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Abstract

This article presents a new method for discovering hid-
den patterns in high-dimensional dataset resulting from im-
age registration. It is based on true factor analysis, a sta-
tistical model that aims to find clusters of correlated vari-
ables. Applied to medical imaging, factor analysis can po-
tentially identify regions that have anatomic significance
and lend insight to knowledge discovery and morphomet-
ric investigations related to pathologies. Existent factor an-
alytic methods require the computation of the sample co-
variance matrix and are thus limited to low-dimensional
variable spaces. The proposed algorithm is able to com-
pute the coefficients of the model without the need of the
covariance matrix, expanding its spectrum of applications.
The method’s efficiency and effectiveness is demonstrated in
a study of volumetric variability related to the Alzheimer’s
disease.

1. Introduction

The development of non-invasive medical imaging
modalities opened a new perspective for in vivo studies, in
which anatomical and functional aspects can be jointly ob-
served. The representation of the overwhelming amount of
data provided by imaging modalities and the extraction of
relevant knowledge from the dataset became a crucial issue.
The data should not only be represented in a manageable
way, but also facilitate hypothesis-driven explorations of re-
gional shape differences and lend deeper insight to morpho-
metric investigation.

The comparison between the anatomies depicted by
imaging modalities can be achieved by image registration,
in which an image taken as a reference is brought into cor-
respondence to the subjects’ images in the study. Medi-
cal images may provide too much data for manual point-
wise registration, what motivates the development of auto-
matic methods that implement computer vision algorithms.
The result of registration may, nevertheless, increase the

amount of data to be analyzed to an intractable level. The
information that reveals the association between variables
is sparsely embedded in the covariance matrices, which can
only be computed to low-dimensional variable spaces. For
three-dimensional images that easily reach millions of vari-
ables, the computation of such matrices becomes an impos-
sible task.

In this article we present a new method for knowledge
discovery in medical imaging based on the factor analytic
model. Factor analysis (FA) is an important multivariate
statistical method in which the original observed variables
are grouped into clusters that potentially share a common
cause [11]. It is used, together with path analysis, to define
structural equation models of the problem under investiga-
tion. In addition to the morphometric variables, clinical and
demographic information can be considered in the analytic
model and contribute to explore the relationship between
regions in the image and pathologies or features of special
interest. Factor analytic methods are based on the decompo-
sition of the correlation matrix and this is a major limitation
to the use of this method in medical imaging analysis. The
method presented in this paper does not require the compu-
tation of the correlation matrix and is able to estimate all the
coefficients needed to define the model. We demonstrate the
exploratory potential of the new method in a study of mor-
phologic differences in the neuroanatomy between patients
diagnosed with Alzheimer’s disease and normal controls.

2. Image registration

The purpose of image registration is to determine a cor-
respondence between each voxel q in an image IR, chosen
as a reference, to a voxel p in another image IT . The prob-
lem of matching can be stated as finding two functions h
and g such that

IR(q) = g(IT (h(q))).

The intensity transformation function g establishes a corre-
spondence between the two image spectra. The spatial non-
rigid transformation function h maps corresponding voxels



between the images:

h(q) = q + u(q) = p,

where u is a displacement field [9].
Non-rigid registration may require that the image vol-

umes be described as continuous media with an associated
constitutive model. Following the pioneer work of Bajcsy
and collaborators [1] on the linear elasticity model, other
models of spatial transformation have been developed, in-
cluding modal matching [23], active shape models [3, 6],
fluid mechanics [2] and active contours [4]. The displace-
ment fields obtained from registration are detailed descrip-
tions of the anatomy depicted in the images. The poste-
rior analysis of these vector fields is able to reveal size and
shape differences, regional volumetric variation, curvature
and surface measurements, among others. For instance,
when the reference image is warped to match a subject im-
age, some regions may get enlarged and some may be re-
duced. It is possible to determine the amount of scaling ap-
plied to an infinitesimal volume around each voxel q of the
reference image, by computing the Jacobian determinant of
the spatial transformation [17]. The Jacobian determinant
Ji(q) is defined as the determinant of the gradient of the
mapping function q + ui(q):

Ji(q) = |∇(q + ui(q))|.

Since the Jacobians are computed from the results of im-
age registration, which is basically a smooth transformation,
it is expected that the values computed for neighbooring
voxels be somehow correlated. The mapping of correspond-
ing structures may also result in correlated values. Finally,
different structures and regions of interest may present hid-
den patterns of correlation. Exploring these correlations is
therefore an important source for knowledge discovery. The
huge amount of data, nevertheless, is an obstacle for this
task. Since the number of variables is much larger than the
number of images in the study, the correlation matrices are
not only singular, but also impossible to compute due to
their processing and memory requirements. The Jacobians
computed from the registration of a 128×128×128 image,
for example, result in a 221 × 221 correlation matrix. The
methods used to extract hidden patterns from this profuse
amount of redundant information must therefore avoid any
direct manipulation of the correlation matrix.

3. The factor analytic model

The purpose of FA is to explore the correlation among
the variables of a problem, acting as a powerful method of
data reduction, which makes it possible to manage the large
amount of information obtained from image registration. A

fundamental feature of FA is that, in addition to data reduc-
tion, it may favor data interpretation and knowledge discov-
ery.

In the true factor analytic model, an n-dimensional set
of observed variables, z = (z1, . . . , zn)T , is represented as
linear combinations of m (m << n) latent variables called
common factors, f = (f1, . . . , fm)T , and residual or unique
factors, y = (y1, . . . , yn)T , which account for the portion
of z that is not common to other variables, including error:

z = Af + Uy, (1)

where A = ((a11, . . . , a1m)T , . . . , (an1, . . . , anm)T )T

is the loading matrix and U = diag(u1, . . . , un)T is the
residual coefficients. The coefficients aij , called loadings,
express the covariance between variable zi and factor fj .
Variables z are standardized, so that their expected values
are 0 with variances equal to 1. It is assumed that the ex-
pected values for the unique factors be 0. Common and
unique factors are not correlated, so that the covariance ma-
trices equal the identity. In order for the factors to account
for all the correlation among the variables, the covariances
among unique factor terms and common factors are 0.

Based on the relationship between observed variables,
common and unique factors, the correlation matrix for the
sample in the original space, R, can be defined as

R = cov(Af + Uy)
= cov(Af) + cov(Uy)
= Acov(f)AT + Ucov(y)UT

= AAT + UUT .

(2)

From Eq. 2, the variance r2
i of a given variable zi can

be decomposed into components due to the m common fac-
tors, a2

i1 + . . .+ a2
im, called the communality, and a specific

variance u2
i :

r2
i =

m∑

j=1

a2
ij + u2

i . (3)

The number of factors, m, is a parameter to be determined
either experimentally or by evaluating the statistical fit of
the data in the model [11].

4. Previous work

The major objective of FA is to explore the inherent re-
dundancy embedded in the covariance among the observed
variables and investigate possible causal relationships with
latent constructs. In this sense, it may be considered an
appropriate alternative to simpler data reduction techniques
such as the Principal Component Analysis, in which only
the variance is considered [22]. On exploring the morphol-
ogy of specific structures, one may be concerned with the



relationship between regions of interest. FA may reveal as-
pects about the correlation between those regions and fa-
cilitates interpretation. Nonetheless, the use of FA in mor-
phometry has been restricted to the representation of gross
measurements and landmarks, in part due to the complex-
ity of the covariance matrix computation, as exemplified in
the works of Marcus [19] and Reyment and Jöreskog [21].
Stievenart et al. [24] also applied FA to study the corpus
callosum, revealing factors clearly related to the curvature
of specific parts of the callosal structure. Another relevant
work on the factor analysis of the corpus callosum was pre-
sented by Deneberg et al. [5], in which the structure was
divided into segments and the area was measured in or-
der to correlate regions of interest to demographic infor-
mation, such as gender and handiness. Machado et al. [16]
applied FA to study the relationship among pointwise Jaco-
bian determinants, obtained from automatic image registra-
tion. The method was able to partition the corpus callosum
into substructures that were previously determined based on
post mortem dissection of the fiber tract, proving the ability
of FA to serve as a knowledge discovery tool. In all these
works, the problem was made simpler by either using a low-
dimensional variable space or by approximating the factor
model, so that only common factors would be considered in
the analysis

The critical problem in FA is the computation of the
loading and residual coefficient, respectively represented by
matrices A and U. Many techniques have been proposed to
determine these coefficients. The simplest one neglects U
in Eq. 2 and factors R using spectral decomposition:

R ≈ ÂÂT = QΛQT = (QΛ1/2)(QΛ1/2)T ,

where Λ1/2 = diag(λ1/2
1 , . . . , λ

1/2
n ) is the diagonal matrix

with the square root of the eigenvalues of R and Q is the
matrix of the corresponding eigenvectors. The loading ma-
trix is thus estimated based on the sample covariance matrix
as

Â = QΛ1/2. (4)

The method described above for estimating the loading
matrix A is very similar to Principal Component Analysis
and is known as Principal Component Method [26]. By ne-
glecting the specific variance matrix U, the factor analysis
of the covariance matrix R is performed by placing commu-
nalities in the diagonal elements. In this case, the recovered
covariance matrix AAT have its off-diagonal elements af-
fected.

A more precise method of evaluating the loadings in the
true factor analytic model is the Principal Factor Method,
in which the residuals are not necessarily small and cannot
be neglected [11]. An initial estimate of U is subtracted
from R and the result is eigendecomposed as

R − UUT = AAT = Q̂Λ̂Q̂T ,

where Q̂ and Λ̂ are respectively the eigenvectors and eigen-
values of R − UUT . Loadings can thus be determined as
A = Q̂Λ̂−1/2. The estimate of the residual coefficients is
based on the inversed correlation matrix or requires, at least,
the computation of R [20]. The principal factor method can
be iterated to improve the estimates of the specific variances
and achieve more precise loadings. The requirement of the
correlation matrix is nevertheless a limitation to the method
when dealing with high-dimensional variable spaces.

As an attempt to provide more robust and efficient so-
lutions to the computation of loadings, Harman [11] pro-
posed the Minres method (minimmum residuals) in which a
solution for A is searched so as to minimize only the off-
diagonal residuals of the difference between the observed
correlation matrix R and the recovered correlations in the
solution AAT :

minA||[R − I] − [AAT − diag(AAT )]||,

where I is the identity matrix. Also of special interest is
the Maximum-Likelihood method, proposed by Lawley [15]
and enhanced by Jöreskog and collaborators [12, 14, 13].
In this method, the loadings are computed and the goodness
of fit of the model assessed simultaneously. The method
minimizes the function

log |AAT + UUT |+tr(R(AAT +UUT )−1)−log |R|−n.

Methods based on minimization compare the observed cor-
relations to the solution and are therefore also limited by the
dimensionality of the problem.

5. Methods

The proposed method is an iterative procedure that si-
multaneously computes the loadings and the residual coef-
ficients, without the need of the covariance matrix. From
the fundamental equation of the true factor model (Eq. 2),
matrix A is first estimated by neglecting the residual term:

R ≈ AAT .

Instead of decomposing the correlation matrix into its
eigenvectors, as performed in the principal factor method
(Eq. 4), we apply singular value decomposition to the sam-
ple itself. Singular value theory states that any n×N matrix
Z can be decomposed as:

Z = QDWT ,

where Q is an n × n matrix whose columns are the eigen-
vectors of ZZT /N , W is an N ×N matrix whose columns
are the eigenvectors of ZT Z/N and D = Λ1/2 is an n×N
matrix whose values in the diagonal are the square roots of



the eigenvalues of both ZZT /N and ZT Z/N . Since Q is
orthogonal, we have that

QΛ1/2WT = Z
QΛ1/2WT W = ZW
QΛ1/2Λ−1/2 = ZWΛ−1/2

Q = ZWΛ−1/2.

(5)

From Eq. 4 and 5, the first estimate of the loading matrix is

A ≈ QΛ1/2 = ZW. (6)

In order to compute the estimate of the residual coeffi-
cients U, we next apply the results obtained for the common
loadings in Eq. 6 to the true factor analytic model (Eq. 1)
and estimate the sample factor scores F following the ap-
proach described in [18]. This is achieved by globally min-
imizing the residual terms in Eq. 1, so that they account for
the part of the variables that are really unique and cannot be
represented by the common factors. From the factor scores,
the residuals are computed as

UY ≈ Z − AF (7)

and the residual coefficients U determined by taking the
covariance of the residual terms:

cov(UY) = U,

since the covariance of Y is the identity.
We now compute the next estimate of A. From Eq. 2,

the loading matrix A could be determined as

AAT = R − UUT ,

i.e., by replacing the communalities in the diagonal of the
correlation matrix and eigendecomposing the result. In
this case, we would require the sample correlation ma-
trix R which is known to be intractable. Instead, since
R − UUT = cov(Z − UY), the singular value decom-
position is applied to Z − UY, analogously as it was to Z
in Eq. 5, yielding to the eigenvectors Q̂ and eigenvalues Λ̂
of R − UUT :

Q̂ = (Z − UY)ŴΛ̂−1/2,

where Ŵ is the matrix whose columns are the eigenvectors
of (Z − UY)T (Z − UY)/N . Finally, the new estimate of
A can be computed from

AAT = cov(Z − UY) = Q̂Λ̂Q̂T ,

, as
A = Q̂Λ̂−1/2 = (Z − UY)Ŵ. (8)

The process should be repeated from Eq. 7 to 8, until no
more substantial changes in the loadings occur. The pat-
terns revealed by the correlations between observed and la-
tent variables, expressed by the loadings, can now be ex-
plored.

6. A case study on the Alzheimer’s disease

The ability and efficiency of the proposed algorithm is
illustrated in a case study on the Alzheimer’s disease (AD)
and its manifestations on the neuroanatomy of patients,
compared to normal elderly controls. The dataset consists
of 24 MRI image volumes from which 12 are diagnosed
with AD (age = 70.8 ± 8.5) and the remaining are matched
controls (age = 68.5 ± 9.4) [10]. The T1-weighted spoiled
echo images were acquired on a GE 1.5 Tesla instrument
(flip angle = 30o, TR = 35 ms, TE = 6 ms, 1.3 mm slice
thickness, in-plane resolution of 0.9 × 0.9 mm), and stored
as 182 × 218 × 182 volumes.

The brain volumes were registered to an average T1 tem-
plate computed from 305 volumes [7], using SPM99 [8]
with 12-parameter affine registration and non-linear regis-
tration with 12 iterations and 7 × 8 × 7 basis function. The
displacement fields obtained from image registration were
the basis for the computation of the Jacobian determinants.
Data matrix Z was formed by the determinant of the Jaco-
bian matrix at each of the 2.1 million voxels of the stripped
brain, together with the diagnosis, and used as input to FA.
After each estimate of the loading matrix A, it was rotated
in order to maximize the variance of the squared loadings in
each column, so that each variable presented high loading
for fewer factors (quartimax algorithm) [21].

The proposed algorithm for estimating the loadings took
5 iterations to converge to a solution in which the abso-
lute difference between the loadings in 2 consecutive iter-
ations was smaller than 0.01. The method revealed 23 fac-
tors associated to regional size variation, from which 4 was
found to be highly correlated to the disease (absolute load-
ings greater than 0.30): factor 1 is associated with the over-
all cortical tissue at cerebrum and cerebellum; factor 2 is
related to the ventricle enlargement; factor 9 encompasses
cortical regions in the frontal lobe and right insular gyrus;
and factor 21, related to the right occipital gyrus. The ef-
fects of cortical degeneration and ventricular enlargement
are depicted in Fig. 1 and 2, respectively. The figures show
a sequence of horizontal slices, from the inferior to the su-
perior view of the brain, in which the white regions corre-
spond to the voxels related to each factor. A summary of
the results is described in Table 1. The findings are in ac-
cordance to the anatomical differences between patients and
controls, reported in the literature [25], that reveal cortical
degeneration and proportional enlargement of the ventricles
associated to the disease.



Figure 1. Regions of the brain associated to factor 0 whose size variation present high correlation to
Alzheimer’s disease (in white). The analysis reveals that general cortical degeneration is a significant
feature related to the pathology.



Figure 2. Regions of the brain associated to factor 1 whose size variation present high correlation
to Alzheimer’s disease (in white). The analysis reveals that general ventricular enlargement is a
significant feature related to the pathology.



7. Conclusion

A novel method for the estimation of loadings in true fac-
tor analysis was presented. It is able to compute common
and residual coefficients without the need of the correlation
matrix, which is intractable in high-dimensional variable
space such the ones found in voxel-based registration prob-
lems. The algorithm iteratively computes better estimates
of the correlations between observed and latent variables,
without neglecting residual terms. The ability of the method
to act as a knowledge discovery tool was demonstrated in a
case study of the Alzheimer’s disease. The factors revealed
in the analysis are associated to regions of interest that are
affected by the degenerative process related to the pathol-
ogy.

The application of FA to high-dimensional representa-
tions of the anatomy is particularly advantageous, since
the method facilitates the interpretation of the results. The
factors can be visually identified as regions that embed
strong correlation. Even when applied to small datasets, FA
was able to provide results that are in accordance to clinical
findings and additionally provided information about the
correlation among morphological variables in a region of
interest.
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Table 1. Summary of the factor analysis re-
sults. For each factor fi, the table shows,
from left to right, the number of voxels for
which the factor presents the highest loading
values, the loading of the factor to diagnosis
and a description of the major regions asso-
ciated to the factor, within the brain.

f volume loading description
1 1077759 0.32 overall cortical region

at cerebrum and cerebellum
2 149742 -0.53 ventricles and regions in

cerebellar white matter
3 54756 0.02 fiber tracts from the splenium
4 34317 0.02 anterior medial part of

temporal lobes
5 26568 0.10 isolated regions of the cortex
6 28458 0.06 right superior frontal cortex
7 27135 -0.05 left insular gyrus
8 32292 -0.09 right frontal cingulated gyrus
9 13230 0.39 cortical regions in the frontal

lobe and right insular gyrus
10 29106 0.05 left parietal cortex
11 15822 0.13 right anterior frontal cortex
12 18954 0.13 right posterior frontal cortex
13 22869 -0.15 left temporal white matter
14 15714 -0.07 left parietal cortex
15 23112 -0.04 left superior parietal cortex
16 21897 -0.25 right cerebellar white matter
17 6345 0.05 left inferior parietal

white matter
18 13716 0.11 occipital cingulated gyrus
19 6993 -0.24 left temporal cortex
20 9666 -0.15 isolated regions of the cortex
21 9045 0.39 right occipital gyrus
22 4563 -0.03 isolated regions of the cortex
23 864 -0.24 isolated regions of the cortex


