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Abstract 
 

Direct volume rendering techniques are used to 
visualize and explore large scalar volumes. Transfer 
functions (TFs) that assign opacity and color to scalar 
values are very important to display volume features, 
but their specification is not trivial or intuitive. This 
work presents an interactive, semi-automatic tool to 
assist the user in the generation of opacity and color 
TFs. We use the histogram approach proposed by 
Kindlmann and Durkin [9] to reduce the scope of 
candidate TFs presented to the user following the 
Design Galleries method [18]. The combination of 
these two solutions leads to a single interactive tool that 
allows the user to deal with different aspects of TF 
specification. 
 
 
1. Introduction 
 

Volume rendering techniques are well described in 
the literature [7, 16, 20, 27]. Methods based on 
isosurface extraction (see, for example, [17]) render a 
3D mesh constructed from the volume using the 
standard graphics pipeline. On the other hand, direct 
volume rendering techniques compose data information 
without building an intermediate geometry [15]. Recent 
advances in graphics hardware allowed real time high-
quality volume visualization [4, 14] for both 
approaches. 

An important aspect for extracting iso-surfaces as 
well as to directly render the interior of volumes is the 
determination of which voxel values correspond to the 
region of interest. In direct volume rendering this is a 
mapping from the original values associated with each 
voxel to visual (image) attributes, such as color and 
opacity. This mapping is often represented by transfer 
functions, which are normally pre-computed and stored 
in lookup tables.  

Transfer functions (TFs) are particularly important to 
obtain correct (and good quality) images because they 
provide a way to classify the voxels. However, the task 

of specifying TFs in order to convey the required 
information is not trivial and has been widely discussed 
[8, 23]. Often, opacity levels are defined by editing 
control points in a line graph, which represents the 
mapping from voxel values to opacity levels. The 
problem with this approach is that subtle changes in the 
TF result in drastic changes in the rendered image. This 
leads the user to an unintuitive trial and error task, 
which is time-consuming.  

There are also several automatic and semi-automatic 
techniques for specifying TFs [1, 5, 9, 10, 12, 13, 18], 
and due to their complexity, interactive interfaces to 
assist the user in this task have been developed [11, 25].  

We present a method that combines the techniques 
proposed by Marks et al. [18] and Kindlmann and 
Durkin [9] into a single, interactive tool. There are two 
levels of interaction in our method. The first one refines 
a set of initial TFs rendered as 3D thumbnails, obtained 
from a previously calculated 3D histogram. Then, the 
user chooses the most appealing thumbnail, and the 
volume is rendered based on the respective TF. At this 
moment, the second level of interaction allows further 
refinement of the TF.  

The paper is organized as follows. The next section 
discusses relevant previous work. Sections 3 and 4 
explain our method and the implementation, while 
Section 5 shows results obtained with the application of 
our method to sample datasets. The paper ends with 
conclusions and future work in Section 6. 
 
2.  Previous Work 
 

The task of specifying TFs has also received 
considerable attention in the literature. There are good 
surveys describing methods for TF specification and the 
trade-offs between them [8, 23], so we restrict our 
comments to methods that are most relevant to our 
work. 

Existing techniques can be classified as data-driven 
or image-driven methods [8]. Basically, data-driven 
methods extract information from the scalar values 
which comprise the volume [1, 9, 12, 21]. This 
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information guides the user in specifying TFs, or 
constrains the large parameter space involved in their 
generation. Image-based techniques use volume 
rendered images to guide navigation in the TF space 
[18, 25]. Thus, the user chooses the most appealing 
rendered images instead of specifying the TF. 

Traditional approaches [13] let the user manually 
specify the transfer function by editing control points in 
a graphic plot. If the user does not have much 
knowledge a priori about the dataset, this task may 
become a trial-and-error procedure [23]. Bajaj et al. [1] 
presented a data-driven technique aimed at extracting 
isosurfaces of interest from unstructured volumetric 
grids. Metrics such as mean gradient magnitude, surface 
area, and volume are extracted from the grid and shown 
in the same interface where the isovalue is specified. 
Marks et al. [18] proposed Design Galleries, an image-
driven method devoted to the specification of 
parameters for rendering synthetic 3D scenes, but 
including the specification of TFs for direct volume 
rendering. This approach consists of randomly 
generating a large set of TFs and rendering them as 2D 
thumbnails, which are arranged according to their 
similarities in order to facilitate browsing. The user then 
interacts with the tool by selecting and visualizing one 
of these images. 

Kindlman and Durkin [9] presented their data-
driven, semi-automatic technique based on observations 
from Levoy [15] about using gradient magnitude to 
enhance material boundaries in the volume. In their 
semi-automatic method, a 3D histogram is extracted 
from the volume. This histogram records the 
relationship between a voxel and its first and second 
derivatives along the gradient direction. From the 
histogram, distance maps are extracted, indicating the 
distance from a given voxel value to the nearest 
boundary in the volume. The user then specifies a 
boundary emphasis function, which assigns opacity to 
voxels according to the distance maps. More recently, 
Kniss et al. [11] extended this work by developing an 
interface for specifying multidimensional TFs through 
the manipulation of graphic widgets. These widgets 
allow the assignment of color and opacity in both 
transfer function (with a graphic plot) and space 
domains (with a pencil that points regions of interest in 
the volume). Pekar et al. [21] presented an improved 
method of extracting isocontour information from 
volumes. A cumulative Laplacian-weighted gray value 
histogram is calculated in a single pass on the volume, 
the global maximum of the histogram curve being the 
most dominant material transition. This information is 
used to set up the opacity TF in a VTk [24] application.  

Multidimensional TFs have additional specification 
complexity because the parameter space grows 
exponentially with the number of dimensions. However, 

with a larger number of dimensions, one can more 
accurately classify different materials that share similar 
voxel values. Medical datasets, such as CT and MRI 
scans, often present these situations. Multidimensional 
TFs also suffer from large storage requirements and 
may become unusable at higher dimensions. 

In order to address this challenge, Kniss et al. [12] 
proposed the use of Gaussian primitives to represent 
TFs instead of lookup tables. These primitives are 
explicitly evaluated using programmable graphics 
hardware. Besides their compact representation form, 
Gaussian TFs also allow more accurate evaluation of 
the volume rendering integral on the GPU. This 
produces good quality images with fewer slices. 
Recently, Tzeng et al. [25] developed another image-
driven technique, focusing on volume segmentation 
tasks in biomedical datasets. In the proposed interface, 
the user interacts by painting regions of interest in the 
volume slices. A neural network implemented as a 
fragment program in the GPU is trained to assign 
opacity to these regions in order to enhance them, using 
information such as gradient magnitude, voxel spatial 
position and neighborhood. The interface also allows 
the removal of non-interesting materials by painting on 
sample slices. 

Our method combines features from previous work 
[9, 18] into a general-purpose tool that overcomes some 
of their limitations. 
 
3. Two-Level Interaction TF Specification 
 

In traditional volume rendering interfaces, the user is 
required to have a certain degree of knowledge about 
the dataset being visualized to obtain a good TF. 
Moreover, each new dataset presents new challenges 
and the user might spend a large period of time in 
defining acceptable mappings [6]. On the other hand, 
methods that exclude the user from the process of TF 
specification are often not adequate [22] because they 
might miss important details only noticeable to a human 
observer. In our approach, users do not need to have a 
priori knowledge about the dataset, since the initial TFs 
are automatically generated. But if that understanding 
exists, they can take advantage of it by refining the 
initial TFs or regenerating the whole set or a subset of 
TFs.  

Among the several techniques described in the 
literature, the work of Kindlmann and Durkin [9] and 
the Design Galleries method [18] are particularly 
interesting for our purposes of implementing a tool for 
TF specification. More specifically, rendering several 
randomly generated thumbnails may allow the user to 
gain some insight about the data immediately, before 
interaction. A problem that affects this approach is that 
usually volume data presents some material of interest 
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completely surrounded by other (less important) 
materials. If opacity is assigned to uninteresting voxels, 
they may occlude important inner features, thus 
affecting the desired visualization. In order to solve this 
problem, one can consider the regions of interest as the 
boundary between different homogeneous regions [9]. 
Another issue regarding the Design Galleries method is 
its excessive automation, since the TFs are randomly 
generated and dispersed to enhance variety.  We are 
interested in reducing the parameter space of TFs to a 
more reasonable one. 

We propose an extension of the two mentioned 
techniques, combining some aspects of them to develop 
a two-level interactive tool aimed at TF specification. 
The overall process of classification and visualization in 
our technique is shown in Figure 1 and explained in the 
next sections. 

 

 
 

Figure 1. The interactive TF specification 
method. The edge-based dispersion is used for 
generating initial TFs resulting different 
thumbnails, and also during the second-level, 
producing different volumetric images. 

 
3.1. Preparing Data for Initial TFs 
 

Since one of our goals is to prevent the user from the 
trial and error approach, our method starts with the 
automatic generation of initial TFs. In the Design 
Galleries method [20], this is performed by disturbing 
input vectors, which represent the control points of 
opacity TFs. After rendering the TF vectors as 
thumbnail images, the Design Galleries method 
employs a dispersion process in the initial TFs. This 
process uses neighboring pixels from the rendered 
images and, based on their similarity, decides if a 
different TF must be generated in order to provide a 
better variety of the resulting thumbnails.  

Instead of showing the largest number of random 
possibilities, our method tries to directly find 
combinations of TFs that enhance the boundaries 
between different regions. By doing this we try to 

constrain the large space of possibilities to a more 
promising one. We calculate a 3D histogram, following 
[9], recording the relationship between a voxel value 
and its first and second directional derivatives along the 
gradient directions in a way that the voxel spatial 
position is not needed. Indeed, it is observed that the 
domain of 1-D TFs does not include position, only the 
voxel value. 

Since the first (f’) and second (f”) derivatives in an 
image encode the rate in which the values are changing 
in a given direction, the points of maximum f’ 
derivative, as well as zero-crossings of f” (along the 
gradient direction) indicate a change in the scalar 
values, or a boundary between homogeneous regions. 
One axis or dimension of the volume histogram is the 
voxel value. The others are f’ (or the gradient 
magnitude) and f” derivative, both measured at each 
voxel in the volume. We used central differences to 
measure the first derivative (gradient magnitude) and 
the Laplacian operator to approximate the second 
derivative, both with 3x3x3 convolution kernels. This 
calculation is simple to implement yet is accurate 
enough to detect several different boundary 
configurations. The resulting histogram records the 
number of occurrences of a given combination of data 
value, gradient magnitude and second derivative in the 
whole dataset. 

 

 
(a)                                                     (b) 

Figure 2. Projections of the 3D histogram: (a) 
synthetic dataset of a cylinder; (b) UNC CT 
head. In both examples it is possible to identify 
boundary regions through the points of 
maximum gradient magnitude (f’) and zero-
crossings of f”. 
 

Similar to [11], we show the scatterplot of the 3D 
histogram, which are projections in the axis of data 
value versus f’ and data value versus f” (Figure 2). The 
horizontal axis corresponds to the voxel value range and 
the vertical axes to the f’ and f” ranges. To enhance few 
hits, we map the number of occurrences to colors, 
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varying from yellow (few occurrences) to red (several 
occurrences). 
 
3.2. Initial TFs and First-Level Interaction  

 
As observed in the scatterplots shown in Figure 2, 

each voxel value often has several different measures of 
f’ and f”. The average of f’ and f” is computed for each 
voxel value and weighted by the number of total hits of 
that data value. These averages serve as score 
indicators, and tell us if a given value potentially 
belongs to a transition region. We then order these 
values, considering decreasing order of f’ averages 
(since we are interested in the points of maximum f’), 
and proximity to zero in f” (since we are also interested 
in the zero-crossings of f”). 

To build the initial TFs, we propose an edge-based 
dispersion method. A set of 6x6 initial TFs is built 
through the initialization of 8-entry vectors, as follows. 
A vector with eight entries (or control points) is filled 
with the values with the highest scores computed for f’ 
(as explained before). Then, five more vectors are 
generated based on this one: randomly, the method 
determines the number of non zero-opacity values to be 
assigned to the vectors; for each non zero-opacity entry, 
the method randomly selects an opacity value and a 
color. Each vector is then interpolated to generate a full 
lookup table, with the same number of entries as 
different scalar values. The next subset of 6 vectors is 
also built in the same way by varying opacity and color 
for the values in the first vector. 

The next two subsets are built based on the highest 
scores of f’’, and the final two ones based on the highest 
values of a function of f’ and f”. Thus, each vector 
represents a different TF that specifies the amount of 
opacity and color assigned to each entry, which is 
indexed by voxel value. Although all the vectors have 
eight positions or control points, fewer positions have 
also shown effective for most cases.  

The initial set of TFs is rendered as 3D thumbnails in 
real time using programmable graphics hardware. Each 
thumbnail is a different viewport arranged in the same 
window, as illustrated in Figure 3.  

One of the key issues in TF specification is its 
dependence on both the application and the dataset 
being visualized. Some combination of parameters 
presents better results when applied to some datasets, 
but not for all of those we tested. These parameters are: 
(1) the maximum opacity given to a scalar; (2) the 
number of different control points in a TF vector that 
actually will be assigned non-zero opacity, and (3) the 
criteria used to choose the boundary voxels, which can 
be the highest f’ values, the zero-crossings of f”, or a 
score obtained by dividing f” by f’ and modulated by 
the so-called thickness of the boundary [18]. 

Other factor that affects the resulting images is the 
choice of interpolating (or not) the TF, since this 
interpolation can assign opacity to uninteresting 
regions. To generate the initial set of TFs, we randomly 
pick parameters for each vector, trying to obtain a 
successful combination for the user needs.  

   

 
 
Figure 3. Set of initial TFs for the cylinder 
dataset rendered as 3D thumbnails. The ones 
shown in white background were saved and 
will not change in a new generation of TFs. 

  
After the display of the initial TFs’ thumbnails, the 

user can enter the first-level interaction cycle. The user 
can zoom in/out and rotate all of thumbnails, and select 
the most appealing one for a posterior refinement (if 
necessary). At the second level of interaction, some 
parameters involved in the automatic generation of the 
initial TFs can be modified to generate a whole new set 
of TFs. Moreover, instead of re-generating all the 
thumbnails, the user can save selected images (shown in 
white background in Figure 3) thus preserving them 
from overwriting.  

Another interesting feature of our tool is the ability 
to perform the dispersion with respect to a selected 
image, which generates new dispersed TF vectors, but 
maintains characteristics of the chosen image. We do 
this by modifying the parameter set for the vector which 
generated that image, creating a slightly different one 
each iteration. 
 
3.3 . Second-Level Interaction 

 
Once the user has selected a thumbnail in the first 

level of interaction, the correspondent TF is used to 
render an image from the volume, and the user can enter 
the second (and optional) level interaction loop. The 
user can refine the obtained TF by interacting with the 
dataset, rotating and zooming in/out the image in the 
same way as with the thumbnails.  

The graphic plot of the TF is displayed, together 
with the control points of the respective generation 
vector.  At this time, the user may choose between 
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going back to the thumbnails, returning to the first-level 
interaction, or modify the parameter set with immediate 
feedback in the volumetric image.   

Since color can also be defined at this level, we 
decided to use a color picker because of its ease of use. 
Figure 4 illustrates this idea. Figure 4a is a single slice 
of the volume. Figure 4b is shown using the TF 
associated to a selected thumbnail. The image in Figure 
4c was obtained using the same opacity TF, but with 
different colors chosen in the color picker after 
selecting the materials of interest. The TF is then 
updated and the new resulting image is displayed in real 
time. If the user is not satisfied with the refinement, it is 
always possible to return to the first-level interaction 
and search new TFs or undo the changes made. 

 
3.4. Rendering 
 

Texture-based volume rendering [2, 26] is used in 
our system. Volume data is stored into 3D textures and 
rendered by displaying a proxy geometry consisting of 
planes orthogonal to the viewing direction [16, 3]. Since 
we desired interactive rates, we chose to implement a 
post-classification scheme [14, 19] as a fragment 
program executed on the GPU. Each fragment queries a 
lookup table to fetch the opacity and color values. 
These values are then composed in the frame buffer and 
the resulting image is generated.  
 
4. Results and Discussion 
 

Our results were obtained on a computer with a 
1GHz processor, 512 MB of RAM and a GeForce FX 
5200 graphics card with 128 MB. Images shown in 
Figures 5-7 were rendered at interactive rates 
(approximately 20 frames per second). Dataset 
dimensions varied from 643 to 2563. The interface 
allows the user to choose the number of proxy planes, 
from the fastest configuration but with lower quality 
images (40 planes) to the slowest configuration (2500 
planes) but generating higher-quality images.  

Figure 5 shows the cylinder dataset (size 643). After 
interacting with the thumbnails shown in Figure 3, the 
set of thumbnails represent different, modified TFs. 
Two of them are selected and used to render the two 
rightmost images.  

Figures 6 and 7 present screenshots of user 
interaction with our tool applied for visualizing well-
known datasets, the engine block dataset, and the UNC 
head CT, respectively (videos are available at [28]). In 
all examples, the thumbnail interface is displayed on the 
left, illustrating the first level of interaction. The 
thumbnails shown in these figures were obtained 
through selection, dispersion, and re-generation after 

approximately five user refinement iterations. Notice 
that despite the variety and difference between these 
thumbnails, none of them assigned opacity to the outer 
material (air) of the volume, which made the 
visualization of the actual structures inside the datasets 
possible. The right images show the interface for the 
second level of interaction (with the color picker 
omitted) displaying the chosen thumbnails interactively. 
The opacity TF is also shown along with its respective 
resulting image, illustrating the difference between 
them as well as the maximum opacity given to a voxel 
in the volume.  

Compared to other methods, specifically to 
Kindlmann and Durkin [9], Kniss et al. [11, 12] and 
Marks et al. [18], our approach differs from them by 
using data values to drive the definition of initial 
opacity TFs, and the possibility of assigning color 
during the second level of interaction, without the need 
of specifying (manually) a direct or indirect mapping in 
a graphic plot. Compared to Design Galleries [18], our 
method generates fewer 3D thumbnails, while that 
method produces several 2D ones. In relation to the 
work of Kindlmann and Durkin [9], our method 
employs a color TF while their work deals only with 
opacity TFs. In summary, our main objective was to 
ease the process of specifying transfer functions, 
allowing the user to quickly find an acceptable TF yet 
giving a high level control for the refinement of these 
functions. 

 
5.  Conclusions 
 

An effective visualization must be capable of 
showing important regions from the volume without 
occluding them with uninteresting materials. This is 
generally a hard task when done through trial and error. 
In this paper we presented an interactive method and 
tool aimed at assisting the task of specifying opacity 
and color transfer functions for general purpose 
datasets. We not only combined but extended existing 
techniques to develop a more intuitive tool, which takes 
advantage of the possibility of automatic generating 
transfer functions, while giving suitable control to the 
user.  

 A possibility of future work is the specification of 
multidimensional TFs. Despite the improvement in 
classifying different materials which share the same 
range of data values, the task of specifying one-
dimensional TFs is difficult, and becomes even worse 
with multidimensional TFs. Besides that, memory 
bandwidth is still a bottleneck in today’s graphics 
hardware, and these functions demand a large amount 
of memory.  

Another aspect for further research is the detection 
of features of interest. We can try other image 
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processing filters to extract different materials from the 
volume, or even find the boundaries in a more accurate 
fashion. However, the first and second derivatives are 
very straightforward to implement and do not demand 
high computational cost, unlike other edge detection 
methods. 
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(a) (b) (c) 

 
Figure 4. Rendering of the synthetic cylinder. (a) Sample slice; after choosing one of the 
thumbnails, the center image (b) is displayed; changes in the color of two materials (using 
the color picker) result in the rightmost image (c). 

 
 

 

  
 

Figure 5. Rendering of the cylinder dataset. Left: thumbnails are rendered; two images were 
chosen and saved (shown in dark background).  Right: interface for the second level of 
interaction, showing the chosen images together with their opacity TF. Dataset is 643. 



  

 

 

 
 

 
Figure 6. Rendering of the engine block dataset. Left: interface with the thumbnails; two 
images were chosen (shown in dark background) and saved.  Right: interface for the second 
level of interaction, showing the chosen images together with their opacity TF. Dataset is 
2563. 

 

 
Figure 7. Rendering of the UNC CT Male. Left: interface with the thumbnails; two images 
were chosen (shown in dark background) and saved.  Right: Interface for the second level of 
interaction, showing the chosen images along with their opacity TF. We can notice that the 
system generates images with different transparency levels and colors. Dataset is 1283. 


