
Quadtree-based Inexact Graph Matching for Image Analysis

Luı́s Augusto Consularo
UNIMEP - Methodist University of Piracicaba

Piracicaba-SP, Brazil - laconsul@unimep.br
Roberto M. Cesar-Jr.

Department of Computer Science - IME - University of São Paulo
São Paulo, Brazil - cesar@ime.usp.br

Abstract

This paper presents a new method for segmentation and
recognition of image objects based on structural pattern
recognition. The input image is decomposed into regions
through a quadtree algorithm. The decomposed image is
represented by an attributed relational graph (ARG) named
input graph. The objects to be recognized are also stored
in an ARG named model graph. Object segmentation and
recognition are accomplished by matching the input graph
to the model graph. The possible inexact matches between
the two graphs are cliques of the association graph between
them. An objective function, to be optimized, is defined for
each clique in order to measure how suitable is the match
between the graphs. Therefore, recognition is modeled as
an optimization procedure. A beam-search algorithm is
used to optimize the objective function. Experimental re-
sults corroborating the proposed approach are presented.

1. Introduction

Among the different methods for pattern recognition, the
structural approach plays an important role because pattern
structure is made explicit in order to accomplish the recog-
nition task. Two different ways are commonly explored to
represent the patterns in this approach: (a) primitives and
strings (syntactical pattern recognition) [7]; (b) graphs [9].
This paper presents a new method that belongs to the graph-
based structural pattern recognition approach. The pattern
recognition task is carried out by matching an input (un-
known) graph to a model graph. An attributed relational
graph (ARG) is used to represent the input and the model
information. In the present paper, both graphs are automat-
ically extracted from digital images to perform image seg-
mentation and recognition of image structures.

Graph matching is one of the most important problems in
structural pattern recognition. Graph isomorphisms are of-
ten used and many works deal with the problem of search-
ing for the best isomorphism between two graphs or sub-
graphs [9]. Nevertheless, in many applications the isomor-
phism condition is too strong, and the problem is expressed
rather as an inexact graph matching problem where a one-
to-one mapping between the graphs is not required [12].
Most works on inexact graph matching rely on the optimiza-
tion of some objective function. This function usually mea-
sures the similarity between vertices and between edges of
both graphs, as well as between the structure of both graphs.
Examples of optimization techniques include combinato-
rial optimization [4], estimation of distribution algorithms
(EDA’s) [8], tree search [5], and graph editing [1], to name
but a few.

A framework for segmentation and recognition of im-
age structures based on graph morphisms was introduced
by Bloch and Perchant some years ago [10]. The research
that followed that work lead to the introduction of new al-
gorithms in [3, 2]. In this approach, it is supposed that the
image is composed by regions of interest which are to be
segmented and recognized. For instance, in face recogni-
tion, such image regions are facial features such as eye-
brows, pupils, nostrils and lips. The image is represented
by an ARG where each vertex is associated to an image
region, whereas the edges represent structural information
between the regions. The model graph is created from a
manual segmentation of a prototype image. On the other
hand, the input graph is created from an over-segmentation
of the input image using watershed. The segmentation and
recognition of the regions of interest in the input image is
obtained by matching the input and model graphs. Although
this approach has lead to very good results, it presents some
drawbacks [2].

The present paper explores an alternative approach that
presents some advantages with respect to the aforemen-
tioned method [3, 2]. Instead of edge detection-based tech-

1

niques (i.e. watershed) and manual segmentation to gener-
ate the ARG’s, quadtrees [6] are used to extract both input
and model graphs. The quadtree approach allows a very ef-
ficient way for partitioning the images to extract the graphs.
Besides, region granularity may be controlled directly from
the quadtree structure. Another contribution of the present
paper is that, instead of considering complete graphs as
in [3, 2], connectivity graphs are adopted. A new dissim-
ilarity measure between graph edges is defined in order to
deal with this new graph structure.

This paper is organized as follows. Section 2 presents
our method, introducing the necessary notations and defini-
tions, graph attributes, dissimilarity measures and optimiza-
tion algorithms. Experimental results are shown in Sec-
tion 3. This paper is concluded with some comments on
our ongoing work in Section 4.

2. Inexact Matching: The Clique Search Ap-
proach

2.1. Problem Statement

In this work, G̃ = (N,E) denotes a directed graph
where N represents the set of vertices of G̃ and E ⊆
N ×N the set of edges. Two vertices a, b of N are adjacent
if (a, b) ∈ E. If each vertex of G̃ is adjacent to all others,
then G̃ is said to be complete. We define an attributed re-
lational graph as G = (N,E, µ, ν), where µ : N → LN

assigns an attribute vector to each vertex of N . Similarly,
ν : E → LE assigns an attribute vector to each edge of
E. We typically have LN = R

m and LE = R
n, where

m and n are the numbers of vertex and edge attributes, re-
spectively. The vertices and the edges attributes are called
object and relational attributes, respectively. Two ARGs
G1 = (N1, E1, µ1, ν1) and G2 = (N2, E2, µ2, ν2) are
used, which will be henceforth referred to as the input (i.e.
derived from the image) and the model graphs, respectively.
|N1| denotes the number of vertices in N1, while |E1| de-
notes the number of edges in E1. We use a subscript to
denote the corresponding graph, e.g. a1 ∈ N1 denotes a
vertex of G1, while (a1, b1) ∈ E1 denotes an edge of G1.
We use a superscript to enumerate the nodes of a graph, i.e.
a1
1, a

2
1, . . . , a

|N1|
1 ∈ N1. Similar notations are used for G2.

An inexact match between G1 and G2 is searched on
the association graph between G1 and G2. The association
graph G̃A between G1 and G2 is defined as the complete
graph G̃A = (NA, EA), with NA = N1 × N2. An inexact
match between G1 and G2 can be expressed as a sub-graph
G̃S = (NS , ES) of the association graph G̃A between G1

and G2 with NS = {(a1, a2), a1 ∈ N1, a2 ∈ N2} such
that ∀a1 ∈ N1,∃a2 ∈ N2, (a1, a2) ∈ NS and ∀(a1, a2) ∈
NS ,∀(a′

1, a
′
2) ∈ NS , a1 = a′

1 ⇒ a2 = a′
2 which guar-

antees that each vertex of the image graph has exactly one

label (vertex of the model graph) and |NS | = |N1|. G̃S is
built as a clique of G̃A.

Figure 1 illustrates these concepts. Starting from the in-
put and model images, the corresponding graphs are gener-
ated. In Figure 1, this step is indicated as quadtree segmen-
tation because quadtrees are used in this paper, as explained
in Section 2.5. The expected inexact match between the
input and model graphs are shown as correspondences be-
tween nodes of these two graphs (dashed lines in the middle
of the figure). The association graph, and the corresponding
clique that represents the expected inexact match are shown
in the bottom part of Figure 1. Although the association
graph is a complete graph, only the edges that belong to the
indicated clique are shown for visualization’s sake.

Clearly, there are many possible cliques that represent
an inexact match between G1 and G2, and we need to de-
fine an objective function to assess the quality of a given
clique and its suitability with respect to each specific ap-
plication. This criterion should include, additionally to the
structural aspects, information on the attributes. In particu-
lar, the clique should minimize the dissimilarity between the
object attributes of the mapped vertices from G1 to G2 and
the respective relational attributes associated to the matched
edges. The evaluation of the quality of a solution expressed
by G̃S is performed through an objective function:

f1(G̃S) =
α

|NS |
∑

(a1,a2)∈NS

cN (a1, a2)+
(1 − α)
|ES |

∑
e∈ES

cE(e)

(1)
where cN (a1, a2) is a measure of dissimilarity between the
attributes of a1 and a2. Similarly, if e = ((a1, a2), (b1, b2)),
cE(e) is a measure of the dissimilarity between edge
(a1, b1) of the image and edge (a2, b2) of the model.
Typically, cN (a1, a2) will be defined as a decreasing
function of the similarity between vertex attributes. If
two vertices a1 and a2 have the same attributes (high
similarity), then cN will be very low and the association
of a1 and a2 will be favored when minimizing f1. On the
other hand, associations between nodes having different
attribute values will be penalized. The term depending on
edge comparison can be interpreted in a similar way.

2.2. Object and Relational Attributes

The function to be optimized (Equation 1) depends on
dissimilarity measures between the graph attributes. The
vertices attributes are calculated from quadtree regions
(Section 2.5) in the image while relational attributes are
based on the spatial disposition of these regions. The
adopted attributes for the experiments presented in this pa-
per are:

2

1

32

Model

21

3 4

Image

1,2
1,3

1,1

2 3

1

1 2

3 4
Model Graph

Input Graph

4,1

4,2
4,3

2,1

2,2

2,3

3,3

3,2
3,1

Association Graph

Quadtree SegmentationQuadtree Segmentation

Figure 1. General scheme of the proposed approach: the input and model images are segmented
by a quadtree procedure and represented as graphs. The inexact match between these graphs is
obtained by searching for a suitable clique in the association graph. The inexact match of this
example is indicated as the shaded gray clique of the association graph.

• Object attributes: Let G = (N,E, µ, ν) be an ARG
and let a ∈ N . The set of object attributes µ(a) is de-
fined as µ(a) = (g(a)), where g(a) denotes the aver-
age grey-level of the image region associated to vertex

a. g(a) is normalized between 0 and 1 with respect to
the minimum and maximum possible grey-levels,

• Relational attribute: Let a, b ∈ N be any two ver-
tices of G, and pa and pb be the centroids of the re-

3

spective corresponding image regions. The relational
attribute ν(a, b) of (a, b) ∈ E is defined as the vec-
tor ν(a, b) = (pb − pa)/(2dmax), where dmax is the
largest distance between any two points of the consid-
ered image region.

2.3. Dissimilarity Measures

There are two dissimilarity measures cN and cE used by
the objective function f1 (Equation 1), associated to ver-
tices and edges of the association graph, respectively. The
measure cN is related to object attributes, while cE is re-
lated to relational attributes. Let (a1, a2) denote a vertex of
G̃A, with a1 ∈ N1 and a2 ∈ N2. The dissimilarity measure
cN (a1, a2) is defined as:

cN (a1, a2) = |g1(a1) − g2(a2)|
where gi(ai) is the object attribute of a vertex ai ∈ Gi,
i = 1, 2.

Let e denote an edge of G̃A, with end-points (a1, a2) ∈
NA, a1 ∈ N1 and a2 ∈ N2 and (b1, b2) ∈ NA, b1 ∈ N1 and
b2 ∈ N2. We compute the modulus and angular differences
between ν(a1, b1) and ν(a2, b2) as

φm(e) = |‖ν(a1, b1)‖ − ‖ν(a2, b2)‖|
and

φa(e) =
| cos(θ) − 1|

2
where θ is the angle between ν(a1, b1) and ν(a2, b2), i.e.
cos(θ) is calculated as

cos(θ) =
ν(a1, b1) · ν(a2, b2)

‖ν(a1, b1)‖‖ν(a2, b2)‖
In order to define the dissimilarity measure cE(e), we

need an auxiliary function:

ĉE(e) = γEφa(e) + (1 − γE)φm(e) (2)

where ν(ai, bi) is the relational attribute associated to edge
(ai, bi) ∈ Ei. The parameter γE (0 ≤ γE ≤ 1) con-
trols the weights of φm and φa. It is important to note that
ν(a, a) = �0. This fact means that, when two vertices in
G1 are mapped onto a single vertex of G2 by the homomor-
phism, we have cE(e) = ‖ν(a1, b1) − �0‖ = ‖ν(a1, b1)‖,
which is proportional to the distance between the centroids
of the corresponding regions in the over-segmented image
(in such cases, we define cos(θ) = 1). Therefore, ĉE would
give large dissimilarity measures when assigning the same
label (i.e. the target vertex in G2) to distant regions and
lower measures when assigning the same label to near re-
gions, which is intuitively desirable in the present applica-
tion.

If G1 and G2 were complete graphs, then ĉE could be
used as the dissimilarity graph to help evaluating the objec-
tive function. This was the case in the original paper that in-
troduced the inexact matching approach explored here [2].
Nevertheless, this paper does not assume that G1 and G2

complete graphs. Therefore, it is possible that edges in G1

do not have corresponding edges in G2 and vice-versa. An
illustrative example is shown in Figure 2 where the model is
an image composed of two parts labeled 1 and 2. The model
graph has two vertices, a1

2 and a2
2, and an edge linking them,

as shown in the figure. Figure 2 also shows an input im-
age with a possible quadtree segmentation. Four regions
are identified as 1, 2, 3 and 4 and the corresponding nodes
(denoted a1

1, a2
1, a3

1 and a4
1) are also shown in the figure, as

well as their expected match onto the model graph. Because
of the match between the graph vertices, some edge com-
parisons are expected but not possible because the edges do
not actually belong to the graphs. For example, because
a1
1 is matched to a1

2 and a4
1 is matched to a4

2, the dissimi-
larity measure should be evaluated to compare (a1

1, a
4
1) and

(a1
2, a

2
2). It is important to note that this comparison is not

possible in a straightforward manner since (a1
1, a

4
1) 	∈ E1

because region 1 in not connected to region 4.
Let a1, b1 ∈ N1 and a2, b2 ∈ N2 be nodes of G1 and

G2, respectively. Suppose that a1 and b1 is matched to a2

and b2, respectively, i.e. (a1, a2), (b1, b2) ∈ NS . In this
case, the edge (a1, b1) would be matched to (a2, b2) and
the dissimilarity measure between them should be evalu-
ated. However, because the graphs are not complete, it is
possible that one or both edges do not actually exist and the
dissimilarity measure should properly deal with such situa-
tions. The edge dissimilarity measure is then defined as:

cE(e) =




ĉE(e), (a1, b1) ∈ E1, (a2, b2) ∈ E2

ĉE(e′), (a1, b1) 	∈ E1, (a2, b2) ∈ E2

∞, (a1, b1) ∈ E1, (a2, b2) 	∈ E2

0, (a1, b1) 	∈ E1, (a2, b2) 	∈ E2

(3)

The above dissimilarity measure cE deals with all pos-
sibilities of missing edges. The case where (a1, b1) 	∈ E1

and (a2, b2) ∈ E2 is of particular interest, and arises be-
cause of the over-segmentation imposed on the input image
and the fact that a connectivity graph is used to generate
the ARGs. This is the case discussed above on the exam-
ple of Figure 2. In such situations, (a1, b1) is expected to
be compared to (a2, b2) and the vertex attributes is created
on-the-fly, i.e. by the dissimilarity measure procedure itself.
This is indicated in Equation 3 by edge e′ instead of e.

2.4. The Optimization Algorithm

It is necessary to optimize the objective function 1 in or-
der to find a suitable inexact match between G1 and G2.

4

1

2

3

4

Image Graph

1

2

3

4

Input Image

1

2

Model Graph

Model Image

1

2

Figure 2. Example of the over-segmentation
effect and the problem due to the connec-
tivity graph approach: edges like that be-
tween vertices 1 and 4 does not exist be-
cause the corresponding regions are not ad-
jacent. Such situation should be properly
dealt on-the-fly by the edges dissimilarity
measure procedure.

There are many different optimization algorithms that may
be used and the reader is referred to [2] for a comparative
review. In the experiments reported in this paper, beam-
search algorithm has been used. The algorithm starts with
empty cliques and incrementally increases a number of dif-
ferent cliques in parallel, evaluating function 1 for each
one. The most cheaper clique is chosen and a new ver-
tex is added to it at each iteration. The algorithm stops
when a clique that represents a complete solution, as de-
fined above, is found. The different cliques are represented
in a search tree, as explained below. This algorithm starts
by creating a search tree with each vertex representing a
pair (k, l), where k represents the k-th vertex of the input
graph (i.e. ak

1) and l represents the l-th vertex of the model
graph (i.e. al

2). The initial empty clique is represented by
initializing the tree with a dummy root vertex (0, 0) that is
expanded in |N2| sons (1, 1), (1, 2), . . . , (1, |N2|). The ob-
jective function f1 is calculated for each son. The cheapest
leaf in the tree is taken to be expanded in the next loop.
In this first expansion of the tree, the only leaves are the
nodes that have just been expanded, but this will not be the
case after the second node expansion. It is hence neces-

sary to calculate cN (a1
1, a

j
2), j = 1, . . . , |N2|, i.e. the cost

of matching the input graph node a1
1 to each model graph

node aj
2. This first step does not involve calculating the

edge costs cE since only one node of each graph is being
considered so far. The cheapest node is hence expanded
in |N2| sons (2, 1), (2, 2), . . . , (2, |N2|), the objective func-
tion for each newly born son is calculated and the cheap-
est tree leaf among all leaves (including nodes left unex-
panded in previous steps) is taken to be expanded. It is
necessary to calculate cN (a2

1, a
j
2), as well as the edge costs

cE((a1
1, a

2
1), (a

3
2, a

j
2)), j = 1, . . . , |N2|. As new nodes are

expanded more terms cN and cE are taken into account by
the objective function. All matchings between edges must
be taken into account once a tree leaf is expanded. The nor-
malization terms |NA| and |EA| (Equation 1) must be set
properly when calculating the objective function for each
node since the number of considered vertices and arcs de-
pends on the depth of the exploded nodes. It is worth noting
that all leaves are considered at each step, i.e. tree nodes
previously left unexpanded are also candidates to be ex-
panded. The process is repeated until a tree vertex (|N1|, l)
is reached, meaning that all |N1| vertices in G1 have been
assigned to a vertex in G2, thus defining a suitable ho-
momorphism between the two graphs. Because taking all
possible solutions in parallel is impossible because of the
combinatorial explosion, only a fixed maximum number of
solutions are considered. This is implemented by defining
a priority queue that returns a pointer to the cheapest ver-
tex each time a tree leaf should be chosen to be expanded.
Because of the limited the maximum size allowed for the
priority queue, once this limit is reached, the more expen-
sive vertices are discarded from the queue. This solution is
similar to the beam search algorithm, which saves time and
space complexity at the cost of not considering many paths
in the tree (and therefore possibly loosing a better solution).
Therefore, we have implemented a post-processing step in
order to get the solution subsequently improved. Once a
solution is reached by the above procedure, the algorithm
tracks its path in the tree, from leaf to root, and verifies the
price of the solution obtained by changing the node label by
the other possible labels for that node. If the obtained solu-
tion is cheaper than the previous one, then it is updated with
the new label for that node (otherwise, nothing is done).
The algorithm then proceeds for the next node in the tree. If
the solution has been improved at least once after traversing
a leaf-to-root path, this procedure is repeated again from
the leaf. Convergence is reached after traversing the leaf-
to-root path with no improvements on the solution. More
details on this optimization algorithm may be found at [2].

5

2.5. Graph Formation Through Quadtrees

Quadtree is a recursive data decomposition method map-
ping the input image onto a DAG (Directed and Acyclic
Graph) [11]. Each tree node corresponds to an image re-
gion and has at most four children associated to four im-
age subregions. The quadtree root node corresponds to the
whole image, which is taken as the initial region. Some a
priori defined criterion is evaluated to this region and, if not
verified, the region is subdivided in four subregions, each
one corresponding to the children of the root. This proce-
dure is recursively applied to each subregion, thus leading to
the formation of the quadtree (and the corresponding parti-
tioned image). There are different subdivision criteria such
as the number of pixels inside each region, the variance and
the entropy of the pixel gray-levels within the region. Ex-
amples of resulting partitioned images using these criteria
are shown in Figure 3.

(a) (b)

(c) (d)

Figure 3. (a) Hand image and some quadtree
partitioning results with division criterion
based on: (b) the number of pixels (64 pix-
els); (c) the standard deviation (±30 gray lev-
els); and (d) the entropy (4 bits).

After quadtree partitioning, each leaf becomes an ARG
node of the input or model graphs. The ARG edges are then
created to build the ARG as an adjacency graph, as pre-
viously explained. Figure 4 illustrates the respective ARGs
for the partitioning results shown in Figure 3(b) and (c). Be-
cause region adjacency information represents overall im-
age structure in a limited way (for only local structure is
represented, i.e. direct neighborhood), we also apply tran-

sitive closure of different orders to the original ARG.

(a) (b)

Figure 4. The graphs for respective partition-
ing results illustrated in Figure 3b and c .

3. Experimental Results

In order to illustrate the introduced methods, results are
shown for one synthetic and one real image. Figure 5 shows
the result for a synthetic image. The original image is
shown in Figure 5(a) while the model graph is shown in Fig-
ure 5(b). The quadtree partitioned image and corresponding
input graph are shown in Figures 5(c) and (d), respectively.
The final segmentation is shown in Figure 5(e) together with
the final segmentation image whose quadtree regions hold
their respective average gray level pixels (Figure 5(f)). It
is worth noting the important role played by the structural
information: although many regions present very similar
gray level, they have been correctly identified because of
the structure information stored by the graph edges.

The importance of structural information is more em-
phasized in the case of the results shown in Figures 7, 8,
and 9. The hand image has been divided into subregions
(Figure 6(a)) so that each finger has a different label (Fig-
ure 6(b)). Segmenting and recognizing each hand structure
could not be carried out based only on gray-level infor-
mation because this is relatively homogeneous throughout
the hand. Nevertheless, as shown in the final segmentation
(Figure 7 (a) and (b)), the method is capable of correctly
identifying these hand structures, though some errors are
present. Two examples based on the graph model in Figure
6b illustrates the structural recognition. In the first example,
the Figure 8a shows an open flat hand with closed fingers.
The fingers distinction would be a hard task if only the gray
level feature would be taken into account. In fact, the gray
level got a low weight (α = 0.2). The edge modulus was
the structural feature here, since the γE parameter was set
in 0.04. Although the parts distinction was not completely
correct, it is perceptible that the structural pattern provided
in the model was preserved. In the second example, the
Figure 9a shows a hand with spread fingers. Although it

6

could be supposed an easier task than that for closed fin-
gers, the final segmentation presented some finger distinc-
tion mistakes, as pointed in Figure 9d. These mistakes may
have been due to poor choices of parameters α (0.1) and
γE (0.04) or poor models. An improvement for next devel-
opments is a parameter searcher which could find low cost
homomorphisms. Both examples have been obtained with
transitive closure of order 2 applied to the input and model
graphs.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Landscape illustration (a); the
graph given as model (b); the gray level
quadtree partitioning result (c); the input
graph from quadtree (d); the quadtree super-
posed to the final segmentation result (e); the
final segmentation result superposed to the
original image (f).

(a) (b)

Figure 6. Hand image model (a); the parti-
tioned hand image taken as model (b); the
hand parts and their respective labels. Each
part corresponds to a node in the model
graph whose edges are also illustrated in this
picture.

(a) (b)

Figure 7. Quadtree regions (Figure 3c) su-
perposed to the final segmentation (a); final
segmentation result where each label identi-
fies each hand part (b).

4. Concluding Remarks and Future Work

This paper presented a new method for segmentation and
recognition of image structures based on graph matching. It
is a structural pattern recognition approach for image seg-
mentation that is solved by an optimization procedure that
searches for suitable cliques in the association graph be-
tween image and model graphs. The ARGs are generated
from a quadtree decomposition of the images in an efficient
and elegant way. Experimental results corroborating the in-
troduced approach were presented. Our ongoing work aims
at speeding the search algorithm to allow real-time appli-
cations, as well as improving the quality of the final solu-
tion. We are also working on the extension of the proposed
approach to deal with video sequences. We would like to
explore the solution found in previous frames to guide and
speed the segmentation in the current frame.

7

(a) (b)

(c) (d)

Figure 8. Open flat hand with closed fingers
original image (a); gray level partitioning re-
sult (st. dev. ±10 gray levels) (b); quadtree re-
gions superposed to the final segmentation
(c); final segmentation result where each la-
bel identifies each hand part (d).

Acknowledgements

R. Cesar-Jr. is grateful to FAPESP (99/12765-2) and to
CNPq (300722/98-2 and 474596/2004-4).

References

[1] H. Bunke. Error Correcting Graph Matching: On the Influ-
ence of the Underlying Cost Function. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 21(9):917–
922, 1999.

[2] R. M. Cesar-Jr., E. Bengoetxea, I. Bloch, and P. Larrañaga.
Inexact graph matching for model-based recognition: Eval-
uation and comparison of optimization algorithms. Pattern
Recognition, 2005 (accepted).

[3] O. Colliot, A. Tuzikov, R. Cesar-Jr., and I. Bloch. Approx-
imate reflectional symmetries of fuzzy objects with an ap-
plication in model-based object recognition. Fuzzy Sets and
Systems, 147(1):141–163, 2004.

[4] A. D. J. Cross and E. R. Hancock. Convergence of a Hill
Climbing Genetic Algorithm for Graph Matching. In Lec-
ture notes in Computer Science, volume 1654, 1999.

[5] A. Deruyver and Y. Hodé. Constraint Satisfaction Prob-
lem with Bilevel Constraint: Application to Interpretation
of Over-segmented Images. Artificial intelligence, 93:321–
335, 1997.

(a) (b)

(c) (d)

Figure 9. Spread fingers hand original image
(a); gray level partitioning result (st. dev.
±12.0 gray levels) (b); quadtree regions su-
perposed to the final segmentation (c); final
segmentation result where each label identi-
fies each hand part (d).

[6] D.H.Ballard and C.M.Brown. Computer Vision. Prentice-
Hall, Englewood Cliffs, NJ, 1982.

[7] K. Fu. Syntactic Pattern Recognition and Applications.
Prentice-Hall, Englewood Cliffs, NJ, 1982.

[8] P. Larrañaga and J. A. Lozano. Estimation of Distribu-
tion Algorithms. A New Tool for Evolutionary Computation.
Kluwer Academic Publishers, 2001.

[9] B. T. Messmer and H. Bunke. Efficient subgraph isomor-
phism detection: A decomposition approach. IEEE Transac-
tions on Knowledge and Data Engineering, 12(2):307–323,
2000.

[10] A. Perchant and I. Bloch. A New Definition for Fuzzy At-
tributed Graph Homomorphism with Application to Struc-
tural Shape Recognition in Brain Imaging. In IMTC’99, 16th
IEEE Instrumentation and Measurement Technology Con-
ference, pages 1801–1806, Venice, Italy, 1999.

[11] H. Samet. The quadtree and related hierarchical data struc-
tures. ACM Computing Surveys, 16(2):2049–2051, 1984.

[12] R. Wilson and E. Hancock. A Bayesian compatibility model
for graph matching. Pattern Recognition Letters, 17(3):263–
276, 1996.

8

