
Two-Level Interaction Approach for Transfer Function Specification

João Luis Prauchner Carla M.D.S. Freitas João L.D. Comba

Instituto de Informática, Universidade Federal do Rio Grande do Sul
{jlprauchner, carla, comba}@inf.ufrgs.br

Abstract

Direct volume rendering techniques are used to
visualize and explore large scalar volumes. Transfer
functions (TFs) that assign opacity and color to scalar
values are very important to display volume features,
but their specification is not trivial or intuitive. This
work presents an interactive, semi-automatic tool to
assist the user in the generation of opacity and color
TFs. We use the histogram approach proposed by
Kindlmann and Durkin [9] to reduce the scope of
candidate TFs presented to the user following the
Design Galleries method [18]. The combination of
these two solutions leads to a single interactive tool that
allows the user to deal with different aspects of TF
specification.

1. Introduction

Volume rendering techniques are well described in
the literature [7, 16, 20, 27]. Methods based on
isosurface extraction (see, for example, [17]) render a
3D mesh constructed from the volume using the
standard graphics pipeline. On the other hand, direct
volume rendering techniques compose data information
without building an intermediate geometry [15]. Recent
advances in graphics hardware allowed real time high-
quality volume visualization [4, 14] for both
approaches.

An important aspect for extracting iso-surfaces as
well as to directly render the interior of volumes is the
determination of which voxel values correspond to the
region of interest. In direct volume rendering this is a
mapping from the original values associated with each
voxel to visual (image) attributes, such as color and
opacity. This mapping is often represented by transfer
functions, which are normally pre-computed and stored
in lookup tables.

Transfer functions (TFs) are particularly important to
obtain correct (and good quality) images because they
provide a way to classify the voxels. However, the task

of specifying TFs in order to convey the required
information is not trivial and has been widely discussed
[8, 23]. Often, opacity levels are defined by editing
control points in a line graph, which represents the
mapping from voxel values to opacity levels. The
problem with this approach is that subtle changes in the
TF result in drastic changes in the rendered image. This
leads the user to an unintuitive trial and error task,
which is time-consuming.

There are also several automatic and semi-automatic
techniques for specifying TFs [1, 5, 9, 10, 12, 13, 18],
and due to their complexity, interactive interfaces to
assist the user in this task have been developed [11, 25].

We present a method that combines the techniques
proposed by Marks et al. [18] and Kindlmann and
Durkin [9] into a single, interactive tool. There are two
levels of interaction in our method. The first one refines
a set of initial TFs rendered as 3D thumbnails, obtained
from a previously calculated 3D histogram. Then, the
user chooses the most appealing thumbnail, and the
volume is rendered based on the respective TF. At this
moment, the second level of interaction allows further
refinement of the TF.

The paper is organized as follows. The next section
discusses relevant previous work. Sections 3 and 4
explain our method and the implementation, while
Section 5 shows results obtained with the application of
our method to sample datasets. The paper ends with
conclusions and future work in Section 6.

2. Previous Work

The task of specifying TFs has also received
considerable attention in the literature. There are good
surveys describing methods for TF specification and the
trade-offs between them [8, 23], so we restrict our
comments to methods that are most relevant to our
work.

Existing techniques can be classified as data-driven
or image-driven methods [8]. Basically, data-driven
methods extract information from the scalar values
which comprise the volume [1, 9, 12, 21]. This

 2

information guides the user in specifying TFs, or
constrains the large parameter space involved in their
generation. Image-based techniques use volume
rendered images to guide navigation in the TF space
[18, 25]. Thus, the user chooses the most appealing
rendered images instead of specifying the TF.

Traditional approaches [13] let the user manually
specify the transfer function by editing control points in
a graphic plot. If the user does not have much
knowledge a priori about the dataset, this task may
become a trial-and-error procedure [23]. Bajaj et al. [1]
presented a data-driven technique aimed at extracting
isosurfaces of interest from unstructured volumetric
grids. Metrics such as mean gradient magnitude, surface
area, and volume are extracted from the grid and shown
in the same interface where the isovalue is specified.
Marks et al. [18] proposed Design Galleries, an image-
driven method devoted to the specification of
parameters for rendering synthetic 3D scenes, but
including the specification of TFs for direct volume
rendering. This approach consists of randomly
generating a large set of TFs and rendering them as 2D
thumbnails, which are arranged according to their
similarities in order to facilitate browsing. The user then
interacts with the tool by selecting and visualizing one
of these images.

Kindlman and Durkin [9] presented their data-
driven, semi-automatic technique based on observations
from Levoy [15] about using gradient magnitude to
enhance material boundaries in the volume. In their
semi-automatic method, a 3D histogram is extracted
from the volume. This histogram records the
relationship between a voxel and its first and second
derivatives along the gradient direction. From the
histogram, distance maps are extracted, indicating the
distance from a given voxel value to the nearest
boundary in the volume. The user then specifies a
boundary emphasis function, which assigns opacity to
voxels according to the distance maps. More recently,
Kniss et al. [11] extended this work by developing an
interface for specifying multidimensional TFs through
the manipulation of graphic widgets. These widgets
allow the assignment of color and opacity in both
transfer function (with a graphic plot) and space
domains (with a pencil that points regions of interest in
the volume). Pekar et al. [21] presented an improved
method of extracting isocontour information from
volumes. A cumulative Laplacian-weighted gray value
histogram is calculated in a single pass on the volume,
the global maximum of the histogram curve being the
most dominant material transition. This information is
used to set up the opacity TF in a VTk [24] application.

Multidimensional TFs have additional specification
complexity because the parameter space grows
exponentially with the number of dimensions. However,

with a larger number of dimensions, one can more
accurately classify different materials that share similar
voxel values. Medical datasets, such as CT and MRI
scans, often present these situations. Multidimensional
TFs also suffer from large storage requirements and
may become unusable at higher dimensions.

In order to address this challenge, Kniss et al. [12]
proposed the use of Gaussian primitives to represent
TFs instead of lookup tables. These primitives are
explicitly evaluated using programmable graphics
hardware. Besides their compact representation form,
Gaussian TFs also allow more accurate evaluation of
the volume rendering integral on the GPU. This
produces good quality images with fewer slices.
Recently, Tzeng et al. [25] developed another image-
driven technique, focusing on volume segmentation
tasks in biomedical datasets. In the proposed interface,
the user interacts by painting regions of interest in the
volume slices. A neural network implemented as a
fragment program in the GPU is trained to assign
opacity to these regions in order to enhance them, using
information such as gradient magnitude, voxel spatial
position and neighborhood. The interface also allows
the removal of non-interesting materials by painting on
sample slices.

Our method combines features from previous work
[9, 18] into a general-purpose tool that overcomes some
of their limitations.

3. Two-Level Interaction TF Specification

In traditional volume rendering interfaces, the user is
required to have a certain degree of knowledge about
the dataset being visualized to obtain a good TF.
Moreover, each new dataset presents new challenges
and the user might spend a large period of time in
defining acceptable mappings [6]. On the other hand,
methods that exclude the user from the process of TF
specification are often not adequate [22] because they
might miss important details only noticeable to a human
observer. In our approach, users do not need to have a
priori knowledge about the dataset, since the initial TFs
are automatically generated. But if that understanding
exists, they can take advantage of it by refining the
initial TFs or regenerating the whole set or a subset of
TFs.

Among the several techniques described in the
literature, the work of Kindlmann and Durkin [9] and
the Design Galleries method [18] are particularly
interesting for our purposes of implementing a tool for
TF specification. More specifically, rendering several
randomly generated thumbnails may allow the user to
gain some insight about the data immediately, before
interaction. A problem that affects this approach is that
usually volume data presents some material of interest

 3

completely surrounded by other (less important)
materials. If opacity is assigned to uninteresting voxels,
they may occlude important inner features, thus
affecting the desired visualization. In order to solve this
problem, one can consider the regions of interest as the
boundary between different homogeneous regions [9].
Another issue regarding the Design Galleries method is
its excessive automation, since the TFs are randomly
generated and dispersed to enhance variety. We are
interested in reducing the parameter space of TFs to a
more reasonable one.

We propose an extension of the two mentioned
techniques, combining some aspects of them to develop
a two-level interactive tool aimed at TF specification.
The overall process of classification and visualization in
our technique is shown in Figure 1 and explained in the
next sections.

Figure 1. The interactive TF specification
method. The edge-based dispersion is used for
generating initial TFs resulting different
thumbnails, and also during the second-level,
producing different volumetric images.

3.1. Preparing Data for Initial TFs

Since one of our goals is to prevent the user from the
trial and error approach, our method starts with the
automatic generation of initial TFs. In the Design
Galleries method [20], this is performed by disturbing
input vectors, which represent the control points of
opacity TFs. After rendering the TF vectors as
thumbnail images, the Design Galleries method
employs a dispersion process in the initial TFs. This
process uses neighboring pixels from the rendered
images and, based on their similarity, decides if a
different TF must be generated in order to provide a
better variety of the resulting thumbnails.

Instead of showing the largest number of random
possibilities, our method tries to directly find
combinations of TFs that enhance the boundaries
between different regions. By doing this we try to

constrain the large space of possibilities to a more
promising one. We calculate a 3D histogram, following
[9], recording the relationship between a voxel value
and its first and second directional derivatives along the
gradient directions in a way that the voxel spatial
position is not needed. Indeed, it is observed that the
domain of 1-D TFs does not include position, only the
voxel value.

Since the first (f’) and second (f”) derivatives in an
image encode the rate in which the values are changing
in a given direction, the points of maximum f’
derivative, as well as zero-crossings of f” (along the
gradient direction) indicate a change in the scalar
values, or a boundary between homogeneous regions.
One axis or dimension of the volume histogram is the
voxel value. The others are f’ (or the gradient
magnitude) and f” derivative, both measured at each
voxel in the volume. We used central differences to
measure the first derivative (gradient magnitude) and
the Laplacian operator to approximate the second
derivative, both with 3x3x3 convolution kernels. This
calculation is simple to implement yet is accurate
enough to detect several different boundary
configurations. The resulting histogram records the
number of occurrences of a given combination of data
value, gradient magnitude and second derivative in the
whole dataset.

(a) (b)

Figure 2. Projections of the 3D histogram: (a)
synthetic dataset of a cylinder; (b) UNC CT
head. In both examples it is possible to identify
boundary regions through the points of
maximum gradient magnitude (f’) and zero-
crossings of f”.

Similar to [11], we show the scatterplot of the 3D
histogram, which are projections in the axis of data
value versus f’ and data value versus f” (Figure 2). The
horizontal axis corresponds to the voxel value range and
the vertical axes to the f’ and f” ranges. To enhance few
hits, we map the number of occurrences to colors,

 4

varying from yellow (few occurrences) to red (several
occurrences).

3.2. Initial TFs and First-Level Interaction

As observed in the scatterplots shown in Figure 2,

each voxel value often has several different measures of
f’ and f”. The average of f’ and f” is computed for each
voxel value and weighted by the number of total hits of
that data value. These averages serve as score
indicators, and tell us if a given value potentially
belongs to a transition region. We then order these
values, considering decreasing order of f’ averages
(since we are interested in the points of maximum f’),
and proximity to zero in f” (since we are also interested
in the zero-crossings of f”).

To build the initial TFs, we propose an edge-based
dispersion method. A set of 6x6 initial TFs is built
through the initialization of 8-entry vectors, as follows.
A vector with eight entries (or control points) is filled
with the values with the highest scores computed for f’
(as explained before). Then, five more vectors are
generated based on this one: randomly, the method
determines the number of non zero-opacity values to be
assigned to the vectors; for each non zero-opacity entry,
the method randomly selects an opacity value and a
color. Each vector is then interpolated to generate a full
lookup table, with the same number of entries as
different scalar values. The next subset of 6 vectors is
also built in the same way by varying opacity and color
for the values in the first vector.

The next two subsets are built based on the highest
scores of f’’, and the final two ones based on the highest
values of a function of f’ and f”. Thus, each vector
represents a different TF that specifies the amount of
opacity and color assigned to each entry, which is
indexed by voxel value. Although all the vectors have
eight positions or control points, fewer positions have
also shown effective for most cases.

The initial set of TFs is rendered as 3D thumbnails in
real time using programmable graphics hardware. Each
thumbnail is a different viewport arranged in the same
window, as illustrated in Figure 3.

One of the key issues in TF specification is its
dependence on both the application and the dataset
being visualized. Some combination of parameters
presents better results when applied to some datasets,
but not for all of those we tested. These parameters are:
(1) the maximum opacity given to a scalar; (2) the
number of different control points in a TF vector that
actually will be assigned non-zero opacity, and (3) the
criteria used to choose the boundary voxels, which can
be the highest f’ values, the zero-crossings of f”, or a
score obtained by dividing f” by f’ and modulated by
the so-called thickness of the boundary [18].

Other factor that affects the resulting images is the
choice of interpolating (or not) the TF, since this
interpolation can assign opacity to uninteresting
regions. To generate the initial set of TFs, we randomly
pick parameters for each vector, trying to obtain a
successful combination for the user needs.

Figure 3. Set of initial TFs for the cylinder
dataset rendered as 3D thumbnails. The ones
shown in white background were saved and
will not change in a new generation of TFs.

After the display of the initial TFs’ thumbnails, the

user can enter the first-level interaction cycle. The user
can zoom in/out and rotate all of thumbnails, and select
the most appealing one for a posterior refinement (if
necessary). At the second level of interaction, some
parameters involved in the automatic generation of the
initial TFs can be modified to generate a whole new set
of TFs. Moreover, instead of re-generating all the
thumbnails, the user can save selected images (shown in
white background in Figure 3) thus preserving them
from overwriting.

Another interesting feature of our tool is the ability
to perform the dispersion with respect to a selected
image, which generates new dispersed TF vectors, but
maintains characteristics of the chosen image. We do
this by modifying the parameter set for the vector which
generated that image, creating a slightly different one
each iteration.

3.3 . Second-Level Interaction

Once the user has selected a thumbnail in the first

level of interaction, the correspondent TF is used to
render an image from the volume, and the user can enter
the second (and optional) level interaction loop. The
user can refine the obtained TF by interacting with the
dataset, rotating and zooming in/out the image in the
same way as with the thumbnails.

The graphic plot of the TF is displayed, together
with the control points of the respective generation
vector. At this time, the user may choose between

 5

going back to the thumbnails, returning to the first-level
interaction, or modify the parameter set with immediate
feedback in the volumetric image.

Since color can also be defined at this level, we
decided to use a color picker because of its ease of use.
Figure 4 illustrates this idea. Figure 4a is a single slice
of the volume. Figure 4b is shown using the TF
associated to a selected thumbnail. The image in Figure
4c was obtained using the same opacity TF, but with
different colors chosen in the color picker after
selecting the materials of interest. The TF is then
updated and the new resulting image is displayed in real
time. If the user is not satisfied with the refinement, it is
always possible to return to the first-level interaction
and search new TFs or undo the changes made.

3.4. Rendering

Texture-based volume rendering [2, 26] is used in
our system. Volume data is stored into 3D textures and
rendered by displaying a proxy geometry consisting of
planes orthogonal to the viewing direction [16, 3]. Since
we desired interactive rates, we chose to implement a
post-classification scheme [14, 19] as a fragment
program executed on the GPU. Each fragment queries a
lookup table to fetch the opacity and color values.
These values are then composed in the frame buffer and
the resulting image is generated.

4. Results and Discussion

Our results were obtained on a computer with a
1GHz processor, 512 MB of RAM and a GeForce FX
5200 graphics card with 128 MB. Images shown in
Figures 5-7 were rendered at interactive rates
(approximately 20 frames per second). Dataset
dimensions varied from 643 to 2563. The interface
allows the user to choose the number of proxy planes,
from the fastest configuration but with lower quality
images (40 planes) to the slowest configuration (2500
planes) but generating higher-quality images.

Figure 5 shows the cylinder dataset (size 643). After
interacting with the thumbnails shown in Figure 3, the
set of thumbnails represent different, modified TFs.
Two of them are selected and used to render the two
rightmost images.

Figures 6 and 7 present screenshots of user
interaction with our tool applied for visualizing well-
known datasets, the engine block dataset, and the UNC
head CT, respectively (videos are available at [28]). In
all examples, the thumbnail interface is displayed on the
left, illustrating the first level of interaction. The
thumbnails shown in these figures were obtained
through selection, dispersion, and re-generation after

approximately five user refinement iterations. Notice
that despite the variety and difference between these
thumbnails, none of them assigned opacity to the outer
material (air) of the volume, which made the
visualization of the actual structures inside the datasets
possible. The right images show the interface for the
second level of interaction (with the color picker
omitted) displaying the chosen thumbnails interactively.
The opacity TF is also shown along with its respective
resulting image, illustrating the difference between
them as well as the maximum opacity given to a voxel
in the volume.

Compared to other methods, specifically to
Kindlmann and Durkin [9], Kniss et al. [11, 12] and
Marks et al. [18], our approach differs from them by
using data values to drive the definition of initial
opacity TFs, and the possibility of assigning color
during the second level of interaction, without the need
of specifying (manually) a direct or indirect mapping in
a graphic plot. Compared to Design Galleries [18], our
method generates fewer 3D thumbnails, while that
method produces several 2D ones. In relation to the
work of Kindlmann and Durkin [9], our method
employs a color TF while their work deals only with
opacity TFs. In summary, our main objective was to
ease the process of specifying transfer functions,
allowing the user to quickly find an acceptable TF yet
giving a high level control for the refinement of these
functions.

5. Conclusions

An effective visualization must be capable of
showing important regions from the volume without
occluding them with uninteresting materials. This is
generally a hard task when done through trial and error.
In this paper we presented an interactive method and
tool aimed at assisting the task of specifying opacity
and color transfer functions for general purpose
datasets. We not only combined but extended existing
techniques to develop a more intuitive tool, which takes
advantage of the possibility of automatic generating
transfer functions, while giving suitable control to the
user.

 A possibility of future work is the specification of
multidimensional TFs. Despite the improvement in
classifying different materials which share the same
range of data values, the task of specifying one-
dimensional TFs is difficult, and becomes even worse
with multidimensional TFs. Besides that, memory
bandwidth is still a bottleneck in today’s graphics
hardware, and these functions demand a large amount
of memory.

Another aspect for further research is the detection
of features of interest. We can try other image

 6

processing filters to extract different materials from the
volume, or even find the boundaries in a more accurate
fashion. However, the first and second derivatives are
very straightforward to implement and do not demand
high computational cost, unlike other edge detection
methods.

6. References

[1] Bajaj, C., V. Pascucci, and D. Schikore. The contour
spectrum. In Visualization '97, pages 167-173, Phoenix, AZ,
October 1997.
[2] Cabral, B., N. Cam, and J. Foran. Accelerated Volume
Rendering and Tomographic Reconstruction Using Texture
Mapping Hardware, In Symposium on Volume Visualization,
1994.
[3] Dietrich, C., L.P. Nedel et al. Real-time interactive
visualization and manipulation of volumetric data using GPU-
based methods. In SPIE Medical Imaging – Visualization,
Image-Guided Procedures, and Display, vol. 5, n. 21, pages
181-192, San Diego, 2004.
[4] Engel, K., M. Krauss, and T. Ertl. High-quality Pre-
integrated Volume rendering Using Hardware-accelerated
Pixel Shading. In Eurographics/SIGGRAPH Graphics
Hardware Workshop, pages 9-16, 2001.
[5] Hladuvka, J., A. Konig, and E. Groller. Curvature-Based
Transfer Functions for Direct Volume Rendering. Technical
Report, Vienna University of Technology, 2000.
[6] Hönigmann, D., J. Ruisz, and C. Haider. Adaptive Design
of a Global Opacity Transfer Function for Direct Volume
Rendering of Ultrasound Data. In Visualization 2003, pages
489-496, 2003.
[7] Kaufman, C., R. Bakalash, D. Cohen, and R. Yagel. A
survey of architectures for volume rendering. IEEE
Engineering in Medicine and Biology Magazine, 9(4): 18–23,
December 1990.
[8] Kindlmann, G. Transfer Functions in Direct Volume
Rendering: Design, Interface, Interaction. SIGGRAPH 2002
Course Notes, Course 50, 2002
[9] Kindlmann, G. and J. W. Durkin. Semi-automatic
generation of transfer functions for direct volume rendering.
In Symposium on Volume Visualization, pages 79-86, 1998.
[10] Kindlmann, G., R. Whitaker, T. Tasdizen, and T. Möller.
Curvature-Based Transfer Functions for Direct Volume
Rendering: Methods and Applications. In Visualization 2003,
pages 512-520, 2003.
[11] J. Kniss, G. Kindlmann, and C. Hansen. Interactive
volume rendering using multi-dimensional transfer functions
and direct manipulation widgets. In Visualization 2001, pages
255-262, San Diego, CA, USA, October 2001.
[12] Kniss, J., S. Premoze, M. Ikits, A. Lefohn, C. Hansen,
and E. Praun. Gaussian Transfer Functions for Multi-field
Volume Visualization, In Visualization 2003, pages 497-504,
2003.
[13] König, A. and E. Gröller. Mastering Transfer Function
Specification by Using VolumePro Technology. In Spring

Conference on Computer Graphics 2001, volume 17, pages
279-286, April 2001.
[14] Krüger, J. and R. Westermann. Acceleration Techniques
for GPU-based Volume Rendering. In Visualization 2003,
pages 287-292, 2003.
[15] Levoy, M. Efficient Ray-Tracing of Volume Data. ACM
Transactions on Graphics, 9(3): 245–261, 1989
[16]Lichtenbelt, B., R. Crane, and S. Naqvi. Introduction to
Volume Rendering, Prentice Hall, Upper Saddle River, NJ,
1998.
[17] Lorensen, W. and H. Cline. Marching Cubes: A High
Resolution 3D Surface Construction Algorithm. Computer
Graphics, 21(4):163-169, 1987.
[18] Marks, J. et al. Design Galleries: A General Approach to
Setting Parameters for Computer Graphics and Animation. In
SIGGRAPH’ 97, pages 389-400, Los Angeles, CA, August
1997.
[19] Meissner, M. U. Hoffmann and W. Strasser. Enabling
classification and shading for 3D texture mapping based
volume rendering using openGL and extensions. In IEEE
Visualization’99, pages 207-214, San Francisco, 1999.
[20] Meissner, M., H. Pfister, R. Westermann, and C.
Wittenbrink. Volume Visualization and Volume Rendering
Techniques. Eurographics 2000 Tutorials #6, Interlaken,
Switzerland, 2000.
[21] Pekar, V., R. Wiemker, and D. Hempel. Fast Detection of
Meaningful Isosurfaces for Volume Data Visualization. In
IEEE Visualization 2001, pages 223-230, San Diego, CA,
USA, 2001.
[22] Pfister, H., J. Hardenbergh, J. Knittel, H. Lauer, and L.
Seiler. The VolumePro Real-Time Ray-Casting System. In
SIGGRAPH’99, pages 251-260, August 1999.
[23] Pfister H. et al. The Transfer Function Bake–off. IEEE
Computer Graphics and Applications, 21(3): 16-22, May/June
2001.
[24] Schroeder, W. et al., The Visualization Toolkit, Kitware,
Inc. Prentice Hall, 1998.
[25] Tzeng, F., E. Lum, and K. Ma. A Novel Interface for
Higher-Dimensional Classification of Volume Data. In
Visualization 2003, pages 505-512, 2003.
[26] van Gelder, A. and K. Kim. Direct volume rendering
with shading via 3D textures, In Symposium on Volume
Visualization, pages 23-30, San Francisco, CA, October 1996.
[27] Yagel, R. Volume Viewing Algorithms: Survey. In
International Spring School on Visualization, Bonn, 2000.
[28] http://www.inf.ufrgs.br/~jlprauchner/sibgrapi2005/

7. Acknowledgments

We are grateful to Steve Callahan, from the

University of Utah, for his careful revision of the first
version of this paper. We also acknowledge the support
from the Brazilian funding agencies CNPq and
FAPERGS.

 7

(a) (b) (c)

Figure 4. Rendering of the synthetic cylinder. (a) Sample slice; after choosing one of the
thumbnails, the center image (b) is displayed; changes in the color of two materials (using
the color picker) result in the rightmost image (c).

Figure 5. Rendering of the cylinder dataset. Left: thumbnails are rendered; two images were
chosen and saved (shown in dark background). Right: interface for the second level of
interaction, showing the chosen images together with their opacity TF. Dataset is 643.

Figure 6. Rendering of the engine block dataset. Left: interface with the thumbnails; two
images were chosen (shown in dark background) and saved. Right: interface for the second
level of interaction, showing the chosen images together with their opacity TF. Dataset is
2563.

Figure 7. Rendering of the UNC CT Male. Left: interface with the thumbnails; two images
were chosen (shown in dark background) and saved. Right: Interface for the second level of
interaction, showing the chosen images along with their opacity TF. We can notice that the
system generates images with different transparency levels and colors. Dataset is 1283.

