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Abstract—The characterization and quantitative description
of histological images is not a simple problem. To reach a
final diagnosis, usually the specialist relies on the analysis of
characteristics easily observed, such as cells size, shape, staining
and texture, but also depends on the hidden information of
tissue localization, physiological and pathological mechanisms,
clinical aspects, or other etiological agents. In this paper,
Mathematical Morphology (MM) and Machine Learning (ML)
methods were applied to characterize and classify histological
images. MM techniques were employed for image analysis.
The measurements obtained from image and graph analysis
were fed into Machine Learning algorithms, which were
designed and developed to automatically learn to recognize
complex patterns and make intelligent decisions based on
data. Specifically, a linear Support Vector Machine (SVM)
was used to evaluate the discriminatory power of the used
measures. The results show that the methodology was successful
in characterizing and classifying the differences between the
architectural organization of epithelial and adipose tissues.
We believe that this approach can be also applied to classify
and help the diagnosis of many tissue abnormalities, such as
cancers.
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analysis; machine learning; tissue.

I. INTRODUCTION

In Biology, the association between tissue architecture
and function was established a long time ago. The devel-
opment, function and regeneration of tissues, both normal
and abnormal, are determined by the spatial localization and
distribution of various cell types and phenotypes within the
tissue. The central role of the cellular arrangement in tissues
integrity and homeostasis maintenance has been extensively
studied by experimental and theoretical models [1], [2],
[3], [4]. For example, the loss of tissue architecture is a
prerequisite for, and one of the defining characteristics of
most cancers. Conversely, normal organ architecture can
act as a powerful tumour suppressor, preventing malignant
phenotypes even in cells stricken with gross genomic ab-
normalities [5]. The analysis of histological images is an
important factor in clinical procedures, where a pathologist
tries to correlate the pattern of tissue disturbance with the
pathology stage, like, for example, in neoplasm classifica-
tion. To reach a definitive diagnosis, the pathologist analyzes
slides of microscopic sections and, based on his/her own ex-

perience, considers different features observed in the image.
Acquiring proper experience usually results from a long-
term training process, which is not so easy to formalize [6].
To make things more complex, the subjective method takes
into account not only characteristics directly derived from
the image, such as cells size, shape and number, but also
hidden features such as clinical information, pathological
mechanisms and etiological agents [7].

The Mathematical Theory of Graphs has been widely em-
ployed to analyze or solve diverse biological questions [8],
[9], [10], [11], [12], [13]. Image analysis, in particular, can
profit from strategies where the neighborhood relation be-
tween objects in the image, such as cells, can be represented
by neighbors graphs. Furthermore, Mathematical Morphol-
ogy (MM) is an elegant form to solve image-processing
problems using of a consistent theoretical base, that is
the theory of sets [14], [15]. In MM the transformations
between images, which are called morphological operators,
can be defined by the structuring functions. In biology
and medicine, the combination of advanced technologies of
image processing with quantitative image analysis has been
used to describe and characterize tissues in various condi-
tions [16], [17], [18], [19], [20]. Specially, the application
of this approach in cancer diagnosis and prognosis has been
considerably improved, as indicated by many reports [7],
[21], [22], [23], [24].

Thus, the identification of reliable markers that could be
used in order to reduce the subjectivity of interpretation
of microscopical specimens is one of the main interests
of histophatologists. The application of Machine Learning
methods, which are algorithms designed and developed to
automatically learn to recognize complex patterns and make
intelligent decisions based on data, can help to achieve this
goal. Specifically, Support Vector Machines (SVMs) are a set
of related supervised learning methods used for classification
and regression, which are receiving increasing attention for
their good predictive performance in several areas [25], [26].
In such classification tasks, in particular, the SVMs seek for
an hyperplane in a high dimensional space which maximizes
the margin of separation between data from different classes.
According to the Statistical Learning Theory, the use of a
large-margin hyperplane implies in a better generalization



Figure 1. Microscopic image of epithelial tissue.

ability. In the present study, we developed a methodology
to analyze topological arrangements on tissue images, based
on image processing and machine learning techniques. As
a benchmark, we successfully used this methodology to
characterize and to classify the differences between the ar-
chitectural organization of the distinct tissues - the epithelial
and adipose, as observed in 2-D histological images. We
believe that this approach can be also applied to classify
and help the diagnosis of many tissue abnormalities, such
as cancers.

II. METHODS

A. Data Set and Image Acquirement

The image data set was obtained from the archives of
Biology Laboratory of Digestive Epithelium (University of
São Paulo). Our data set contains 5 images of tick epithelial
tissue and 5 images of mamary gland adipose tissue from
mice. The material consisted of 5-m-tick histological sec-
tions stained with hematoxylin and eosin. The digitalized
images genetared a 300× 300 dpi resolution files, as shown
in Fig. 1.

B. Segmentation

The segmentation process using Mathematical Morphol-
ogy [27], is a multi-step process, where the first one is to
make an automatic segmentation to find markers in each cell
of the image. After that, a specialist uses a MATLAB in-
terface to create new markers and remove others incorrectly
marked. Ideally this method should be an automatic seg-
mentation for multiple images application, minimizing the
specialist intervention. These experiments were performed
in the SDS Morphology Tooblox for MATLAB [28].

The segmentation of the epithelial tissue begins with the
reading of the image, converting to gray scale, see Fig. 1, and
with a threshad of the gradient, followed by closing the holes
and an operator opening with a structuring function [29]

Figure 2. Epithelial image with markers and cell boundaries.

defined by a Euclidean circle with a radius of 5 pixels, as
shown in the Matlab code below1:

% reads the RGB image
img3=imread(’epithelial01.tif’);
img=rgb2gray(img3);
f1 = mmgradm(img);
f2 = mmthreshad(f1,5);
f3 = mmclohole(f2);
b1 = mmsedisk(5,’2D’,’Euclidean’);
markers = mmopen(f3,b1);

The segmentation for adipose tissue begins with the
reading of the image and converting to gray scale. The image
is inverted (mmneg) for better visualization of this paper.
Then followed by a dilate with a structuring function defined
by a Euclidean circle with a radius of 9 pixels, in order
to highlight the lighter regions. The next filter is the Area
Opening, aiming to eliminate the regions (flats zone) with
areas less than 370 pixels. Then was performed the threshad
and regional minimum that correspond to the markers for
each cell, as shown in the Matlab code below:

img3 = imread(’adipose01.tif’);
img = rgb2gray(img3); % gray scale
img = mmneg(img);
b1 = mmsedisk(9,’2D’,’Euclidean’);
f1 = mmdil(img,b1);
f2 = mmareaopen(f1,370);
f3 = mmthreshad(f2,70);
f4 = mmregmax(f3);
markers = mmintersec(f3,f4);

The correct definition of markers is essential for the
segmentation of the cells of epithelial and adipose tissue.
Thus, after the automatic segmentation, a specialist uses an
interface to create new markers and remove others. After
correction of the markers, the watershed is calculated [30],
creating the outline of each cell, see an example in Fig. 2.

1The community can validate these results and applied in other
problems in image processing (where the neighborly relationship be-
tween objects is significant) using functions in Matlab, available at:
http://professor.ufabc.edu.br/∼fzampirolli/cells.
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Figure 3. Epithelial (a) and adipose (b) tissue with the graph and cell
boundaries.

C. Construction of Neighborhood Graphs

Using a strategy developed by Zampirolli [31] a graph
using morphological operations in images was created, as
illustrated in Fig. 3. The vertices of the graph are defined
by the centroids of each cell, and the neighborhoods of each
vertice (edges) are defined by the neighborhoods between the
cells.

D. Calculation of Measures

Measures calculated using histological images from ep-
ithelial and adipose tissues (beyond centroid and the neigh-
bor of each cell) are presented briefly in this section. These
measures can be classified as global, individual and also
measures in graphs [32], [33]. Examples of the global
measures are: sum of pixels in the entire image, number of
cells (vertices or objects) and perimeter of cells in the entire
image. Examples of measure in graphs are: neighborhoods

number and mean distance between cells. Using the region-
props command of the MATLAB, you can also calculate
the following topological measures (individual measures)
for each cell (details can be obtained in the MATLAB
documentation):
• Perimeter = distance around the boundary of the

cells;
• Area = number of pixels in the cells;
• MajorAxisLength = major axis of the ellipse con-

taining the cell;
• MinorAxisLength = minor axis of the ellipse con-

taining the cell;
• Orientation = angle (-90 to 90 degrees) between the

x-axis and the major axis of the ellipse containing the
cell;

• ConvexArea = area of the convex hull of the cells;
• Eccentricity = ratio of the distance between the foci

of the ellipse and its major axis length;
• EquivDiameter = diameter of a circle with the same

area as the cell;
• Extent = ratio of pixels in the cell to pixels in the

total bounding box;
• Solidity = Area/ConvexArea.
Other measures derived from [33] for diagnosis of solid

breast tumours, can also be calculated for cells:
• FormFactor = 4∗π∗Area

Perimeter2 ;

• Roundness = 4∗Area
π∗MajorAxisLength2 ;

• AspectRatio = MajorAxisLength
MinorAxisLength ;

• Convexity = ConvexPerimeter
Perimeter ;

• Solidity2 = ConvexArea−Area∑N

i=1
(ConvexAreai−Areai)/N

,

where ConvexPerimeter is the perimeter of the convex
hull of a cell, and N is the number of cells in a tissue.

E. Classification using Support Vector Machines

The SVM is a Machine Learning (ML) technique based
on concepts of the Statistical Learning theory [34]. In
classification problems, as the one considered in this paper,
usually a supervised training data set must be provided to
the technique. This data set must be composed of pairs of
examples in the form (xi, yi), where xi is a data item and yi
corresponds to its known label (classification). For instance,
in the distinction of epithelial and adipose histological
images, each xi corresponds to one cell - in fact, the vector
xi will have as coordinates the features extracted from the
cell image - and yi represents whether xi is an epithelial or
an adipose cell.

SVMs are receiving an increasing attention in the last
years, mainly for their appealing theory, which controls the
capacity of the classification model for a better general-
ization ability. Given a training data set where xi ∈ <m
and yi ∈ {−1,+1} - with m real-valued characteristics



describing data and two classes, named −1 and +1 for
mathematical purposes (for instance, −1 can be class ep-
ithelial and +1 class adipose), SVMs seek for an hyperplane
(w ·x+b = 0) able to separate data with a maximal margin.
In order to perform this task, they solve the following
optimization problem [25]:

Minimize: ‖w‖2 + C
n∑
i=1

ξi

Restricted to:
{
ξi ≥ 0
yi (w · xi + b) ≥ 1− ξi

where C is a constant that imposes a tradeoff between
training error and generalization and the ξi are slack vari-
ables. The restrictions are imposed in order to avoid training
examples between the margins. The slack variables relax
these restrictions by allowing some data items to lie within
the margins and also the presence of some training errors.
Their sum is minimized for controlling the training error.

The decision border obtained for the classification of new
data is given by

f (x) =
∑

xi∈SV
yiαixi · x+ b, (1)

where the constants αi are named Lagrange multipliers and
are determined in the optimization process. SV corresponds
to the set of support vectors (SVs), data items for which the
associated Lagrange multipliers are larger than zero. These
data are those closest to the optimal hyperplane. For all other
data, the associated Lagrange multiplier is null, so they do
not contribute to the determination of the final hypothesis.
In order to obtain the final classification using Equation 1,
a signal function is applied to f(x), such that, if f(x) > 0,
the predicted class is +1 and if f(x) < 0, the class is −1.

It is also possible to build non-linear decision functions
with SVMs, by the use of Kernel functions. Nevertheless,
based on the characteristics of the data set employed in the
experiments, linear SVMs were used in this paper.

III. RESULTS AND DISCUSSION

The aim of this study was to investigate the potential
of characteristic measures in characterizing different tissues.
In our first experimental approach, we used these measures
to characterize two types of tissues: epithelial and adipose.
It must be noticed that the distinction of such images can
be considered quite easy for a histologist, since epithelial
cells are more elongated and adipose cells tend to be more
round. Since the distinction of epithelial and adipose cells
can be considered a simple problem, we expect the extracted
measures will be able to fully characterize the given cells,
validating their use for this type of problem. To evaluate
the discriminatory power of the measures considered in this
paper, a data set of characteristic measures, also referred
as features, were fed into a linear Support Vector Machine

(SVM). The objective was to evaluate whether these char-
acteristics would provide a fair description of these two
types of tissues, by observing the predictive performance
of a linear SVM in their recognition when using the given
features as input.

For such, first a data set composed of epithelial and
adipose cell images was built. It contains a total of 810 cells,
equally divided in 405 epithelial cells and 405 adipose cells.
The balancing was ensured so that an unbalancing would
not harm the classifier induction with SVMs. In unbalanced
problems, the classification technique tends to favor the
majority class, in detriment of the minority class. For each
cell, 16 real-valued attributes or features were extracted:
solidity2, perimeter, area, mean distance to neighbors, major
axis length, minor axis length, orientation, convex area,
eccentricity, diameter, extent, solidity, form factor, round-
ness, aspect ratio and convexity. Tables I and II presents
the minimum, maximum, average and standard deviation of
these attribute values considering the whole data set. The
percentage shown represents the standard deviation from the
average. We can see from this table that there are differences
in the numerical ranges of the attributes. Therefore, we had
to normalize the data in order to feed them to SVMs. The
use of attributes with such range discrepancies could lead
the classifier to misleading conclusions regarding the relative
importance of the attributes (it would tend to favor attributes
in higher numerical ranges). It is also possible to note the
presence of attributes with low variations in their overall
values, as extent, solidity and convexity, which all showed
quite low standard deviation values.

For a better visualization on how the feature values
vary for the different cell types, we built the histograms
presented in Fig. 4, with the aid of the Weka Data Mining
and Machine Learning tool [35]. In this figure, values
obtained for epithelial cells are plotted in red, while those
for adipose cells are plotted in blue. For all features we
can see an overlap in the values. Nevertheless, this overlap
is less pronounced for some features, as perimeter, area,
eccentricity, diameter, solidity, roundness and mainly for
mean distance to neighbors. For this last feature in particular,
the only obtained using graph measures, there is already a
good separation in the feature values for the two considered
cell types.

Although there are already some indicatives of which
should be the best features describing the two classes of
cells, we decided to use a linear SVM for weighting the
importance of the given set of attributes in recognizing the
epithelial and adipose cells. By observing: (1) the predictive
performance of the SVMs in the recognition of the cells;
(2) how SVMs weight the attribute values in the hyperplane
equation (for instance, the vector w in w · x + b); we
can provide further conclusions regarding the ability and
importance, respectively, of the morphological measures in
characterizing these data. It should be noticed that estimating



Table I
MEASURES CONSIDERING THE DATA OF THE EPITHELIAL TISSUE.

Attribute Minimum Maximum Mean Standard Deviation
Perimeter 73,00 317,00 168,61 40,92 (24%)
Area 283,00 3560,00 1334,98 502,39 (37%)
MeanDistNeighbors 25 65 40,914 6,364 (15%)
MajorAxisLenght 22,00 112,00 53,94 13,06 (24%)
MinorAxisLenght 13,00 56,00 33,43 7,41 (22%)
Orientation -90,00 89,00 -6,29 57,41 (-912%)
ConvexArea 316,00 4187,00 1557,48 618,17 (39%)
Eccentricity 0,22 0,96 0,74 0,15 (19%)
EquivDiameter 19,00 67,00 40,49 7,80 (19%)
Extent 0,36 0,80 0,61 0,08 (12%)
Solidity 0,62 0,96 0,87 0,06 (6%)
FormFactor 0,32 0,86 0,59 0,10 (17%)
Roundness 0,23 0,93 0,59 0,15 (24%)
AspectRation 1,03 3,53 1,66 0,42 (25%)
Convexity 0,66 0,89 0,79 0,04 (5%)
Solidity2 0,12 5,18 1,00 0,69 (69%)

Table II
MEASURES CONSIDERING THE DATA OF THE ADIPOSE TISSUE.

Attribute Minimum Maximum Mean Standard Deviation
Perimeter 154,00 643,00 354,97 75,52 (21%)
Area 1018,00 17102,00 5932,77 2333,47 (39%)
MeanDistNeighbors 56 110 83,88 10,09 (12%)
MajorAxisLenght 53,00 185,00 106,14 20,99 (19%)
MinorAxisLenght 28,00 133,00 73,86 17,55 (23%)
Orientation -89,00 89,00 4,71 43,80 (929%)
ConvexArea 1217,00 18852,00 6780,09 2654,86 (39%)
Eccentricity 0,20 0,94 0,68 0,15 (21%)
EquivDiameter 36,00 148,00 85,24 16,99 (19%)
Extent 0,33 0,77 0,61 0,80 (131%)
Solidity 0,66 0,97 0,88 0,06 (6%)
FormFactor 0,32 0,81 0,58 0,10 (17%)
Roundness 0,27 0,97 0,66 0,14 (21%)
AspectRation 1,02 2,97 1,49 0,34 (23%)
Convexity 0,64 0,88 0,78 0,04 (5%)
Solidity2 0,15 4,19 1,00 0,68 (68%)

a function weighting the attribute values as performed can
be considered a suitable procedure for understanding how
they jointly contribute to the recognition problem.

We used the Weka Machine Learning tool for the induc-
tion of the SVM classifiers [35]. Default parameter values
were maintained in the experiments (C = 1 and linear Ker-
nel) and a normalization of the features was performed with
the aid of the tool. The stratified 10-fold cross-validation
procedure was employed for estimating the performance of
the classifier. Accordingly, the data set was divided into
10 folds, maintaining the proportion of examples per class
(that is, 50% of epithelial cells and 50% of adipose cells).
Ten training and test rounds are then performed. In each
one of them, nine folds are used for training (inducing)
the classifier and the remaining fold is used for testing its
performance for new data. The performance of the classifier
is then given by the mean and standard deviation of the
performances registered in the ten testing rounds. Three

performance measures were calculated: (1) accuracy rate,
which gives the total percentage of correct predictions for
test data; (2) specificity, which measures the proportion of
correct predictions for epithelial cells, that is, the proportion
epithelial cells correctly classified; (3) sensitivity, which
corresponds to the proportion of correct predictions for
adipose cells. The results obtained are shown in Table III.
The values shown correspond to the averages and standard
deviations calculated for the cross-validation test partitions.

All performance measures calculated showed high values,
specially for epithelial class, for which SVM had 100%
of correct predictions. By observing the weight vector of
the SVM hyperplane, we could identify the prominence
of five features in determining the decision frontier: mean
distance to neighbors, solidity2, solidity, minor axis length
and major axis length. On the other hand, the features
convexity, roundness, aspect ration, form factor and specially
eccentricity, had little influence on the final decision. In fact,



Figure 4. Histogram of the 16 measures (adipose tissue in blue and epithelial tissue in red).

Table III
PERFORMANCE OF SVM CLASSIFIER

Performance measure Mean Standard deviation
Accuracy rate 99.88 0.39
Specificity 100.00 0.00
Sensitivity 99.76 0.77

using only the five most prominent features, the SVM is
already able to achieve the performance shown in Table III.

Below we show the weight vector of the SVM hyperplane,
reported by Weka, using only the five most prominent
features as input, where we can see a higher absolute weigth
value attributed to the meanDistNeighbors feature:

-4.6801 * (normalized) meanDistNeighbors
-1.6845 * (normalized) majorAxisLength
-1.9868 * (normalized) minorAxisLength
1.3429 * (normalized) solidity
3.8776 * (normalized) solidity2

We can also see in Fig. 5 that there is a good separation

between epithelial and adipose data when we consider the
features meanDistNeighbors and solidity2.

As the mean distance to average feature was already dis-
criminative for this data set, as shown in the histogram from
Fig. 4, we also induced a SVM classifier using this feature
as input alone. The accuracy rate obtained was of 99.38%,
with an standard deviation of 0.83%. This high accuracy was
expected, since this feature was already discriminative for
the majority of the data items. However, it was not possible
to classify the data using only solidity2 as input to the SVM
method.

However, although the areas of adipose cells are generally
larger than the areas of epithelial cells, this measure does not
allow a direct differentiation among them. On the other hand,
we believe that, by using morphological filters on graphs
(such as opening or closing) employing as vertices values
the areas of each cell and with edges connecting neighbor
cells, we can get good classification results, since there is
a relationship between cell areas and the average distances
between neighbor cells.

Moreover, the best result occurred when a neighbohood
relationship between vertices within graphs was considered.



Figure 5. MeanDistNeighbors and solidity2 features (adipose tissue in blue and epithelial tissue in red).

IV. FINAL REMARKS

In this paper, we investigate the potential use of some
measures, associated to morphological and topological fea-
tures, to characterize different tissues. It should be noticed
that the aim of this study was to make an initial evaluation of
the features described in Section II-D on classifying different
cell types. We may conclude from the results shown that
these features are indeed good descriptors of the images.
In the next approach, we intend to use these measures on
a more challenging classification problem, related to the
recognition of different types of histological images, as in
the distinction of normal from tumour images from the same
tissue. It would be interesting to apply other techniques of
Mathematical Morphology using neighbourhood graphs, that
can generate other positive results in the classification of
images, as evidenced in this paper. Furthermore, we intend
to explore more carefully which subsets of features should
be considered for each particular classification problem -
the topological, both individual and global ones versus the
graphical measures. For such, we intend to employ feature
selection techniques from the Data Mining and Machine
Learning literature [36] to better evaluate the importance
of subsets of attributes and to develop a robust tissue
characterization and classification method.
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