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Abstract 

Maximum entropy (MENT) is a well-known image 
reconstruction algorithm. If only a small amount of 
acquisition data is available, this algorithm converges 
to a noisy and blurry image. We propose an improve-
ment to this algorithm that consists on applying alter-
nately the MENT reconstruction and the robust anisot-
ropic diffusion (RAD). We have tested this idea for the 
reconstruction from full-angle parallel acquisition data, 
but the idea can be applied to any data acquisition 
scenario. The new technique has yielded surprisingly 
clear images with sharp edges even using extremely 
small amount of projection data. 

1. Introduction 
Image reconstruction or tomography is the tech-

nique used to obtain the distribution of a non-directly 
observable medium from the projections. There are 
many tomography reconstruction techniques, for ex-
ample, back-projection [1], Fourier transform [1], 
arithmetic reconstruction [1], maximum entropy 
(MENT) [2], extend-MENT [3], etc. In this paper, we 
are interested in tomography techniques that generate 
good reconstructed images even using small quantify 
of projection data. 

In many practical situations, it is advantageous to 
minimize irradiation, in order to lessen the damage of 
the sample being irradiate or to speed up the data ac-
quisition. The (MENT) algorithm is one of best-
behaving techniques when only few data are available. 
However, even this method is appropriate only to en-
hance images with points-like features [4] We want to 

develop a method that cleary reconstructs images with 
both points-like and regions-based features.  

S. Baillet and L. Garnero [5] have recently pro-
posed a MEG/EEG (Magnetoencephalography / Elec-
troencephalography) tomography technique specially 
designed to enhance small discrete regions of active 
brain-cortex surrounded by regions of near-zero activ-
ity. The prior model used in this Bayesian approach is 
a non-convex potential function defined on the differ-
ence between each pair of neighboring pixel values. 
This potential function is a MRF (Markovian Random 
Field) that leads to a non-convex programming prob-
lem, using a Bayesian MAP (Maximum A Posteriori) 
approach. Baillet et al. have published recently other 
work on the same subject [6]. Furthermore, to deal 
with non-convexity and integer programming issues, 
some form of deterministic or stochastic annealing 
algorithms must be used. Computational costs can be 
very high for these methods. Therefore, this MAP 
approach leads to a very complex optimization task 
[7].  

Anisotropic diffusion is a well-known technique 
used for filtering, edge finding and multi-scale image 
analysis. Recently, Black et al. have described the 
relationship between the anisotropic diffusion and the 
robust statistics, resulting a theoretically sound and 
improved technique named robust anisotropic diffusion 
(RAD) [8]. RAD has shown to be more efficient to 
smooth regions and detect edges than the classic ani-
sotropic diffusion developed by Malik-Perona.  

In this paper, we improve the extended-MENT al-
gorithm using the RAD filtering. We call this new 
technique Reconstruction-Diffusion MENT (RD-



MENT). The main idea of the new algorithm is to 
intercalate, in each iteration step of the MENT, a RAD 
filtering. This idea is quite different from simply post-
filtering an image generated by MENT. The MENT 
algorithm generates very noisy images caused by fluc-
tuations of Lagrangian parameters, where even impor-
tant edges are not clearly reconstructed [3]. In this 
scenario, no post-filtering can improve substantially 
the quality of reconstructed images. However, incorpo-
rating the RAD filtering into the extended-MENT 
algorithm, clear and sharp reconstructed images can be 
obtained, even using few projection data.  

The extended-MENT is a convex functional with 
relation to posteriori output image f [3]. Incorporating 
the RAD priori leads to a more generalize extended-
MENT Bayesian approach. The RAD prior model is 
obtained from descent gradient of Tukey’s biweight 
robust statistic norm, which is a kind of non-Gaussian 
MRF (i.e., this norm is non-convex) [8, 9]. Therefore, 
the non-convexity of this norm must be appropriate to 
model both edges and smooth regions of images. Other 
attraction of the novel approach is that it guarantees to 
converge to a globally unique optimal solution, since it 
is based on the same extended-MENT cost functional 
which is convex and has a unique global minimum [3]. 

We describe our ideas for the image data acquisi-
tion scenario using parallel-beam and complete angle 
(180o). We have implemented and tested the proposed 
technique only for this situation. However, the ideas 
developed in this paper can be applied straightfor-
wardly to any data acquisition circumstances: parallel-
beam or fan-beam, full-angle or limited-angle, with 
missing or complete data. We have tested our algo-
rithm using extremely small amount of projections data 
(i.e., our image reconstruction problem is severely ill-
posed and under-determined). 

2. Extended-MENT algorithm 
Minerbo proposed the MENT algorithm [10] and 

subsequently various authors have proposed different 
improvements. For example, Dusassoy and Abdou [3] 
have introduced the extended-MENT that can process 
a priori information about the image to be recon-
structed. If an approximation f * of the image to be 
reconstructed f is known, this priori knowledge can be 
used to improve the reconstruction. The Lagrangian 
functional below represents the functional cost of the 
extended-MENT, subject to the restrictions of the syn-
thetic phantom projections data:  
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where: 

• e is the Napierian base (2.71828...).  
• hj,n is the intensity of n-th parallel ray of the 

projection j.  
• Λj,n is the Lagrange parameter associated with 

the stripe (j, n). If complete data were available, 
this coefficient would always be one.  

• χj,n is the indicator function of the stripe (j, n). 
This function is 1 inside the region covered by 
the stripe (j, n) and 0 outside.  

• ),(* yxf  is the prior model of the object 
),( yxf  

• When no prior information is available, 
),(* yxf  can be set to e-1. In this case, the ex-

tended-MENT becomes the original Minerbo’s 
MENT.  

Optimization of equation (1), via Frechet derivate, 
allows us to find the solution of the reconstruction 
problem:  
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where Fj,n is the matrix of dual Lagrange parameters 
associated with the stripe (j, n). These parameters are 
obtained by the following iterative system: 
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where z is the whole width of the projection j. After 
computing )(

,
i
njF , they must to be inserted in (2) to find 

the reconstructed image ),()( yxf i .  

The sensitivity of this algorithm, as is defined in 
[3], is proportional to the images values ),( yxf . Prac-
tically, this means that larger values of f will vary more 
than small ones when parameter Fj,n changes slightly. 
Thus, it is expected that the reconstructed images will 
contain more noise in the higher density sections. Con-
sequently, the noise will not be of the additive Gaus-



sian kind. This is an important characteristic of the 
MENT solution that will be reflected in the recon-
structed images. 

3. Robust anisotropic diffusion 
Black et al. [8] have proposed the robust anisot-

ropic diffusion (RAD). It assumes that the input is a 
piecewise smooth image corrupted by zero-mean addi-
tive Gaussian noise with small standard deviation. The 
goal is to estimate the original image from the noisy 
data. Black et al. have used the robust statistics to solve 
this problem. They compute an image I that satisfies 
the following optimization criterion: 
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where sI  is the value of image I at pixel s, ηs is the 
spatial neighborhood of pixel s, )(⋅ρ  is a robust error 
norm and σ is a scale parameter that must be adjusted 
to filter noise and preserve edges. Black et al. solved 
equation (4) by gradient descent:  
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where xxxg )()( ρ′= , the constant +ℜ∈λ  is a scalar-

that determines the rate of diffusion, and )(
,
t
psI∇  repre-

sents the gradient at pixel s in relation to the neighbor 
pixel p.  

Black et al. have chosen Tukey’s biweight as the 
error norm and it has shown to be an excellent edge 
detector (better than Perona-Malik’s classic edge de-
tector [11]):  
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Let us suppose that the image I consists of regions 
with smooth gray-scale variation. Intuitively, RAD 
performs intra-region neighborhood averaging and 
avoids performing inter-region averaging. So, this 
process attenuates noise while keeping sharp inter-
region edges.  

Theoretically, the gradient descent process can con-
verge to a local minimum because the )(⋅ρ  norm is 
non-convex. However, in practice, RAD has shown to 
yield excellent solutions. Moreover, it seems that simi-
lar processes using convex norms converge to a trivial 
constant grayscale images (that is completely useless 
in practice). 

4. The proposed algorithm: RD-MENT 
Let us suppose that the image f to be reconstructed 

is piecewise smooth. As we remarked before, in 
scarce-data condition, the extended-MENT algorithm 
will reconstruct a noisy image contaminated with arti-
facts. RAD is an excellent estimator of the original 
image f from its corrupted version. However, using it 
as a post-filtering process, only a slight enhancement 
can be obtained. Our idea is to use this slightly en-
hanced image as a priori knowledge f* of the extended-
MENT algorithm. This will yield better-reconstructed 
image. This improved image can be further enhanced 
by the RAD and used as new a priori knowledge of the 
extended-MENT. And so on.  

Initially, we apply the extended-MENT algorithm, 
iterating equation (3) ζ times. Using (2), the recon-
structed image )(ζf  is obtained. This image is filtered 
by RAD, iterating (5) one or more times. The filtered 
image is used as a priori image f* in extended-MENT 
(3) to obtain a new reconstructed image. This image is 
filtered again by RAD, and so on, until the difference 
between the two consecutive images are below some 
threshold. 

5. Experimental results 
To show the effectiveness of the proposed tech-

nique, we executed some experiments. The simulated 
test object is a cylinder with diameter 100 and density 
5, immersed in background medium with density 0 
(figure 1a). This cylinder contains five inner off-
centered cylinders with varied diameters and densities. 
Experiments consisted on reconstructing 100×100 
images from only 6 parallel projections distributed 
over complete angle (180o), each projection with 100 
irradiated rays.  

Image 1b was obtained by the original extended-
MENT, iterating equation (3) 10 times. This image was 
filtered by RAD (σ=32, 100 iterations), generating 
image 1c. It was used as the initial estimate of the RD-
MENT. Reconstruction-diffusion (that is, one execu-
tion of (3) followed by one execution of (5)) was iter-
ated 9 times (with σ=32), generating image 1d. 
Clearly, the new algorithm generates a better image. 
The mean absolute differences between the ideal image 
1a and images 1b, 1c, 1d are respectively 12.7%, 
12.8%, and 7.5%. 

Let us define the reconstructed projections )(
,
i
njh , 

computed from the reconstructed image at i-th iteration 
)(if , as: 
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Let us define the Euclidean norm )(ik  between the 
original projections njh ,  and the projections computed 

from reconstructed image )(
,
i
njh  as: 
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Figure 2 shows Euclidean norms )(ik  of different 
iteration phases of the reconstruction. The first 10 
iterations correspond to the original extended-MENT 
and the last 9 iterations to the proposed RD-MENT. 
Clearly, the Euclidean norm converges faster using the 
proposed algorithm. The scale parameter σ=32 was 
chosen to maximize convergence of the Euclidean 
norm. After the iteration 12, this norm becomes almost 
constant. This seems to show that RD-MENT solution 
minimizes the Euclidean norm. 

Another artificially generated phantom is depicted 
in figure 3a. Six parallel projections distributed over 
180o with 100 rays per projection (600 total rays) were 
irradiated. The original extended-MENT was executed 
over these data, generating image 3b. Image 3b was 
filtered by RAD (σ=50 and 70 iterations), generating 
image 3c. Clearly, post-filtering cannot generate a clear 
reconstructed image. Image 3c was used as the initial 
estimate of the image to-be-reconstructed by the RD-
MENT. This algorithm was iterated 70 times using 
scale parameter σ=50, generating image 3d. Clearly, 
the proposed algorithm generates the best image. All 
images have resolution 100×100 pixels. The mean 
absolute differences between the ideal image 3a and 
images 3b, 3c and 3d are respectively 14.89%, 15.22% 
and 8.15%. Using the well-known filtered back-
projection, the poor-quality image 3e was obtained. 
This poor result was caused by under-sampling of 
acquisition data. In this scenario, filtered back-
projection yield artifacts on the output image since 
sampling frequencies are below the Nyquist frequency 
[1] (see figure 3e). 
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Fig. 1: (a) Synthetic phantom; (b) original extended-
MENT; (c) image 1b filtered by RAD; (d) the pro-
posed RD-MENT. 
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Fig. 2: Euclidean norm k(i) of the differences between 
the original projections and the projections computed 
from reconstructed images at i-th iteration. The first 10 
iterations correspond to the original extended-MENT 
and the last 9 iterations to the proposed RD-MENT. 
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Fig. 3: (a) Synthetic phantom; (b) original extended-
MENT; (c) image 3b filtered by RAD; (d) the pro-
posed RD-MENT; (e) image reconstructed by the fil-
tered back-projection. 
 
 
6. Conclusion  

In this paper, we have proposed an improvement to 
the classic extended-MENT reconstruction algorithm, 
named RD-MENT. The new technique is based on the 
robust anisotropic diffusion (RAD). The RAD filtering 
is incorporated into the extended-MENT algorithm. 
The new algorithm generated clear and sharp recon-
structed images, even using very small amount of pro-
jection data. Experimental data demonstrate the effec-
tiveness of the proposed technique.  
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