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Abstract

This paper presents a linear complexity method for  
real-time  stereo  matching,  in  which  the  processing  
time is  only dependent  on the image resolution.  Re­
gions along each epipolar line are indexed to produce 
the  disparity  map,  instead  of  searching  for  the  best  
match.  Current  local  methods  have  non-linear  com­
plexity, as they all rely on searching through a corre­
lation space. The present method is limited to a paral­
lel camera setup, because all disparities must occur in  
the same direction. A continuity constraint is applied  
in order to remove false matches. The resulting map is  
semi-dense, but disparities are well distributed. Exper­
imental  results  on  standard  datasets  reach  around 
90%  of  accuracy  using  the  same  parameters  in  all  
tests.

1. Introduction

Stereo matching is the process of calculating dispar­
ities between images with a displacement in the scene 
viewpoint. This process can be restricted to one dimen­
sion with the epipolar constraint, as the disparities al­
ways occur along the epipolar lines [6].

Methods for stereo matching may have a local or 
global approach [9]. In local methods, the disparity cal­
culation is based on a correlation that depends only on 
the information of a local region. In global methods, 
this calculation is based on the minimization of a glob­
al  cost  function,  producing  more  accurate  disparity 
maps, with a higher processing time.

Local  correlation  between  the  stereo  pair  can  be 
based on intensity values [4], feature attributes [13], or 
both  [2].  Intensity-based  correlation  produces  dense 
disparity  maps,  but  tends to  generate  errors  in  areas 
with low or repetitive texture and depth discontinuities. 
Feature-based  correlation is  more  reliable,  but  needs 
feature  extraction  preprocessing  and  produces  sparse 
and irregularly distributed disparities.

Current local methods calculate disparities with an 
inherent combinatorial complexity, as a search is done 
to find the best match for a point among the n points in 
the corresponding epipolar line or, at least, a subset of 
it (the search range). Because of that, they have non-
linear time complexity.

In order to produce a disparity map with reasonable 
quality  and  a  relatively  low  processing  time,  recent 
methods  use  hardware  parallel  processing  [5],  opti­
mized implementations [3], or try to reduce the search 
range with a number of approaches, such as coarse-to-
fine scheme [11] and disparity windows prediction in 
stereo image sequence [7]. But if a linear complexity, 
On ,  is  desired  for  processing  each  epipolar  line 
(which is the case in real-time systems), a search for 
the best match should be avoided.

In this paper, a method for stereo matching is pre­
sented, in which the time complexity is  linear to the 
number of points in the image, Omn, where m is the 
number of lines and n is the number of columns. It is 
based on a region indexing process instead of search­
ing through a correlation space,  so that  the disparity 
range between the stereo pair has no impact in the pro­
cessing time.

2. Region indexing

In  current  local  methods,  the  correlation  function 
explicitly compares two regions,  whether  a  region is 
taken  as  intensity  values  or  feature  attributes.  This 
comparison results in an indication on how good is the 
match. In order to avoid combinatorial complexity, a 
search for the best match cannot be done. In this case, 
comparing two regions explicitly is pointless, because 
a region in the left image can be compared to no more 
than one region in the right image.

Searching for the best match for each region in a 
line is On2 for any possible disparity, or Ons if the 
search range is restricted to  s. When  s = 1, the com­
plexity is  On , but no search is possible. Thus, if no 
criterion is used to select a region among others in the 



same line, the probability of matching successfully a 
region is  1/n and the expected number of successful 
matches in a line is 1.

An indexing process makes possible to establish a 
criterion for selecting a correlated region based on how 
it is evaluated for the index calculation. Assuming that 
f  I i j  calculates a discriminant value for the region 

surrounding the point  i , j  in the image  I, and that  f 
maps highly correlated regions to the same value and 
uncorrelated regions to different values, the matching 
can be done by indexing each region in both images, 
taking f as an indexing function.

If the cameras are parallel, the projective planes are 
coplanar and a region Li j in the left image can match 
only a region Ri j−d  in the right image with a disparity 
d ≥ 0, which means that all disparities in the line occur 
in the same direction (i.e. with the same sign). It makes 
all match candidates to be processed and indexed be­
fore reaching Li j, allowing the matching process to be 
done in constant time for each region.

(a)

(b)

Figure 1. Region indexing: (a) two matches;
(b) match limitation (positive disparity).

The indexing function acts as a  heuristic function 
allowing sufficient valid matches to be archived in a 
lower complexity algorithm. The complexity reduction 
to On  makes the processing time linear and indepen­
dent on the disparity range, while the amount of valid 
matches becomes dependent on the indexing function 
definition.

2.1. Matching algorithm

With  a  defined  indexing  function  f,  the  regions 
along corresponding epipolar lines in both rectified im­
ages can be indexed in order to calculate disparities. 
From the beginning to the end of each line, region pairs 
in each column are processed. A region in the right im­
age is indexed if the position in the vector is free, and a 
region in the left image match a previously indexed re­
gion if the position is taken.

for line i from 0 to m−1
p  0
for column j from 0 to n−1
if vector  f Ri j  is empty 

vector  f Ri j   j
list  p   f R i j 
p  p1

end
if vector  f Li j  is not empty

disparity i , j   j – vector  f Li j 
empty vector  f Li j 

end
end
for position j from 0 to p−1
if vector list  j is not empty

empty vector list  j 
end

end
end

Figure 2. Basic algorithm for region indexing.

It is possible for Ri j−d  to be incorrectly matched to 
Li j−d ' before the corresponding region Li j is reached, 
where 0 d ' ≤ d , if the area between j−d  and j has 
low or repetitive texture (the discriminant value will be 
repeated). Often, d' is close or equal to d.

Those false matches may be hard to detect, but most 
of  them can  be  avoided  in  the  indexing  process  by 
equally  displacing  all  left  regions,  so  that  Li j can 
match regions up to column jh, where h is a positive 
displacement  value. This  way,  matches  resulting  in 
negative disparities (opposite direction) can be ignored, 
as disparities always have the same direction due to the 
restriction shown in Figure 1. The displacement makes 
possible to check whether a match is done because of a 
lack of texture variation. Figure 4 shows the algorithm 
modification regarding this displacement.

(a)

(b)

Figure 3. Low or repetitive texture problem:
(a) false match; (b) horizontal displacement.
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for column j from−h to n−1
if  jh  n  ∧vector  f Ri jh  is empty 

vector  f R i jh   jh
list  p   f R i jh 
p  p1

end
if  j ≥ 0 ∧vector  f Li j  is not empty

if  j – vector  f Li j  ≥ 0
disparity i , j   j – vector  f Li j 

end
empty vector  f Li j 

end
end

Figure 4. Indexing regions in a displaced line.

This matching algorithm imposes the restriction that 
the index f R i j−d  is unavailable after Ri j−d  was in­
dexed and before either  a false match occurs,  or  the 
corresponding region Li j is reached and matched. This 
way, regions in the right image with the same discrimi­
nant value cannot be indexed at same time, so the first 
one locks the position until it is matched.

f R i j−d  ≠ f R i k  j−d ≤ k ≤ j

Figure 5. Index unavailability.

A false match can occur when two uncorrelated re­
gions have the same discriminant value. Even if the in­
dexing function is defined in a way to try to reduce this 
occurrence, the index contains little information about 
the region because it is a value in a relatively short in­
terval, as the indexing vector cannot be too big due to 
memory constraints.

2.2. Indexing function

Valid  matches  can  be  calculated  if  the  indexing 
function maps similar regions to the same value and 
non-similar regions to different values, where similar 
means highly correlated or close to a common pattern. 
In order to remove false matches using continuity con­
straint, it is important that the disparities resulting from 
them compose a higher  entropy set  compared to the 
disparities resulting from valid matches.

Supposing  nc L , R is  a  correlation function nor­
malized to a value in [0 ;1 ] that estimate the degree of 

similarity  between  the  regions  L and  R,  these  three 
characteristics  above can be formally defined as fol­
lows:

(i) if two regions  Li j and  Ri j−d  are similar, then 
there is a high probability that the discriminant values 
of  these regions are the same (i.e.  similarity implies 
equal discriminant, in most cases):

nc Li j , R i j−d  ≈ 1
 P f Li j  = f R i j−d  ≈ 1

1

(ii)  if  two regions  Li j and  Ri j−d  are not  similar, 
then there is  a  high probability that  the discriminant 
values of these regions are different (i.e. non-similarity 
implies different discriminant, in most cases):

nc Li j , R i j− d  ≈ 0
 P f Li j  ≠ f R i j−d  ≈ 1

2 

(iii)  if  two regions  Li j and  Ri j−d  are not  similar 
and their discriminant values are the same, then this 
false match results in a disparity value  d ∈[0; j ] fol­
lowing an uniform probability distribution:

nc Li j , R i j− d  ≈ 0 ∧ f Li j  = f Li j−d 

 P d = x ≈ 1
j1

0≤ x ≤ j
3 

This last characteristic provides the basis for robust 
false match detection through continuity constraint. It 
states that, if the match is not valid, the resulting dis­
parity can assume any possible value with nearly the 
same  probability,  as  any  change  in  the  discriminant 
value may lead to a completely arbitrary match.

2.3. Intensity-based indexing

In the experimental results shown in this paper, the 
indexing function  f  I i j  is based on some of the in­
tensity values of I i j. Each region has a fixed size of M 
rows and  N columns.  This  function calculates a  dis­
criminant value based on the region mean and how se­
lected points differ from it.

The main term of function f is the region index yreg. 
Each  bit  in  this  index  indicates  whether  the  corre­
sponding intensity value has reached the region mean:

yreg  I i j  = ∑
u=0

M−1

∑
v =0

N −1

[2K u , v−1
⋅K u , v⋅

 I iu , jv  , I i j ]
4

left:

right:
j-d k j



The  kernel  K defines  what  region  points  will  be 
used in the index calculation, where  Ku ,v ∈ {0, 1}, 
0≤ u  M ,  0≤ v  N .  The function  Ku ,v gives 
the number of points set to 1 in the kernel  K, line by 
line, down to the position u , v:

Ku ,v = ∑
w=0

u⋅N v

K w∖N , r 

w ≡ r mod N 

5

The  threshold  function   x , t  outputs  1  if  x ≥ t 
and 0 otherwise:

 x , t ={1 x ≥ t
0 x  t

6 

The function  I i j  gives the intensity mean of Ii j, 
which is used as the threshold value in (4):

 I i j  =
1

MN ∑
u=0

M −1

∑
v=0

N −1

I iu , jv  7

This way, a bit in the region index is set to 1 if the 
corresponding intensity value is greater or equal to the 
region mean, and set to 0 otherwise. Only points set to 
1 in the kernel are used for this calculation.

Figure 6. Example of region index calculation.

Increasing or decreasing all intensity values propor­
tionally  does  not  affect  the  region  index.  This  way, 
non-similar regions may have the same index, but they 
can be separated using the mean value. If the indexing 
vector is segmented based on this value, only regions 
with  the  same  index  and  an  approximate  intensity 
mean will match. For 2S desired segments, S is the size, 
in bits, of the segment index yseg.

The  indexing  function  f concatenates  the  bits  of 
these two indices:

f  I i j  = yseg  I i j ⋅2
K M−1, N −1 

 yreg  I i j  8

Where  KM −1, N −1  gives the size,  in bits,  of 
the region index  yreg (it equals the number of points 
set to 1 in the kernel  K, which are the points used for 
the calculation of this index), and yseg  I i j  is the seg­
ment index of I i j:

yseg  I i j  = I i j  ∖ 2D−S 9 

Where  D is the size, in bits, of an intensity value 
(i.e. the grayscale depth, so 2D is the number of possi­
ble intensities).

This indexing function is intensity-based only. The 
indexing vector is segmented to increase the potential 
amount of indexed regions.

3. False match detection

A continuity constraint for false match detection is 
applied as  a  regularization process  based  on  the  en­
tropy  difference  between  disparities  resulting  from 
valid and false matches. In the indexing process, false 
matches result in disparities with higher entropy than 
those resulting from valid matches because of the uni­
form probability distribution shown in (3) (a disparity 
can assume any possible value with nearly the same 
probability if it results from a false match).

Each disparity d has a weight wd  based on the map 
histogram. This  weight  is  an arithmetic  mean of  the 
frequency of similar disparities (any disparity s, where 
∣s−d∣≤1)  in  the  map.  Thus,  the  weight  vector  is  a 
smoothed version of the histogram.

A match is  considered valid if  the weight sum of 
similar disparities is above a minimum threshold rela­
tive to the weight sum of all disparities in the verifica­
tion window:

∑
s=d−1

d1

v s⋅w s ≥ ∑a=0

n−1

va⋅wa⋅1−  10

Where  is a discontinuity tolerance value in [0 ;1 ], 
V is the histogram of the verification window, and n is 
the number of columns in the image (disparities may 
range up to  n−1). As an additional criterion, a match 
can be removed if  the amount of disparities that  are 
equal to d is below a certain absolute minimum q.

This continuity constraint is applied for each point 
in the disparity map. If there is no disparity calculated 
for a point, the last evaluated disparity is used. This re­
duces sparse areas in the map based on the assumption 
that a near disparity may still be correctly approved for 
the new point (facing the new neighborhood), as if re­
sulting from a valid match.

kernel:

region:

index:

selected points

mean value thresholding

1 1
1 1

1 1
1 1

1 1 1 1 1



The  resulting  map  can  be  equalized  by  replacing 
each approved disparity by the weighted mean of simi­
lar disparities in the verification window:

d =
∑

s=d−1

d1

vs⋅ws⋅s

∑
s=d−1

d1

v s⋅ws

11

4. Experimental results

In results from real  images, nearly half of the re­
gions in the right image are indexed (regions with the 
same discriminant value cannot be indexed at the same 
time, as shown in Figure 5). Also, nearly half of this in­
dexed regions are matched to a region in the left image. 
Figures 7,  8,  and  9 show  intermediate  results  on 
“shrub” dataset [1].

 

(a)                                              (b)
Figure 7. Results on “shrub” dataset: (a) left 
image; (b) disparities from region indexing 

(regions: 51% indexed, 27% matched).

After the false match detection through continuity 
constraint,  the map is semi-dense,  but  disparities  are 
well distributed and almost all false matches were re­
moved, as shown in Figure 8.

 

(a)                                              (b)
Figure 8. Continuity constraint: (a) valid 
disparities (13% density); (b) using last 

evaluated disparity (40% density).

Remaining  sparse  areas  in  the  disparity  map  are 
filled by nearest interpolation. For fast processing, each 
point in the map have the value of the nearest valid dis­
parity in the same or adjacent line or column.

 

(a)                                              (b)
Figure 9. Nearest interpolated disparities:
(a) non-equalized map; (b) equalized map.

This  nearest  interpolation is  limited to  orthogonal 
directions, but can be reasonably uniform, even in cas­
es where the nearest point is considerably distant, be­
cause the map is continuous almost everywhere (with 
the exception of depth discontinuities) after the conti­
nuity constraint is applied.

Figure 10. Lines and columns for
nearest interpolation.

The disparity map is processed to generate an inter­
mediary map, where each point contains the distances 
from the two nearest  disparities  in  orthogonal  direc­
tions and their respective values (one is the last visited 
in the same or adjacent row, and the other is the last 
visited in the same or adjacent column). The final map 
is then calculated by running the original map back­
wards, keeping only the disparity with the smaller dis­
tance in all four directions.

4.1. Parameters

All experimental results shown in this paper were 
produced with the same parameters. It shows that the 
method can take different input and produce good re­
sults without requiring any adjustment.

3 3 3
2 2 2

2 2 2
3 3 3

8 7 6 5 4 3 2 1 1 1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1 1 1 2 3 4 5 6 7 8



Table 1. Region indexing parameters.
stereo displacement, h 8 columns
segment index size, S 4 bits

region size, M×N 4×4

used region points, K [1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1]

Using this set  of  default  parameters,  the indexing 
vector will have 4096 positions (12-bit indices).

Table 2. False match detection parameters.
verification window 15×15

discontinuity tolerance,  0.6
min. equal disparities, q 8

An arithmetic mean filter with 2×2 window size is 
applied before the region indexing, because the method 
shows  better  results  when  the  input  image  pair  is 
smoothed. Individual intensities may vary slightly be­
tween correlated regions due to differences in the way 
the same surface is projected on the two cameras. This 
variation may affect the region index if  the intensity 
value is close to the region mean. Smoothing the image 
pair causes each bit in the region index to be based on 
more than one point from the original image, reducing 
the impact of such variations.

4.2. Standard datasets

The present  method produces,  in  current  personal 
computers, more than 30 frames per second with a res­
olution of 256×256 (less than a microsecond for each 
point). This is done for any possible disparity informa­
tion  between  the  stereo  pair,  while  current  methods 
have a time penalty because of the search range. It has 
been observed empirically that the processing time de­
pends only on the image resolution, as proposed in the­
ory. The method was  tested with the following stan­
dard datasets with ground truth and occlusion map:

- “tsukuba”, “sawtooth”, “venus” and “map” [9];
- “cones” and “teddy” [10].

The error is calculated by subtracting the resulting 
map from the ground truth and counting all absolute 
differences greater than 1, ignoring points in occluded 
areas (i.e. areas where a match cannot be done) and in 
the image borders (18 pixels for “tsukuba” dataset and 
10 pixels for the others), as proposed by Scharstein et 
al. to evaluate the results from stereo methods [9].

 

(a)                                              (b)

 

(c)                                              (d)

Figure 11. Results on “tsukuba” dataset:
(a) left image; (b) ground truth; (c) calculated 

map; (d) bad pixels (occlusion in gray).

This way, the error is the percentage of bad pixels in 
non-occluded areas. The “tsukuba” dataset was first in­
troduced by Nakamura et al. [8], and the “map” dataset 
by Szeliski et al. [12].

 

(a)                                              (b)

 

(c)                                              (d)
Figure 12. Results on “map” dataset:

(a) left image; (b) ground truth; (c) calculated 
map; (d) bad pixels (occlusion in gray).

Most of the disparity error concentrates near the ob­
ject borders and thin objects are lost, as can be seen in 
the error map (d) in Figure 11. Most of the bad pixels 
in  Figure 12 are due to occlusion. Disparities in these 
areas have high entropy and can be removed, but the 
respective borders are affected because of the resulting 
sparse areas.



 

(a)                                              (b)

 

(c)                                              (d)
Figure 13. Results on “venus” dataset:

(a) left image; (b) ground truth; (c) calculated 
map; (d) bad pixels (occlusion in gray).

Some error spots in  Figure 13 are due to repetitive 
texture. As the region indexing is based on a local as­
sumption of similarity (regions with the same discrimi­
nant value are probably correlated), repetitive texture 
may form dense groups of false matches which cannot 
be removed applying the continuity constraint, but can 
be mostly ignored in the region indexing phase, using 
the algorithm modification shown in Figure 4.

 

(a)                                              (b)

 

(c)                                              (d)

Figure 14. Results on “sawtooth” dataset:
(a) left image; (b) ground truth; (c) calculated 

map; (d) bad pixels (occlusion in gray).

Table 3. Results on standard datasets.
map tsukuba sawtooth venus cones teddy

resolution 284×216 384×288 434×380 434×383 450×375 450×375
indexing
regions 59853 108585 162487 163780 166284 166284
indexed 79% 67% 72% 72% 71% 68%
matched 35% 35% 37% 34% 35% 33%
time 10 ms 17 ms 27 ms 27 ms 27 ms 27 ms
continuity
valid disp. 25% 25% 27% 22% 22% 20%
final density 66% 59% 64% 55% 54% 51%
time 15 ms 26 ms 42 ms 41 ms 42 ms 41 ms
interpolation
time 2 ms 4 ms 6 ms 6 ms 6 ms 6 ms
error 0.63% 4.07% 3.33% 3.23% 5.68% 9.91%
total time 27 ms 47 ms 75 ms 74 ms 75 ms 74 ms

The data within the images has negligible influence 
on the processing time (Figure 15), because the method 
complexity is not dependent on the disparity range, and 
each disparity is calculated in constant time.
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Figure 15. Processing time for datasets
with different resolutions.

 

(a)                                              (b)

 

(c)                                              (d)
Figure 16. Results on “cones” dataset:

(a) left image; (b) ground truth; (c) calculated 
map; (d) bad pixels (occlusion in gray).



 

(a)                                              (b)

 

(c)                                              (d)
Figure 17. Results on “teddy” dataset:

(a) left image; (b) ground truth; (c) calculated 
map; (d) bad pixels (occlusion in gray).

5. Conclusion

The main contribution of this work is the definition 
of a linear complexity method for stereo matching. The 
use  of  an  indexing  process  makes  possible  for  each 
epipolar line to be computed in  On  for calculating 
disparities,  which  results  in  linear  complexity  to  the 
number of points in the image. Current local methods 
make a search through a correlation space, which re­
sults in non-linear complexity.

In order to match a region, all match candidates in 
the corresponding epipolar line must be indexed first. 
This makes all disparities to occur in the same direc­
tion  (i.e.  to  have  the  same  sign),  so  the  projective 
planes must be coplanar, limiting the method to a par­
allel camera setup.

The resulting map is not dense and must be interpo­
lated,  but  disparities  are  well  distributed,  with  some 
sparse areas due to low texture and occluded points. As 
a consequence of occlusion and simplicity of the in­
dexing  function,  object  borders  are  not  well  defined 
and concentrate most of the error when comparing with 
the ground truth. Nevertheless, the accuracy is nearly 
90% on standard datasets, using the same parameters in 
all tests.

6. Future work

The proposed method is suitable for real-time sys­
tems that require stereo vision, such as robot vision and 
augmented reality.

An interesting extension of this work is the applica­
tion of  region indexing to motion estimation. In this 
case, the complexity remains Omn, but the indexing 
vector should be used for the whole image instead of 
each separate line, as the disparities occur in 2D, and 
not only horizontally.

Other possible extension is the use of an indexing 
function based on feature attributes.

7. References

[1] R.  C.  Bolles,  H.  H.  Baker,  and  M.  J.  Hannah,  “The 
JISCT Stereo Evaluation”  DARPA Image Understand­
ing Workshop, Apr. 1993, pp. 263–274.

[2] S. D. Cochran and G. Medioni, “3-D Surface Descrip­
tion from Binocular Stereo”, IEEE Transactions on Pat­
tern  Analysis  and  Machine Intelligence,  vol.  14,  Oct. 
1992, pp. 981-994.

[3] L.  Di  Stefano,  M.  Marchionni,  S.  Mattoccia,  and  G. 
Neri, “A Fast Area-Based Stereo Matching Algorithm”, 
Image and Vision Computing,  vol.  22, Oct.  2004, pp. 
983-1005.

[4] H. Hirschmuler, “Improvements in Real-Time Correla­
tion-Based Stereo Vision”,  IEEE Workshop on Stereo 
and Multi-Baseline Vision, Dec. 2001, pp. 141-148.

[5] H. Jeong and S.-C. Park, “Trellis-based Systolic Multi-
layer Stereo Matching”, IEEE Workshop on Signal Pro­
cessing Systems, Aug. 2003, pp. 257-262.

[6] Q.-T.  Luong  and  O.  D.  Faugeras,  “The  Fundamental 
Matrix:  Theory,  Algorithms,  and  Stability  Analysis”, 
International Journal of Computer Vision, vol. 17, Jan. 
1996, pp. 43-75.

[7] J.  Mulligan  and  K.  Daniilidis,  “Predicting  Disparity 
Windows for Real-time Stereo”, Proceedings of the 6th 
European Conference on Computer Vision, vol. 1, Jun. 
2000, pp. 220-235.

[8] Y. Nakamura, T. Matsuura, K. Satoh, and Y. Ohta, “Oc­
clusion Detectable Stereo – Occlusion Patterns in Cam­
era Matrix”, IEEE Conference on Computer Vision and 
Pattern Recognition, Jun. 1996, pp. 371–378.

[9] D. Scharstein and R. Szeliski, “A Taxonomy and Evalu­
ation of Dense Two-Frame Stereo Correspondence Al­
gorithms”,  International  Journal  of  Computer  Vision, 
vol 47, Apr. 2002, pp. 7-42.

[10] D. Scharstein  and R.  Szeliski,  “High-Accuracy Stereo 
Depth Maps Using Structured Light”, IEEE Conference 
on  Computer  Vision  and  Pattern  Recognition,  vol.  1, 
Jun. 2003, pp. 195-202.

[11] C. Sun, “Fast Stereo Matching Using Rectangular Sub­
regioning and 3D Maximum-Surface Techniques”,  In­
ternational Journal of  Computer Vision,  vol.  47, May 
2002, pp. 99-117.

[12] R. Szeliski and R. Zabih, “An Experimental Compari­
son of Stereo Algorithms”,  International Workshop on 
Vision Algorithms, Sep. 1999, pp. 1-19.

[13] O.  Veksler,  “Dense  Features  for  Semi-Dense  Stereo 
Correspondence”,  International  Journal  of  Computer  
Vision, vol. 47, Apr. 2002, pp. 247-260.


	1. Introduction
	2. Region indexing
	3. False match detection
	4. Experimental results
	5. Conclusion
	6. Future work
	7. References

