices.
Although these parameters can be obtained using traditional
estimators, the presence of outliers can degrade such esti-
mates. In fact, they can be obtained in a more robust manner
using the algorithm presented in [21]. In their approach, the
covariance matrix is created through the remotion of outliers,
which are detected by projecting the data in directions that
maximized the kurtosis coefficient.

E. Image preprocessing

In order to increase the accuracy of the proposed system,
an image enhancement procedure [22] was applied as a
preprocessing stage. This algorithm is based on an adap-
tive modification of wavelet coefficients that stretches low-
contrast edges and shrinks noise-related coefficients. In [22],
it was shown that such enhancement algorithm improves
the visual quality of skin lesions for manual classification
by the physician (an example of lesion enhancement is
shown in Figure 3), and in this work we propose to use
edge-enhanced images to improve classification results using
semi-automatic techniques.

(a) Original image (b) Enhanced Lesion

Figure 3. Example of lesion enhancement.

IV. EXPERIMENTAL RESULTS

In the study presented in this paper, 290 images (139 non
melanomas and 151 melanomas), obtained from an online
database, were evaluated. The tests were separated in two
parts: segmentation and classification.

The segmentation procedure is just a preliminary stage
needed for the classification procedure. The evaluation of
segmentation results was not based on a precise comparison
of the contour generated by the proposed approach and
some kind of ground truth. Instead, just a visual inspection
was performed to detect if the lesion contour was correctly
delineated using the proposed approach, neither leaving
much of the lesion outside the boundary, nor presenting
healthy skin portions within the segmented region.



Figure 4. Examples of lesions and segmentation results.

In fact, since the segmentation is the input for the classifi-
cation procedure, the result of the segmentation algorithmis
implicitly evaluated based on the results of the classification.
The classification tests were validated with the 10-fold-cross
validation technique, which, according to [23], provides
more reliable results than dividing the database in two sets:
training and testing. We ran the 10-fold-cross validation
technique twenty times, obtaining the confusion matrix from
the mean values.

As explained in the previous section, the Bayesian clas-
sifier was evaluated using a minimum acceptable threshold
Tp, and also using the cost-based approach. The results of
each step is discussed with more details in this section.

A. Segmentation Results

Despite the fact that the segmentation results were not
validated by a specialist, it can be seen that for most of
the input images in the database, the segmentation did not
include healthy skin or left behind significant portions of the
lesion, as shown in Figure 4. In fact, from the 290 images
used in this work, the system could segment automatically
85.86% images (the correctness of the segmentation results
was evaluated visually).

Figure 5. Example of manual initialization (left) and final segmentation
results (right).

The remaining 41 images that could not be segmented au-
tomatically usually had a pellucid stain into the lesion. This
errors occurred due to a bad automatic initialization of the
snake. However, the problem of having a bad initialization in
snakes segmentation can be overcame by manually drawing
a polygonal line that roughly approximates the lesion bound-
ary, which is neither difficult nor time consuming. Thus,
all the images which could not be segmented automatically

were successful segmented after a small user intervention.
Figure 5 illustrates an example of manual initialization
(green polygon) and the corresponding segmentation (red
curve).

B. Classification Results

To evaluate the classification results, confusion matrices
were built to show the average number of false positives
(FP), false negatives (FN), true positives (TP) and true
negatives (TN), given by:

TP =
Pcc

Np
, FN = 1 − TP, (13)

TN =
Ncc

Nn
, FP= 1 − TN, (14)

where Pcc and Ncc are number of positive and negative
instances correctly classified, respectively,Np and Nn are
the total number of positive and negative instances being
evaluated, respectively.

For all analyzed technique, the 10-fold-cross validation
procedure was applied 20 times, and the mean results
were retrieved. Table I shows the results obtained using
the Bayesian classifier according to condition (11) using
λ12 = λ21, i.e., assigning the same penality for FPs and
FNs. More specifically, Table I presents the confusion ma-
trices for 5 different classification approaches: using thefull
11-dimension feature vector (Multivariate), using Fisher’s
Linear Discriminant Analysis (FLDA) to reduce the feature
vectors to a single scalar, the MDA-FKT approach reducing
to a single scalar (MDA-FKT1), the MDA-FKT approach
reducing to 2-dimensional feature vector (MDA-FKT2), and
the MDA-FKT approach reducing to 2-dimensional feature
vector applied to enhanced versions of the lesions (MDA-
FKT2 + Enhancement).

As it can be seen, both FLDA and MDA-FKT approaches
present some improvement over the multivariate approach
with all feature vectors, both in terms of FPs and FNs.
Comparing the approaches that reduce the feature vector
to a scalar (FLDA and MDA-FKT1), it can be observed
that FLDA produces slightly better results, particularly with
respect to the number of FNs. However, when MDA-FKT
is used to reduce the feature vectors to two dimensions
(MDA-FKT2), the results are better than FLDA w.r.t. to
both FPs and FNs, and an additional gain is obtained when



Predicted
Multivariate FLDA MDA-FKT1 MDA-FKT2 MDA-FKT2 + Enhancement

Mela Non-mela Mela Non-mela Mela Non-mela Mela Non-mela Mela Non-mela

Actual Mela 130.45 20.55 130.95 20.05 131.90 19.10 131.55 19.45 133.35 17.65
Non-Mela 18.35 120.65 18.00 121.00 31.35 119.65 16.55 122.45 15.95 123.05

Table I
COMPARISON OF DIFFERENT CLASSIFICATION APPROACHES USINGλ12 = λ21
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Figure 6. (a) ROC curve for the MDA-FKT2 approach with enhancement. (b) Results assigning higher costs to FNs, wherek = λ21/λ12.

this last approach is combined with the image enhancement
procedure [22].

C. Assigning penalities to errors

Another set of experiments was performed by assigning a
higher cost to FNs, by settingλ21 > λ12 in Equation (11).
As k = λ21/λ12 ≥ 1 increases, the number of FNs tends
to decrease, at the cost of increasing the number of FPs.
Figure 6(b) shows the relation between the classification
error types (FPs and FNs) as a function ofk, along with
the total accuracy3. Figure 6(a) shows the receiver operat-
ing characteristic (ROC) curve for the proposed approach
(MDA-FKT2 + Enhancement) with varying values fork,
and the compromise between FPs and FNs can be observed
explicitly.

As it can be observed in Figure 6, the FN rate decreases
at the cost of rapidly increasing the FP rate ask increases,
which causes the global accuracy rate to be decreasing. The
selection of the best value fork is context-dependent, and
relates to the tradeoff between FPs and FNs. Figure 6(a)
highlights three values fork, to illustrate such tradeoff. The
FP rates fork = 1.5, k = 4 and k = 12 are, respectively,
13.78%, 25.43% and 34.35%, and the FN rates are 9.77%,
4.54% and 1.89%.

3The accuracy is the rate of total samples (either positives ornegatives)
that were correctly classified.

V. CONCLUSIONS

This paper proposed a quasi-automated system for diag-
nosing melanoma lesions based on the analysis of digitalized
images. In our approach, a novel segmentation algorithm
based on snakes and multiple wavelet gradients was pro-
posed to obtain the lesion contour. A set of features is then
computed for the lesion (and healthy skin portions), that are
evaluated using a Bayesian classifier. Variants of the clas-
sifier were employed, using MDA-FKT for dimensionality
reduction, using robust estimation of the class parameters,
using costs to reduce the number of false negatives, and
using an enhancement algorithm as a preprocessing stage.

As the experimental results have shown, the proposed
approach can achieve an accuracy of 88.41 % with a false
negative rate of 11.47%, using MDA-FKT2 approach plus
the image enhancing preprocessing, indicating its use as
a pre-screening for tele-dermatology applications. Besides,
associating a cost to the FN instances (setting its cost twelve
times the cost of FP), we were able to reduce the false
negative rate to 1.89% of the non-melanoma samples, but
at the cost of decreasing the total accuracy to 82.55%.

An objective comparison with competitive approaches is
difficult, since they are applied to different databases. How-
ever, it should be noticed that the approach described in [1]
achieved TP and TN rates of 85.9% and 86.0%, respectively.
Also, the technique described in [2] apparently used the
same database as the one used in our work, achieving an



accuracy of 77%. As it was presented in the last section,
our system achieved a TP rate of 88.31% and a TN rate of
88.52% using only 2 features (MDA-FKT2+Enhancement),
yielding an accuracy of 88.41%.

As future work, we intend to use other databases to train
and validate the classifiers, obtained with a standardized
procedure for image acquisition (which would probably
increase the accuracy of the proposed system). Another point
for improvement is the study and development of other
features that better discriminate melanomas for other lesions,
and the use of other distributions (rather than the Gaussian)
to model the classes melanoma and non-melanoma.
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