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Abstract 
 

The digital image segmentation challenge has 
demanded the development of a plethora of methods 
and approaches. A quite simple approach, the 
thresholding, has still been intensively applied mainly 
for real-time vision applications. However, the 
threshold criteria often depend on entropic or 
statistical image features. This work searches a 
relationship between these features and subjective 
human threshold decisions. Then, an image 
thresholding model based on these subjective decisions 
and global statistical features was developed by 
training a Radial Basis Functions Network (RBFN). 

This work also compares the automatic 
thresholding methods to the human responses. 
Furthermore, the RBFN-modeled answers were 
compared to the automatic thresholding. The results 
show that entropic-based method was closer to RBFN-
modeled thresholding than variance-based method. It 
was also found that another automatic method which 
combines global and local criteria presented higher 
correlation with human responses. 
 
1. Introduction 
 

Although simple, the image segmentation 
thresholding approach is still intensively explored to 
distinct background from objects in digital images. A 
number of criteria have been proposed to determine the 
threshold gray level performance, but in general, they 
do not take into account the human vision perception 
[1]. 

This work presents an innovative approach to 
threshold gray level images based on perceptive 
responses. These responses were given by human 
subjects who answered a psychophysical test. The 
threshold human decision was modeled by RBFN 

(Radial Basis Functions Network). The RBFN 
approach allowed us to set smoothing parameters to 
change the correlation between human and modeled 
responses of new sample tests. Hence, the correlation 
coefficient between human responses and, for instance, 
automatic entropic-based thresholding responses, 
revealed a quantitative similarity between human and 
automatic responses. 

The next section (Sec. 2) explains the subjective 
thresholding modeling technique proposed here. Then, 
in the section 3, the psychophysical test is described to 
show how the collected data is related to the modeling 
process. In the section 4, the RBFN modeling 
technique is presented, and, in section 5, the validation 
process is reported. The section 6 compares the 
proposed subjective model method and three others 
representative automatic thresholding methods. 
 
2. The Perceptive Thresholding Modeling 
 

Automatic thresholding methods often require one 
or a couple of global or local criteria to select the best 
level threshold of a digital gray level image. These 
criteria are good choices when to classify pixels as 
belonging to background or object is fairly easy, i.e. 
images that has bimodal histograms. However, it is not 
quite easy to perform this classification when the 
image was acquired in environments with irregular 
illumination, or when the images whose interested 
object is not present in the main focus. Furthermore, 
some applications claim some human interference to 
define “the right” decisions.  

The thresholding problem is to choice a level, which 
could best classify pixels as belonging to background 
or object. This work proposes to train this choice based 
on human decisions. Then, with a slide bar, people 
pointed the gray level which could better separate the 
background pixels from the object. These decisions 
were collected in a two columns table holding the 



chosen gray level at first column and a global image 
feature such as entropy, gray-level standard deviation, 
or other feature, at the second column. 

A space was spanned by feature and gray level 
where in each subject answer was a sample. These 
answers were interpolated with Radial Basis Functions 
(RBF) whose responses were evaluated by RMS errors 
[2]. In fact, some images formed a training set, and 
others a test set, according to the validation method 
(see Sec. 5). Since the RBF generalization is 
constrained to the training set, it was performed a 
regression by searching the centers for each basis 
functions in the RBFN (RBF Network). This approach 
detaches the features from the model, so it is possible 
to remove or include new features just applying a 
transformation to the model. Hence, blend of features 
could be selected, tested and validated.  

The automatic thresholding methods [3, 4, 5, 1, 6, 
7], in general, apply statistical properties of pixels 
gray-level distribution such as variance, entropy, 
average, median or even quartiles as criterion to decide 
the best level to threshold. Therefore, a thresholding 
model based on these features could provide some cue 
about what are the human vision criteria to threshold a 
gray level image. 
 
3. Data source: psychophysical experiment 
 

The human vision perception modeling demands 
human choices or opinions. Hence, it was developed a 
psychophysical experimentation where gray level 
images (the stimulus) were presented to subjects who 
were asked to choice a threshold level (dependent 
variable). Before, they were instructed to choose the 
black-and-white image that showed the better 
distinction. It was allowed to the subjects to slide a bar 
among the gray levels to see, in real-time, the 
thresholded image for the selected intensity. 

In the experiment each one of the 137 voluntary 
subjects (undergraduate students) were exposed to 12 
distinct images, randomly selected from 110 images 
(Table 1). Each group of 12 images was also randomly 
combined from the 110 before they would be shown to 
the subjects. Although some subjects had assigned 
different threshold values to identical images, the 
difference among their answers were not more than 10 
pixels. 

In the homogeneous group of images, the 
experiments were carried out with only one subject, 
applying the same methodology. 

The collected data (features and human threshold) 
were stored in a database table so that the model could 
be evaluated. Afterward, this table was joined to the 

automatic thresholding results for the same image. 
These results will be compared later in the Sec. 6. 

This psychophysical test was implemented as a two-
tier client-server application, i.e. it has two parts: the 
Java applet (the client) and the servlet (the server). 
This design provided a flexible version control, and 
enabled the experimentation to reach, at same time, 
multiple and sparse audiences. The Fig. 1 shows a 
snapshot for the client. 
 

 
Figure 1 - A snapshot for the psychophysical 

experimentation client part. 
 

There were two groups of images: (1) a 
heterogeneous group, whose image content is 
photographic motivations such as cars, houses, people 
and landscapes; (2) a homogeneous group, only with 
face images. 
 

Table 1 - Number of images and ranges for entropy and 
standard deviation of heterogeneous (Het.) and homogeneous 

(Hom.) groups of images. 
Group #Img Entropy Std Dev 

Het 110 5.84 to 7.8 23.38 to 92.27 
Hom 59 6.13 to 7.37 50.32 to 98.81 

 
These images were picked out to try spans the gray 

level entropy and the standard deviation theoretical 
ranges: [0:8] for the entropy and [0:255] for the 
standard deviation, as well as the other statistical 
parameters. However, real images hardly would span 
all these ranges. So, the Table 1 shows the number of 
images and the ranges for entropy and standard 
deviation used in this work. 



4. The RBFN to train global thresholds 
 

The RBFs have been intensively applied to 
implement regressive models, to interpolate surfaces or 
volumes in computer graphics applications, to smooth 
signals, just to mention a few. This work applies the 
RBF as a regressive modeling to generalize human 
responses to threshold gray level choices. Two steps 
are required: (a) the training and (b) the test. At the 
training step, some selected points, i.e. some pairs 
(features, threshold) approximate a function (1) whose 
components are Radial Basis Functions (RBFs) [8]. In 
fact, the approximation result is a linear system 
solution for (2). 
 

( ) ( )SFSW ⋅Φ=  (1)
 

The RBF φ is evaluated for distances ||.|| between 
each feature point and each function center iµ . The 
center choice depends on the learning strategy. This 
work adopted a solution suggested in [9], where the 
centers were defined by k-means algorithm. 
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The W vector elements are weights for each k  

RBF centered in iµ . The S vectors hold the features for 
each gray level image. The S dimension, n, is the 
number of global features to generalize the threshold 
human decision, denoted here as F. Each gray level 
image was thresholded by several subjects. This F is 
actually the average among the thresholds assigned by 
subjects when they were doing the psychophysical 
experiment. 

The matrix Φ is the interpolation matrix, where 
each element is the RBF function value of the 
Euclidean norm ||.|| of the difference vector between 
the each pair of input sample and function center. 

The vector W, i.e. the model, can now generalize a 
response for new images, for instance, a set of test 
images (3). 
 

( ) ( ) WXXF ⋅Φ=  (3)
 

Now, the same trained features must be evaluated 
for test images. The X vector holds these test features, 
and similarly to the training step, the RBF function 

must be evaluated for Euclidean norm of difference 
vector between each pair of test sample and function 
center (4). 
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There exist some requirements to choice a RBF 

function. This work tried the TPS (thin-plate spline) 
f(r) = r2log(r) [10]. Gaussians RBFs were also tested, 
but they presented greater errors than the TPSs. 
 
5. Validation: methods and results 
 

Although the thresholds for test images F(X) had 
been assessed, it is not enough to assert that W is a 
good model. The validation searches the best or better 
train/test images arrangement to model the threshold 
decision. 

It was applied three validation methods: the 
Generalized Cross-Validation (GCV), also known as k-
fold; the Leave-One-Out (LOO); and the Bootstrap. 
The GCV tests the modeling stability, as well as the 
generalization efficiency, for different arrangements 
[11], but it is not suitable to validate a model from a 
few samples. The LOO is an extreme GCV variant, 
where only one sample is leaved out of training and so 
tested [12]. This approach is conservative, i.e. the 
errors are greater than others. In contrast, the Bootstrap 
validation method [13] is more appropriate to scarce 
samples, since its random nature to arrange train and 
test samples. 

Initially the perceptive model was tested with data 
generated from functions with known behaviors such 
as linear, logarithmic, exponential, polynomial and 
furthermore a randomly uniform distribution. For each 
one of these known behaviors, it was generated two 
data groups, one holding 100 pairs of values and other 
50 pairs. The pairs of values simulated the threshold of 
a hypothetical attribute. This test was developed to 
verify the modeler ability to deal with more certain 
data and to test the validation approaches. 

In that way, each group was randomly divided in 
two other groups, training and test, with the same 
number of elements. 

The performance test of the RBFN perceptive 
model applied to the mentioned groups consisted of 
three validation types: Generalized Cross Validation 
(GCV), Leave-One-Out (LOO) and the Bootstrap. 

A crucial parameter in generalizations with RBFN 
was the number of centers, i.e. the number of RBFs 



that would compose the generalized function at 
training and test steps. The Table 2 shows the results 
for the generalization of the named known behaviors as 
well as the number of centers (#RBF column) for their 
evaluation. 
 

Table 2 - Results of model checking with functions or 
distributions whose behavior were well known. The 
RMS Errors column is resultant of the average of 96 
executions for GCV and LOO; and 40 executions for 

Bootstrap validation. 
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F 
random 80 20 57,28 3 15,51 1 15,79 3 
random 40 10 55,78 1 20,26 1 20,76 1 
exponential 80 20 2,66 74 2,06 59 1,51 52
exponential 40 10 4,30 40 5,07 31 2,84 35
linear 80 20 0,70 80 0,75 48 0,35 60
linear 40 10 1,98 40 2,77 34 1,31 30
logarithmic 80 20 0,65 72 1,01 32 0,27 57
logarithmic 40 10 0,80 40 1,03 29 0,42 32
polynomial 80 20 1,19 63 1,97 64 0,76 60
polynomial 40 10 2,11 39 2,38 32 1,65 30

 
The Table 2 results deserve a remark. All results 

but not uniform random distribution, presented low 
errors for at least three validation methods. This result 
shows that the RBFN method can model certain data 
with low errors, and uncertain data with high errors, as 
would be expected for a modeling tool. 

An important modeling parameter is the number of 
centers (#RBF) that could be thought as an uncertainty 
factor for the trained data. This behavior was observed 
when the random distribution model found better 
results as the number of centers decreased. On the 
other hand, the linear model demanded much more 
centers, revealing more model specificity. Next, this 
section presents the thresholding modeling results for 
data collected in the experimentation. 

 The Table 3 shows the modeling results for the 
heterogeneous group of images. Here, the best model 
response was obtained by modeling human subjective 
responses as a 2D surface function of entropy and 
standard deviation. The number of centers was small 
(11 and 13), pointing that this surface is smooth, since 
it could reach 80 centers. 
 

Table 3 - Validation model results for the known 
models. The RMS Errors is resultant of the average 
among 88 executions for GCV and LOO, and 40 for 

the Bootstrap. 
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88 22 16,61 13 4,44 11 4,32 13 

 
The Figure 2 illustrates the generated surface that 

represents graphically one execution of the GCV. 
There, the circles mean the centers, and the triangles 
mean the average of human thresholds. The space was 
spanned by two features (entropy and standard 
deviation) and the human threshold. The crosses mean 
the samples used by training with respective entropy 
and the standard deviation. 
 

Figure 2 - Surface to illustrate the threshold human 
modeled as function of two attributes: entropy and 
standard deviation. This surface is one execution of 

GCV that use 10 RBF. 
 

The work proceeds exploring the RBFN modeling 
approach as a feature selector. New image features 
were included in the perceptive threshold model. 
Having the validation as reference, it allowed us to 
measure the inclusion or exclusion of features from the 
model. Hence, three questions should be answered to 
characterize the models: i) what is the appropriate 
number of centers? ii) how many features would be 
enough to represent the human subjective answers? iii) 
which attributes would be the most representative?. In 
consequence, it was tested for errors, the features 
combinations generalizations applied to the group of 
heterogeneous images (Table 4). In the GCV and 
Bootstrap validations, the group was randomly 
partitioned in 88 images for training and 22 for test. 



Models with just one feature combination had the 
smallest error. The modeled feature was the luminance 
average generalized with 6 centers (on average). On 
the other side, the contrast average presented the worst 
result with the maximum smoothness (1 center), that 
reveals an uncertain feature. 

The combination of two attributes had its smallest 
error combining standard deviation and average of 
luminance, for intermediate smoothness. 

The combination of three attributes models had its 
best result combining the standard deviation, the 
average of contrast, and the average of luminance, also 
with an intermediate smoothness. 
 

Table 4 - Results of the validation applied to combined 
attributes to model the human thresholding of heterogeneous 
images. The RMS Errors are resultant of the average among 
88 executions for GCV and LOO and 40 for the bootstrap. 

The attributes are codified with the first numerical character 
meaning the number of combined attributes and followed by 

the following abbreviations: e(entropy), sd(standard 
deviation), al(average of luminance), ac(average of the 

contrast), fc (first quartile of the contrast), tc (third quartile of 
the contrast), and mc (maximum of the contrast). 
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1sd 17,69 10 4,51 1 4,59 3 
1e 16,25 2 4,38 3 4,21 4 
1al 14,03 9 3,82 4 3,64 5 
1ac 18,28 1 4,54 1 4,76 1 
2sd-al 13,54 41 3,82 34 3,76 29 
3al-fc-tc 13,56 38 3,87 41 3,76 33 
4sd-al-fc-tc 13,15 76 3,88 48 3,66 46 
5e-sd-al-ac-mc 14,46 30 4,39 24 4,03 29 
6e-sd-al-ac-fc-tc 13,51 37 4,17 39 3,85 36 
7e-sd-al-ac-mc-fc-tc 13,95 31 4,20 33 3,82 38 

 
The four attributes combination presented the 

smallest average error for the three validation methods, 
which was achieved combining the standard deviation, 
the average of luminance, the first and the third 
quartiles of the contrast. 

The approach of RBFN was also applied to 
homogeneous images. A set of 59 distinct face images 
was used as training/testing set, all with the same size 
(71 x 92 pixels) and with faces in the same position. 

The homogeneous images set was randomly divided 
in training set (48 images) and testing set (11 images) 

for GCV and Bootstrap validations. The results can be 
viewed in Table 5. 

The Bootstrap validation was the most appropriate 
to assess the model performance for the face images. 

It was observed (Table 5) that, again, the average of 
luminance presented the best result (the smallest error) 
with 6 centers (on average) models. The best result was 
achieved when two features were combined: the 
average of luminance and the average of contrast. 

The combination of three attributes (entropy, 
luminance standard deviation, and the average of 
intensity) had the best result. It was achieved with 11 
centers (on average) models. 
 

Table 5 - Results of the validation applied to combined 
attributes to model the human thresholding of homogeneous 
images. The RMS Errors are resultant of the average among 
88 executions for GCV and LOO and 40 for the bootstrap. 

The attributes are codified with the first numerical character 
meaning the number of combined attributes and followed by 

the following abbreviations: e(entropy), sd(standard 
deviation), al(average of luminance), ac(average of the 

contrast), fc(first quartile of the contrast), tc(third quartile of 
the contrast), and mc(maximum of the contrast). 
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1sd 17,62 2 6,44 1 5,98 1 
1e 17,76 1 6,71 3 6,19 4 
1al 15,14 9 5,81 2 5,55 7 
1ac 17,78 6 6,43 1 6,44 2 
2al-mc 16,32 2 5,96 3 5,88 3 
3al-fc-tc 15,91 12 6,34 4 5,94 5 
4e-sd-al-mc 15,41 10 6,24 10 5,97 2 
5e-sd-al-ac-mc 15,96 24 6,37 13 6,45 2 
6e-sd-al-ac-fc-tc 16,46 14 6,31 1 6,16 1 
7e-sd-al-ac-mc-fc-tc 15,88 12 6,07 1 5,97 1 

 
The combination of four attributes presented the 

best result with entropy, luminance standard deviation, 
average of luminance, and the maximum of contrast, 
for 7 centers (on average) models. 
 



6. Automatic methods evaluation 
 

Automatic thresholding methods are, in general, 
based on statistical pixel gray level properties. But, 
how similar are the automatic result and the human 
model result? This section searches to answer this 
question. So, the correlation coefficients between the 
automatic and the human decisions were computed to 
compare them. Three different methods: Otsu [5], 
based on gray level variance; Kapur et al [4], based on 
entropy; and Brink [3] that applied both, variance 
locally and entropy globally. 

The Figure 3 illustrates these results for 
heterogeneous images with a dispersion diagram, and 
also the respective correlation coefficient (ρ). These 
results suggest that improvements performed in the 
method of Brink (e.g. to take into account the gray 
level variance for neighbor pixels) caused its good 
performance (ρ = 0.71). Furthermore, the Otsu 
variance-based method performance revealed low 
correlation with human decision (ρ = 0.456). In the 
other hand, the Kapur’s entropic method presented a 
good correlation (ρ = 0.6671). This order was kept for 
homogenous face images, but the coefficient 
diminished for Kapur (ρ = 0.5066) and Brink (ρ = 
0.512) methods. 

The modeled threshold is more flexible than 
automatic methods. Each feature combination may 
present high and low correlation coefficients. For 
instance, the variance modeled thresholding reached 
the maximum ρ = 0.9167, but an uncorrelated model 
for variance caused a ρ = 0.0937. The number of 
centers, i.e. the number of RBFs can also improve or 
make worse the modeled correlation. 

The Figure 4 shows a comparison between the 
modeled thresholding using the same feature than the 
automatic method. Therefore, Fig. 4 (a) denotes the 
mean of errors for modeled entropic thresholding (for 
bootstrap validation) related to each correlation 
coefficient. The solid square (the Kapur method) is the 
closest to the entropy-based model thresholding curve. 
The Fig 4 (b), differently, the Otsu method (circle) and 
the variance modeled thresholding were the most 
distant. Besides, the automatic method presented the 
greatest errors and the lowest correlation. The Brink 
method had to be compared with two features model: 
entropy and variance. These models did not present 
errors greater than 48. Although presented some 
correlation, the Brink method error was also 
considerable. 
 

(a) 

(b) 

(c) 

Figure 3 – Dispersion diagram for three representative 
automatic thresholding methods and Subjective Human 
Responses. (a) Kapur x Human ρ = 0.6671; (b) Otsu x 

Human. . ρ = 0.456.; Brink x Human. . ρ = 0.71. 



(a) 

(b) 

(c) 

Figure 4 - Comparison among modeled thresholding (lines) 
for different features and automatic thresholding. (a) Human 

x Kapur; (b) Human x Brink; (c) Human x Otsu. 
 

A remarkable observation is that all the three 
modeled thresholding have shown a curve with high 
correlation coefficients and low errors. Even 
predictable, this result suggests that automatic 
thresholding methods could be classified according 
theirs human decision affinity. 
 
7. Conclusion and Final Remarks 
 

This work presented an innovative approach to 
implement gray level thresholding. It was built a 
modeler for subjective human decisions with two gray 
level image sets: one heterogeneous and other 
homogeneous. The modeling was based on global 
image features such as entropy and standard deviation, 
similarly to that used by automatic thresholding 
methods. 

Firstly, the human responses and the automatic 
thresholding were compared by correlation 
coefficients. It was found a higher correlation for 
automatic methods which took into account a local 
variance. 

Secondly, a RBFN generalization was applied to 
model the subject decisions, which had been collected 
with a psychophysical test. 

The perceptive modeling results were compared to 
three representative automatic thresholding methods 
based on entropy and variance global features. These 
results revealed the flexibility of perceptive approach. 
It can model thresholding whose results are high or low 
correlated with human decisions. Besides, the entropic 
automatic thresholding presented high correlation and 
low errors when confronted to human responses for 
heterogeneous images, which could be visually 
observed. 

This work also contributes with a test experiment to 
collect human thresholds, designed to works in the web 
environment, which enables distributed and sparse 
audiences. 

The perspective for this work is to apply the models 
to threshold real-time video acquisition, since it would 
require just a global feature evaluation and the model 
application to perform early image segmentation. 
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