
Binary Image Operator Design based on Stacked Generalization

Nina S. T. Hirata
Department of Computer Science

Institute of Mathematics and Statistics
University of São Paulo

Rua do Matão, 1010 — 05508-090 São Paulo, Brazil
nina@ime.usp.br

Abstract

Stacked generalization refers to any learning schema
that consists of multiple levels of training. Level zero clas-
sifiers are those that depend solely on input data while clas-
sifiers at other levels may use the output of lower levels as
the input. Stacked generalization can be used to address the
difficulties related to the design of image operators defined
on large windows. This paper describes a simple stacked
generalization schema for the design of binary image oper-
ators and presents several application examples that show
its effectiveness as a training schema.

1. Introduction

Translation-invariant and locally defined binary image
operators are characterized by Boolean functions. The num-
ber of variables in the Boolean function is given by the size
of the window that establishes the locality property of the
operator.

In order to design operators of this family, one only
needs to choose a Boolean function. If we consider images
to be processed as random realizations of a random set S
and their respective ideal images as random realizations of
a random set I, then the goal of image operator design is to
obtain a mapping Ψ such that Ψ(S) is statistically as close
as possible to I. The closeness between Ψ(S) and I can be
expressed in terms of some measure that involves the joint
distribution of S × I.

In practice, however, the distribution that governs S × I
is not known. The design of image operators is usually
based on learning techniques where probabilities are esti-
mated from samples of input-output training data [1, 2]. For
a fixed amount of training data, if the window considered is
large, the operators have poor statistical precision and the
results are not good. In general, we can not simply reduce

the window size to address the problem of precision because
by doing so we limit the ability of the operator to discrim-
inate relatively large shapes. Moreover, the time spent as
well as the amount of computer memory required to train
operators that depend on large windows is usually very large
(training may take several days).

Some approaches to deal with the difficulties related to
designing image operators based on large windows have
been suggested. Iterative operators [3] consider sequential
composition of several operators as a way of successively
approximating the output to the ideal output. Two-stage
learning [6] divides the window into two sub-windows, the
internal and external sub-windows, learns a relaxed map-
ping with respect to the external sub-window, and then com-
bines the output of this mapping with the input correspond-
ing to the internal sub-window in an optimal fashion.

In this paper we propose the use of stacked general-
ization schema to address the problem of designing large
window binary image operators. Stacked generalization [7]
refers to any learning schema that consists of multiple lev-
els of training. Level zero classifiers are those that depend
solely on input data while classifiers at other levels may use
the output of lower levels as the input. The iterative and
the two-stage approaches cited above can be understood as
particular cases of the stacked generalization schema.

Following this Introduction, this paper is organized as
follows. Section 2 introduces notation and concepts related
to binary image operator design. Section 3 briefly recalls
stacked generalization and then shows how it can be settled
in the context of binary image operator design. A simple
schema considers that all classifiers target one same output
pixel. A more general schema considers that different clas-
sifiers at the intermediary levels of the schema may target
distinct output pixels. Section 4 describes experimental re-
sults of designing binary image operators based on stacked
generalization schema for texture segmentation, character
recognition and text segmentation. Finally, Section 5 points
out some concluding remarks and future research issues re-

lated to this subject.

2. Binary Image Operator Design

Binary images can be seen as subsets of Z2. The set
corresponding to a binary image f : Z2 → {0, 1} is Sf =
{z ∈ Z2 : f(z) = 1} and, conversely, the binary image fS

corresponding to a set S ⊆ Z2 is given by fS(z) = 1 if
z ∈ S and fS(z) = 0 if z �∈ S.

Let P(Z2) (the set all subsets of Z2) denote the set of
all binary images defined on Z2, and let W ⊆ Z2 be an
n-point window. The patterns (subsets) observed through
W by sliding it on an image S can be seen as elements of
P(W). Thus, functions of the form ψ : P(W) → {0, 1}
can be used to define binary image operators in the follow-
ing way. For any binary image S and z ∈ Z2,

z ∈ Ψ(S) ⇐⇒ ψ(S−z ∩ W) = 1 (1)

where S−z ∩ W denotes the pattern observed at location z,
translated to the origin. We say that ψ is the characteristic
function of Ψ and that Ψ is a W -operator.

If we assign a binary variable to each point of the win-
dow, then function ψ : P(W) → {0, 1} can be under-
stood as a Boolean function, that is, as a mapping from
{0, 1}n to {0, 1}. For instance, if we consider a 3-point
window and three variables x1, x2, and x3, assigned re-
spectively to each point of the window, the Boolean func-
tion ψ(x1, x2, x3) = x1 x2 +x1 x3 +x2 x3 defines a binary
median operator.

In the context of this paper, a relevant fact is that Boolean
functions characterize a class of binary image operators and,
therefore, the problem of designing these operators reduces
to the problem of designing Boolean functions.

The problem of designing W -operators can be stated as
follows. We consider that images to be processed and their
respective ideal result images are modeled respectively as
random sets S and I. We would like to design an image
operator Ψ so that Ψ(S) is statistically as close as possible
to I. We suppose that S and I are jointly stationary, so that
patterns observed through a window W on the input images
and the corresponding value in the output image are consid-
ered realizations of a joint distribution P (X,y), where X
is a random set whose realizations are in P(W) and y is a
binary random variable with realizations in {0, 1}. A usual
closeness measure between Ψ(S) and I is the mean abso-
lute error (MAE). Owing to stationarity, we can define the
MAE of an operator Ψ characterized by ψ, with respect to
distribution P (X,y), as

MAE〈Ψ〉 = E
[∣∣ψ(X) − y

∣∣]
(2)

where E[·] denotes the expected value of its argument.
Thus, the minimum MAE (MMAE) operator is the one

characterized by function

ψ(X) =
{

1, if P (X, 1) > P (X, 0),
0, otherwise.

(3)

If the joint distribution P (X,y) is known, then MMAE
operator can be obtained from Eq. 3. However, in practice,
these probabilities are not known. They are usually esti-
mated from samples of input-output pairs of images. Pat-
terns collected on the input images through window W and
their respective output values are used to estimate the dis-
tribution P (X,y). A training procedure can, therefore, be
viewed as consisting of the following steps:

1. Scan each input-output pair of training set and estimate
P (x, y). This gives an estimate P̂ (X, y) of P (X, y)
for some pairs (X, y), X ∈ P(W) and y ∈ {0, 1}.

2. For each observed pattern X , estimate MAE optimal
classification ψ(X) as defined in Equation 3, using
P̂ (X, y) instead of P (X, y).

3. To complete the definition of function ψ, apply some
learning algorithm on the partially defined function ψ.

Step 2 above determines the classification of the patterns
present in the images of the training set. In this sense, we
may think that after step 2 is accomplished, we have a par-
tially defined function ψ. In step 3, two additional issues
must be addressed: (1) how to completely define ψ, and
(2) how to represent function ψ. These issues are automat-
ically addressed by most of the learning algorithms. Exam-
ples of such algorithms are decision trees, Boolean function
minimization, artificial neural networks, etc. All these al-
gorithms generate an implicit representation of a function
(classifier) and are able to classify any pattern in P(W).

A serious issue in classifier design is the curse of di-
mensionality [4]. In the context of image operator design
it means that the use of large window does not necessar-
ily yield a good result. It has been observed that, for a
fixed training data set, if operators for increasing size win-
dows are trained, the MAE tends to initially decrease, then
reaches a minimum point, and then starts to increase as the
window gets larger and larger. The error of operators with
small window is due to their inability to discriminate shapes
larger than the dimension of the window, and the error of
operators with larger windows is due to the statistical im-
precision (the amount of data is not enough to obtain a good
estimate of the joint probabilities).

To overcome this problem, a number of approaches have
been proposed. Among them, some rely on the representa-
tion of functions as composition of other functions depend-
ing on a smaller number of variables [6, 3].

3. Stacked Generalization

In classifier design, a set of training examples is used
to learn a classifier. Generalization is the ability of a classi-
fier to correctly classify unseen examples. The term stacked
generalization was introduced by Wolpert in 1992 [7] and is
related to the problem of how to deal with multiple classi-
fiers. Stacked generalization refers to any learning schema
that consists of multiple levels of training. Level zero clas-
sifiers are those that depend solely on input data while clas-
sifiers at other levels may use the output of lower levels as
the input.

In this paper we consider stacked generalization re-
stricted to binary classifiers of the form f : {0, 1}n →
{0, 1}. The basic idea behind stacked generalization
is the following. Suppose we have a set of classifiers
f1, f2, . . . , fp trained over a training set A. If these
are asked to guess the output corresponding to an ex-
ample x in another set B, their guess will be f1(x),
f2(x), ..., and fp(x) respectively. Since none of them
was trained on B, it may be possible that none of them
makes the correct guess y. However, a new information
becomes available: we know that when the guesses of
f1, f2, . . . , fp for x are respectively f1(x), f2(x), ..., and
fp(x), the correct guess is y. Therefore, the elements
of the type

(
(f1(x), f2(x), . . . , fp(x)), y

)
can be used to

train a new classifier f that incorporates information from
f1, f2, . . . , fp.

The classifiers f1, f2, . . . , fp are called level-0 classifiers
and f is called a level-1 classifier. The number of levels can
be increased by combining classifiers of lower levels. This
training schema is denominated stacked generalization. It
is also referred to as multi-stage classification. Notice that
several variants of these schema are possible. For instance,
the level 0 classifiers can be classifiers trained with differ-
ent learning algorithms, or with training sets of different
sizes, or with fewer than n inputs and so on. Analogously,
classifiers at any other level may have as the input not only
classifiers of the level immediately below it but from any
of the levels below it, including some of the n initial in-
puts. Moreover, zero and intermediary level classifiers may
assign examples to meta-classes. Only the final level classi-
fier need to assign a valid class to the examples.

3.1. Stacked Generalization in Binary Image Oper-
ator Design

Stacked generalization can be used as a way to overcome
window size problem in the image operator design. Instead
designing one function ψ(x1, x2, . . . , xn) with respect to a
large window W of size n, one can split W into smaller sub-
windows and design functions with respect to these smaller
sub-windows. These functions would form the level-0 clas-

sifiers. Another function would be used to combine these
functions, forming the level-1 classifier.

This paper considers only two-level stacked generaliza-
tion schemas. Let (S, I) be a pair of training images.
Training examples are the patterns observed on S through
a window W . If X is a pattern located at position z in
S, then the value y of I at position z is the target class.
The simplest stacked schema is to consider p sub-windows
W1, W2, . . . , Wp ⊆ W with W1 ∪ W2 ∪ · · · ∪ Wp = W
and p respective level zero classifiers to be denoted ψ0

1 , ψ0
2 ,

. . ., ψ0
p, and one level 1 classifier that integrates the results

of these p level zero classifiers. If we denote the level 1
classifier as ψ1, we have

ψ1 = ψ1
1,2,...,p

(
ψ0

1 , ψ
0
2 , . . . , ψ0

p

)
(4)

where ψ1 is a mapping from P(W) to {0, 1}, ψ0
i is a map-

ping from P(Wi) to {0, 1} (i = 1, 2, . . . , p), and ψ1
1,2,...,p

is a mapping from {0, 1}p, to {0, 1}. To keep notation con-
sistent, we denote the operator designed on W as ψ0.

We may have all level zero classifiers targeting the same
output y as well as distinct relative locations in the output
image. If they target distinct locations in the output image,
then those locations can be thought as defining another win-
dow W ′ with p points. Each level zero function ψ0

i would
estimate an output yi assigned to a point in W ′. Level 1
function would be of type ψ : P(W ′) → {0, 1}. An exam-
ple of this schema, with three level zero classifiers targeting
distinct locations in the output image, is illustrated in Fig. 1.
Notice that sub-windows may or not overlap.

W W1 W2 W3

ψ0

ψ0
1 ψ0

2
ψ0

3

ψ1

Figure 1. Two-level stacked generalization
schema.

In the iterative design technique [3], pairs of training
images (S, I) are used to design the first stage operator
Ψ1, pairs of the type (Ψ1(S), I) are used to train the sec-
ond stage operator Ψ2, and successively so that pairs of

the type (Ψk−1(. . . (Ψ1(Ψ0(S))) . . .), I) are used to train
the k-th stage operator Ψk. The proposed schema in-
cludes iterative design as a particular case. In the two level
schema, two-stage iterative design corresponds to consid-
ering a same ψ0

i for all i = 1, 2, . . . , p. It is noteworthy
to mention that the proposed schema relates to the mul-
tilevel decomposition of Boolean functions. In particular,
Curtis/Ashenhurst [5] decomposition deals with a particular
case where sub-windows do not overlap. Also, by consider-
ing adequate sub-samplings of the large window, it is possi-
ble to have operators dealing with multi-resolution data.

4. Experimental Results

This section reports some experimental results of the ap-
plication of stacked generalization schema in binary image
operator design. Following notations introduced in previous
sections, we denote by ψ0 the operator designed directly on
the entire window, by ψ0

i the level 0 operator designed over
sub-window Wi, and by ψ1 the level 1 operator that inte-
grates information from level 0 operators. Our objective is
to compare ψ1 (the operator designed according to the pro-
posed stacked schema) with ψ0 (the operator designed with-
out stacking). In these experiments, all level zero classifiers
target the same pixel in the output image.

4.1. Texture segmentation

Figure 2. Example of training data for texture
segmentation.

Texture is a key feature in many image analysis pro-
cedures such as surface classification, image retrieval and
satellite or aerial image analysis. Figure 2 shows a pair of

input-output images used to train operators for texture seg-
mentation.

Figure 3 shows the windows used in this experiment.
Crossed window point indicates the relative location of the
target pixel in the output image.

W W1 W2 W3

Figure 3. Windows used in experiment for tex-
ture segmentation.

Figure 4 shows a test image S, the result Ψ0
2(S)

of one of the level 0 operators, the result Ψ1(S) =
Ψ1

1,2,3(Ψ
0
1(S), Ψ0

2(S), Ψ0
3(S)) of level 1 operator, and the

result of the operator Ψ0(S) designed directly on W . As
we can see, Ψ0(S) is better than Ψ0

2(S) but is no better than
Ψ1(S).

(a) test image S

(c) Ψ1(S)

(b) Ψ0
2(S)

(d) Ψ0(S)

Figure 4. Result of experiment for texture seg-
mentation.

Level 0 operators ψ0
1 , ψ

0
2 , and ψ0

3 for windows W1, W2,
and W3, respectively, were trained with images number
1 and 2. Level 1 operator ψ1

1,2,3 was trained with im-
age number 4. An operator ψ0 was trained for window
W = W1 ∪ W2 ∪ W3 with images number 1, 2, and 4.
Table 1 summarizes the result. Stacked schema operator ψ1

outperforms ψ0 both in precision (MAE) and training time.

training Error (#pixels)
Operator window time (m:s) image 3 image 5

ψ0
1 W1 00:36 6792 9277

ψ0
2 W2 00:35 6909 9236

ψ0
3 W3 00:35 6903 9318

ψ1 00:00 5944 6242

ψ0 W 23:21 6727 7276

Table 1. Summary of experiment for texture
segmentation.

4.2. Character recognition

Figure 5. Example of training data for charac-
ter recognition.

Figure 5 shows a pair of images used to design operators
for recognition of character s (lowercase letter s). These
images were obtained by scanning pages of a book written
in Portuguese with resolution of 200dpi and then reducing
their size to the half of the originals.

Experiment 1: Five level 0 operators were trained over
each of the windows shown in Fig. 6, using 3 pairs of train-
ing images. Level 1 operator were trained using 2 additional
pairs of training images. Table 2 shows the details of these
operators.

Figure 6. Windows of Experiment 1 for char-
acter recognition.

training
Operator window time Error (#pixels)

(m:s) im. 1 im. 4 im. 10

ψ0
1 W1 00:13 559 585 672

ψ0
2 W2 00:11 511 536 577

ψ0
3 W3 00:11 437 529 613

ψ0
4 W4 00:09 563 614 673

ψ0
5 W5 00:12 300 320 333

ψ1 00:00 128 156 217

ψ0 W 02:38 202 205 270

Table 2. Summary of Experiment 1 for charac-
ter recognition.

Experiment 2: Experiment 1 were repeated for the win-
dows shown in Fig. 7.

Figure 7. Windows of Experiment 2 for char-
acter recognition.

Figure 8 shows a subregion of a test image and the results
of ψ1 and ψ0.

(a) test image S

(b) ψ1(S)

(c) ψ0(S)

Figure 8. Result of Experiment 2 for character
recognition.

As shown in Table 3, the stacked operator outperforms
the non-stacked one consistently but the difference is small
(visually they are almost imperceptible) and we could say
that in terms of recognition power they are equivalent.
However we should note that the overall training time of
the stacked operator is less than the training time of ψ0.

In experiment 1, the overall training time of the stacked
operator is 56 seconds while the training time of the direct
operator is 2 minutes and 38 seconds. In experiment 2, the
overall training time of the stacked operator is 2 minutes
and 11 seconds while the training time of the direct oper-
ator is 4 minutes and 25 seconds. Moreover, error of ψ0

with 9 × 7 window (Experiment 2) is larger than the error
of ψ0 with 7 × 7 window (Experiment 1). This suggests
that operators designed on larger windows using the same
amount of training data will probably present poorer perfor-
mance. On the other hand, it seems that there is still room
to improve stacked schema operators by, for instance, using
7 × 7 window level 0 operators.

training
Operator window time Error (#pixels)

(m:s) im. 1 im. 4 im. 10

ψ0
1 W1 00:28 356 368 417

ψ0
2 W2 00:28 323 342 399

ψ0
3 W3 00:24 253 284 402

ψ0
4 W4 00:27 364 359 458

ψ0
5 W5 00:24 223 226 319

ψ1 00:00 99 129 162

ψ0 W 04:25 206 216 304

Table 3. Summary of Experiment 2 for charac-
ter recognition.

4.3. Text segmentation

In document processing and analysis, prior to application
of an OCR for character recognition, an important task is to
segment text regions from the document.

Figure 9 shows a 15×15 window and a 5×5 sub-window
within it. Other eight 5 × 5 sub-windows can be defined
within window 15 × 15 by varying the way points are sub-
sampled in each of the 3 × 3 squares.

Figure 9. One of the windows of experiment
for text segmentation.

Nine level 0 operators were trained with respect to the
nine 5 × 5 sub-windows using 1 pair of training images. A
second pair of images was used to train the level 1 opera-
tor ψ1. No operator were trained on the 15 × 15 window
because it would demand a very large training time. We
compare the stacked operator to the operator trained with
respect to a 5 × 5 window with the origin at its center.

Figure 10 shows an example of training image pair used
to design an operator for text segmentation.

Figure 10. Example of training data for text
segmentation.

(a) Stacked generalization approach

(b) 5 × 5 window

Figure 11. Result of experiment for text seg-
mentation.

Figure 11 shows a test image processed by a single 5 ×
5 window operator and processed by the one designed by
the stacked generalization schema and Table 4 compiles the
results obtained with these operators.

training
Operator window time Error (#pixels)

(h:m:s) image 8 image 20

ψ0
1 W1 1:05:47 5475 7578

ψ0
2 W2 1:31:12 5277 8026

ψ0
3 W3 1:11:20 5546 7458

ψ0
4 W4 1:45:30 5695 7499

ψ0
5 W5 1:27:01 5360 7405

ψ0
6 W6 1:22:40 5534 7376

ψ0
7 W7 2:36:02 5075 6850

ψ0
8 W8 1:52:47 5439 7296

ψ0
9 W9 2:11:11 5205 6921

ψ1 0 2153 3863

ψ5×5 5 × 5 1:33:19 6843 7143

Table 4. Summary of experiment for text seg-
mentation.

5. Concluding Remarks

Stacked generalization was proposed as a training
schema to design large window binary image operators. It
includes as particular cases the iterative and the multi-stage
design techniques. It also has the power to deal with images
in a multi-resolution fashion. Experimental results with two
level stacked generalization schema, with level 0 classifiers
designed over sub-windows of the large window, show that
the proposed method consistently outperforms the single
level classifier designed over the large window both in MAE
and in training time. The reasons that explain these results
were not addressed in this paper and they are certainly an
interesting issue to be investigated. Investigations in this di-
rection may profit from some known results in the field of
multiple classifier systems.

Some immediate improvements can be obtained by com-
bining this schema with the iterative design technique. At
each iteration, this schema would be used to obtain a good
classifier with respect to the window considered in the iter-
ation.

The experimental results presented in this paper refer
to the schema in which all classifiers target the same sin-
gle pixel in the output image. Therefore, output is decided
solely on basis of the input data. The application of the
general stacked generalization schema, that allows interme-
diate level functions to target different pixels in the output
image, may be useful to incorporate geometrical informa-

tion of the output image in the design process. We believe
that this would be helpful, for instance in a problem of edge
detection, to correct broken edges.

The proposed approach can be easily extended to gray-
level operator design. A challenging issue to be addressed
in future works is the automatic training of operators based
on this schema, by automatically selecting parameters such
as the window, the number of levels, the number of classi-
fiers in each level and its sub-windows.

Acknowledgements

The author is partially supported by CNPq (Brasil), grant
300238/01-0.

References

[1] J. Barrera, E. R. Dougherty, and N. S. Tomita. Automatic
Programming of Binary Morphological Machines by Design
of Statistically Optimal Operators in the Context of Compu-
tational Learning Theory. Electronic Imaging, 6(1):54–67,
January 1997.

[2] J. Barrera, R. Terada, R. Hirata Jr, and N. S. T. Hirata. Au-
tomatic Programming of Morphological Machines by PAC
Learning. Fundamenta Informaticae, 41(1-2):229–258, Jan-
uary 2000.

[3] N. S. T. Hirata, E. R. Dougherty, and J. Barrera. Iterative
Design of Morphological Binary Image Operators. Optical
Engineering, 39(12):3106–3123, December 2000.

[4] A. K. Jain, R. P. Duin, and J. Mao. Statistical Pattern Recog-
nition: A Review. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(1), January 2000.

[5] J. P. Roth and R. M. Karp. Minimization over boolean graphs.
IBM Journal of Research and Development, 6(2):227–238,
1962.

[6] O. V. Sarca, E. Dougherty, and J. T. Astola. Two-stage Binary
Filters. Electronic Imaging, 8(3):219–232, July 1999.

[7] D. H. Wolpert. Stacked generalization. Neural Networks,
5:241–259, 1992.

