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Abstract 
 

Despite the efficacy of minutia-based fingerprint 

matching techniques for good-quality images captured 

by optical sensors, minutia-based techniques do not 

often perform so well on poor-quality images or 

fingerprint images captured by small solid-state 

sensors. Solid-state fingerprint sensors are being 

increasingly deployed in a wide range of applications 

for user authentication purposes. Therefore, it is 

necessary to develop new fingerprint-matching 

techniques that utilize other features to deal with 

fingerprint images captured by solid-state sensors. 

This paper presents a new fingerprint matching 

technique based on fingerprint ridge features. This 

technique was assessed on the MSU-VERIDICOM 

database, which consists of fingerprint impressions 

obtained from 160 users (4 impressions per finger) 

using a solid-state sensor. The combination of ridge-

based matching scores computed by the proposed 

ridge-based technique with minutia-based matching 

scores leads to a reduction of the false non-match rate 

by approximately 1.7%  at a false match rate of 0.1%. 

       

 

1. Introduction 
 

Recognition of persons by means of biometric 

characteristics is an emerging technology in our 

society. Among the possible biometric traits like face, 

iris, speech, and hand geometry, fingerprint is the most 

widely used trait, because of its distinctiveness and 

persistence over time [1]. 

Fingerprint is a reproduction of the fingertip 

epidermis, produced when the finger is pressed against 

a smooth surface. The most evident structural 

characteristic of a fingerprint is a pattern of interleaved 

ridges and valleys [1]. Ridges vary in width from 100 

µm, for thin ridges, to 300 µm for thick ridges. 

Generally, the period of a ridge/valley cycle is about 

500 µm [2]. Ridges and valleys often run in parallel, 

and sometimes they can suddenly come to an end 

(termination), or can divide into two ridges 

(bifurcation). Ridge terminations and bifurcations are 

considered minutiae (small details). There are other 

types of minutiae in a fingerprint, but the most often 

used are terminations and bifurcations [1].     

Fingerprint recognition is a complex pattern 

recognition problem. Designing algorithms capable of 

extracting salient features and matching them in a 

robust way is quite hard, especially for poor quality 

images. Despite substantial progress over the last 20 

years, fingerprint recognition is still a challenging and 

important pattern recognition problem [1]. Most 

fingerprint matching systems are based on matching 

minutia points between the query and the template 

fingerprint images.  The matching of two minutiae sets 

is usually posed as a point pattern matching problem 

and the similarity between them is proportional to the 

number of matching minutia pairs [1,3]. 

Although the minutiae pattern of each finger is quite 

unique, noise and distortion during the acquisition of 

the fingerprint and errors in the minutia extraction 

process result in a number of missing and spurious 

minutiae. Another problem is that the rotation and 

displacement of the finger placed on the sensor, can 

lead to different images of the same fingerprint to have 

only a partial overlap area resulting in only a small 

number of corresponding minutiae points.  

Compact solid-state fingerprint sensors are being 

increasingly incorporated into keyboards and cellular 

phones for a wide range of civilian and commercial 

applications where user-authentication is required [4]. 

The advent of solid-state fingerprint sensors presents a 

challenge to traditional minutiae-based fingerprint 

matching. The problems with minutiae extraction can 

be more severe if the fingerprint is acquired using a 

compact solid-state sensor. Solid-state sensors provide 

only a small contact area for the fingertip and, 



therefore, capture only a limited portion of the 

fingerprint pattern [4].  

Given that it is difficult to reliably obtain the 

minutia points from poor quality fingerprint images or 

from the small sensor images, other features like ridge 

orientation and ridge shape should be used for 

fingerprint matching. Matchers based on the orientation 

and shape features can also be used to complement the 

minutia-based techniques. Recently, the use of hybrid 

fingerprint matchers by using more than one approach 

has been proposed. Ross et al. [5] have suggested the 

use of both minutiae and texture information to 

represent and match fingerprints. Nandakumar and Jain 

[6] also have suggested the use of both minutiae and 

ridge information, but in their approach the query 

image is aligned to match the template image using 

only the ridges associated with the minutiae.  

In this paper, we present a ridge-based technique for 

fingerprint matching. This technique extracts the major 

straight lines that match the fingerprint ridges and uses 

these lines to estimate the rotation and translation 

parameters necessary to register the query and the 

template fingerprint images. After the registration, the 

matching score is computed based on the ridge 

alignment. The proposed technique has been tested on 

the MSU-VERIDICOM database, which consists of 

fingerprint impressions obtained from 160 users (4 

impressions per finger) using the Veridicom solid-state 

sensor. The combination of ridge-based matching 

scores computed by the proposed ridge-based 

technique with minutia-based matching scores resulted 

in an improvement in the overall matching 

performance. 

The rest of this paper is organized as follows. In 

Section 2, we described our ridge-based fingerprint 

matching technique. In Section 3, the matching 

performance of the proposed ridge-based fingerprint 

matching technique is compared with a minutia-based 

matcher. We also show that combining these two 

matchers can lead to better performance than the 

individual matchers. Finally, conclusions are presented 

and future research directions are pointed in Section 4.  

 

 

2. Ridge-Based Fingerprint Matching 
   

The proposed ridge-based technique for fingerprint 

matching consists of the following steps: 

• The gray-scale query fingerprint image is pre-

processed and converted into a thinned image 

where the fingerprint ridges are detected and 

represented by a single pixel-width;  

• The ridges of the query and the template 

fingerprints are detected and stored in two lists 

of ridges, Rq and Rt, respectively; 

• In order to detect only the straight lines which 

better match each ridge, the Hough transform is 

applied on each ridge separately; 

• A threshold is used to detect the peaks of the 

Hough space for each ridge. The Hough space 

peaks of the query and template fingerprint are 

stored in two sets of peaks, Sq and St, 

respectively; 

• The straight lines (Hough space peaks) detected 

from each ridge are used to classify it into one 

of five categories. The ridge category number is 

proportional to the ridge curvature (category 1 

is for almost straight ridges, and category 5 is 

for almost circular ridges).  

• Each element of the sets Sq and St is 

characterized by a triplet (θi, ρi, vi), where θi is 

the orientation of the perpendicular to the i-th 

straight line, ρi is the distance of the i-th 

straight line to the origin, and vi is the value of 

the peak pi (the number of collinear ridge pixels 

that lie on that straight line); 

• The query fingerprint is aligned to the template 

fingerprint using the rotation and translation 

parameters estimated from their Hough space 

peak sets;    

• Finally, a matching score is computed for the 

alignment using a matrix of ridge alignments. 

 

Figure 1 shows a diagram with the major steps of 

the proposed ridge-based matching technique.  

    

 

2.1 Ridge Extraction 
 

The first step in our ridge-based fingerprint 

matching is the extraction of the fingerprint ridges. 

This stage is crucial, since the success of all the 

subsequent steps depends on the correct ridge detection 

and extraction. The ridge extraction algorithm 

proposed by Jain et al. [3] has been used in our 

experiments. 

 The first stage of ridge extraction technique is the 

estimation of the orientation field of the fingerprint 

image. This is followed by the segmentation of the 

fingerprint area from the background. Next, the ridges 

are extracted from the input image by applying two 

masks that adaptively capture the maximum gray level 

values along the direction perpendicular to the ridge 

orientation. Then, several heuristics are applied to 



remove holes and speckles in the binary ridge map. 

Finally, the extracted ridges are thinned.   

 

 

 

 
 

Figure 1. Major steps of the ridge-based matching 
technique. (a) Fingerprint ridges are detected and 
thinned; (b) Most significant Hough space peaks 
are detected; (c) The rotation and translation 
parameters for fingerprint registration are 
estimated from the two sets of peaks; (d) A 
correlation score is computed for the alignment. 
 

2.2 Straight Line Extraction 
 

The second step in our matcher is the extraction of 

the straight lines that approximate the fingerprint 

ridges. This is carried out by using the Hough 

transform [7]. Hough transform is a method for 

detecting curves in images, and in particular, can be 

used for straight-line detection.  

Hough transform algorithm requires an accumulator 

array whose dimension corresponds to the number of 

parameters of the curve being detected. In the case of 

straight lines, since the equation y=ax+b has 

unbounded parameters, the equation ρ=xcosθ+ysinθ is 

generally used (where ρ is the perpendicular distance 

from the origin to the straight line and θ is the angle 

made by the perpendicular with the x-axis). So, for the 

straight-line detection, it is necessary to use a two-

dimensional accumulator array. The accumulator array 

accumulates evidence for the existence of the straight 

line ρ=xcosθ+ysinθ in a bin HS(R,T), where R and T 

are the quantized values of ρ and θ, respectively. 

Using the accumulator array HS, the Hough 

procedure examines each pixel of a given ridge and 

increments the accumulator bins corresponding to all 

possible straight lines that pass through that pixel. After 

all the pixels of the given ridge have been processed, 

the accumulator array is searched for peaks. The peaks 

indicate the parameters of the most likely straight lines 

that match that ridge in the image. Since the ridges of a 

fingerprint run in parallel, in only a few directions, we 

expect many peaks only in a few columns of the HS. 

Figure 2 shows an example of straight-line detection 

from a given fingerprint ridge. In this example, the 

given ridge is classified as category five, since the 

orientations of the straight lines that match it are spread 

in the range (0
o
, 180

o
). 

 

 

2.3 Fingerprint Registration 
 

The third step in our algorithm is the alignment of 

the query fingerprint image with the template 

fingerprint image. The rigid transformation parameters 

(rotation, translation, and scale) are estimated by using 

the generalized Hough transform proposed by Ratha et 

al. [8], which is adapted to take into account the Hough 

space peaks obtained in the previous step. 
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( b ) 

( c ) 

( d ) 



 
 
 

Figure 3. (a) Fingerprint image; (b) Thinned 
ridges detected   from   the   fingerprint   image; 
(c) Straight lines detected from a given 
(highlighted) fingerprint ridge by using the Hough 
transform. 
 

 

 

 

From the two Hough space peak sets, Sq and St, the 

rotation parameter can be easily estimated by using a 1-

D parameter space, R. For each pair of peaks (qi,ti), 

where qi ∈ Sq and ti ∈ St, the bin R(θti-θqi) is 

incremented.  

Estimating the translation parameter is more time 

consuming and it requires a 2-D parameter space, TR. 

Every pair of peaks from the set Sq, with different 

orientations and detected from the same ridge, is 

rotated by a rotation parameter estimated in the 

previous step. Then, the intersection point, pq, of the 

two straight lines corresponding to these peaks is 

computed, and for every pair of peaks from the set St, 

with different orientations and detected from the same 

ridge, the intersection point, pt, of the two straight lines 

corresponding to these peaks are also computed. The 

bin TR(pty-pqy,ptx-pqx) is then incremented by a 

weighted value based on the maximum straight line 

lengths used to find the intersection points pq and pt.  

The parameter spaces R and TR accumulate 

evidences for the most likely rotation and translation 

parameters, respectively. For a rigid transformation, the 

coordinates of the maximum peak of R and TR are the 

most probable values for the rotation and translation 

parameters. In practice, as the fingerprint 

transformation is not rigid, a thresholding technique is 

used. This means that apart from the maximum peaks, 

all the parameter values whose evidence are greater 

than a given threshold value are considered as possible 

alignment parameters.   

Since all the fingerprint images in our database were 

obtained using the same sensor, the scale factor of the 

transformation was set to 1. Figure 4 shows some 

examples of genuine fingerprint alignment obtained by 

using the described approach. 

 

 

2.4 Fingerprint Matching 
 

For each triplet of rotation and translation 

parameters (∆θ, ∆x, ∆y) estimated in the previous stage, 

the query image is aligned to the template image and a 

matching score is calculated. The final matching score 

is the maximum score obtained for all triplets of 

transformation parameters.   

In our technique, the matching score between two 

aligned fingerprint images is proportional to the 

number of matching ridges. In order to determine this 

number, a matrix of ridge alignments, Cm,n, is 

calculated, where m and n are the number of ridges 

detected in the query and template fingerprints, 

respectively.  

 

( a ) 

( b ) 

( c ) 



 
 

 

 

Figure 4. Examples of genuine fingerprint 
alignment   using   the  ridge-based   technique. 
(a) Query fingerprint image; (b) Template 
fingerprint image; (c) Alignment obtained.   

 

 

The (i,j)-th element of matrix C indicates how many 

pixels of the i-th ridge of the query fingerprint coincide 

with pixels of the j-th ridge of the template fingerprint 

after their alignment.  

C is not symmetric, since the number of pixels from 

ridge i that align pixels from ridge j can be different 

from the number of pixels from ridge j that align pixels 

from ridge i.  

If the query and template images are exactly the 

same, C is a diagonal matrix, where the k-th diagonal 

element is the exact number of pixels of the k-th 

fingerprint ridge.  

For genuine matching, it is expected that C has high-

valued elements located near the main diagonal. On the 

other hand, for impostor matching, it is expected that C 

has low-valued elements spread over of matrix.   

Figures 5 and 6 show examples of matrices of ridge 

alignments obtained from genuine and impostor 

matching fingerprint pairs, respectively. 

The fingerprint matching score s is calculated from 

the ridge alignment matrix C, according to the 

equation:  

                          s=
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where n1 and n2 are the numbers of ridges of the query 

and template fingerprints, respectively, and a and b are 

given by: 
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where nopq iR )( is the number of pixels of the i-th 

ridge of query fingerprint, and nopt iR )( is the number 

of pixels of the i-th ridge of the template fingerprint. 

 Only the ridges of one fingerprint image that 

intercept at least one ridge of the other fingerprint 

image are considered in the computation of a and b. 

In order to penalize ridge crossings, which are very 

frequent in impostor alignments, the rows and columns 

of C that have more than n non-zero values are all 

discarded during the calculation of the score s. On the 

other hand, in order to emphasize the genuine 

alignments, the C(i,j) values corresponding to ridges i  

and j of the same category are increased. The 

increasing amount is proportional to the ridges 

category number. 

 

 

3. Experimental Results 
 

The matching performance of the proposed ridge-

based technique is evaluated on the MSU-

VERIDICOM fingerprint database. This database 

consists of fingerprint impressions of 160 users 

obtained using a Veridicom solid-state sensor. Each 

( a ) ( b ) ( c ) 



user provided four impressions of each of the four 

fingers: the left index, the left middle, the right index, 

and the right middle. The results reported in this paper 

are based only on the four impressions of the right 

index finger. 

 

 

 
 

Figure 5. Matrix of ridge alignments obtained from 
a genuine fingerprint pair. The matrix has mostly 
high-valued peaks spread along the diagonal.   

 

 

 

 
 

 

Figure 6. Matrix of ridge alignments obtained from 
an impostor fingerprint pair. The matrix has mostly 
low-valued peaks spread over the matrix.   

 

 

The fingerprint verification performance of the 

ridge-based matcher was compared with the 

performance of the 2D dynamic programming based 

minutiae matcher proposed by Jain et al. [9]. The 

performance of a hybrid matcher obtained by 

combining the two minutiae and ridge-based matchers 

by using the max rule and the min-max normalization 

[10] is also presented.  

Table 1 shows the equal error rates (EER), and the 

genuine accept rates (GAR) at two different values 

(0.1% and 1%) of false-accept rates (FAR), obtained 

by the three matchers. Figure 7 shows the Receiver 

Operating Characteristic (ROC) curves for the three 

matchers. 

As can be observed in Table 1 and Figure 7, the best 

matcher is the hybrid matcher, which has a GAR of 

93.38% at a 0.1% FAR. While the minutiae-based 

approach has a GAR of 91.69% at the same value of 

FAR, the ridge-based approach obtained a 

corresponding GAR of only 66.87%.   

Figure 7 also shows that the ridge-based matcher 

gave the worst performance. This was not a surprise, 

since the higher distinctiveness of the minutiae 

compared with the ridges is well known. Despite the 

success of the ridge-based approach for genuine 

fingerprint alignment (as can be observed in Figure 4), 

for a considerable number of impostor fingerprint 

alignments, the matching scores obtained with the 

ridge-based matcher are quite high, leading to a low 

performance. Figure 8 shows some examples of 

impostor fingerprint alignments obtained with the 

ridge-based approach that had high matching scores.  

On the other hand, the ridge-based matcher correctly 

accepted some genuine fingerprint pairs rejected by the 

minutia-based matcher. Figure 9 shows an example of a 

genuine fingerprint pair rejected by the minutia-based 

matcher and accepted by the ridge-based matcher. The 

minutia-based matcher failed in this case because there 

are very few corresponding minutia in the query and 

template fingerprint and this leads to a low matching 

score. 

In summary, despite the lower distinctive power of 

the ridges, ridge features combined with minutia 

features can lead to more accurate fingerprint matchers, 

especially when the images are of poor-quality, or have 

very few overlapping minutiae, as in the case of images 

captured by small solid-state sensors.   

 

 

 

 

 



Table 1. Error rates of the three fingerprint 
matchers. 

Matcher EER GAR (at 

0.1% 

FAR) 

GAR 

(at 1% 

FAR) 

Minutia-based 3.53% 91.69 % 95.49 % 

Ridge-based 8.25% 66.87 % 79.68 % 

Hybrid 

(Minutiae-Ridge) 

3.03% 93.38 % 96.08 % 

 

 

 
Figure 7. Receiver Operating Characteristic 
curves for the three fingerprint matchers. 
 
 
 

 
 
Figure 8. Examples of three impostor fingerprint 
alignments that resulted in high scores with the 
ridge-based approach. 

 
 

 

 

 

Figure 9. (a) A genuine fingerprint match rejected 
by the minutia-based matcher and correctly  
accepted by the ridge-based matcher; (b) Minutia 
points detected; (c) Alignment obtained by the 
ridge-based technique. 
 

 

4. Conclusions and Future Work 
 

We have presented a fingerprint matching technique 

that uses ridge features to align and match fingerprints. 

Straight lines that approximate each fingerprint ridge 

are separately extracted using the Hough transform. All 

detected Hough space peaks are then used to estimate 

the rigid transformation parameters between the query 

and the template fingerprint images. After the 

alignment, a matching score is computed from a matrix 

of ridge alignments. 

 ( a ) 

 ( b ) 

 ( c ) 



Despite the good performance of the proposed 

technique for genuine fingerprint alignments, it also 

gives high matching scores for a number of impostor 

pairs, leading to a lower performance compared with 

the minutia-based approach. On the other hand, some 

genuine fingerprint pairs, which were rejected by the 

minutia-based matcher, are correctly aligned and 

accepted by the ridge-based matcher. 

 These results allow us to conclude that combining 

additional features like the ridge features with minutiae 

is a promising approach to decrease the error rates of 

fingerprint matchers, particularly for images of poor 

quality or images captured by small solid-state sensors. 

In order to increase the genuine fingerprint 

alignment scores and decrease the false fingerprint 

alignment scores, we are investigating the use of inter-

ridge  distance in our matching algorithm. Regarding 

the processing time, the current algorithm takes around 

8 seconds to provide a matching score. We are also 

working on the development of a faster matching 

algorithm. 

 

  

Acknowledgements 
 

Aparecido Nilceu Marana would like to thank 

Fapesp (proc. 04/00551-8) and Capes (proc. BEX 

0126-04-7) for the financial support.  

The authors would like to thank Karthik 

Nandakumar, Yi Chen, Dirk Colbry, and Francesc J. 

Ferri, for their valuable suggestions and comments. 

 

 

References 
 
[1] Maltoni, D., D. Maio, A. K. Jain, and S. Prabhakar, 

Handbook of Fingerprint Recognition, Springer-Verlag, New 

York, 2003. 

 

[2] Stosz, J. D., and L. A. Alyea, “Automated System for 

Fingerprint Authentication Using Pores and Ridge 

Structure”, Proc. of SPIE (Automatic Systems for the 

Identification and Inspection of Human), vol. 2277, 1994, 

pp. 210-223. 

 

[3] Jain, A. K., L. Hong, and R. Bolle, “On-line Fingerprint 

Verification”, IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 19(4), 1997, pp. 302-314. 

 

[4] Jain, A. K., A. Ross, and S. Prabahkar, “Fingerprint 

Matching Using Minutiae and Texture Features”, 

Proceedings of Int. Conference on Image Processing (ICIP), 

Thessaloniki, Greece, Oct 7-10, 2001, pp. 282-285. 

 

[5] Ross, A., A. K. Jain, and J. Reisman, “A Hybrid 

Fingerprint Matcher”, Pattern Recognition, vol. 36(7), 2003, 

pp. 1661-1673. 

 

[6] Nandakumar, K., and A. K. Jain, “Local Correlation-

Based Fingerprint Matching”, Proceedings of the ICVGIP, 

Kolkata, India, December 2004. 

 

[7] Shapiro, L. G., and G. Stockman, Computer Vision, 

Prentice-Hall, New Jersey, 2001. 

 

[8] Ratha, N. K., K. Karu, S. Chen, and A. K. Jain, “A Real-

Time Matching System for Large Fingerprint Database”, 

IEEE Trans. PAMI, 18(8), 1996, pp. 799-813. 

 

[9] Jain, A. K., S. Prabhakar, and S. Chen, “Combining 

Multiple Matchers for a High Security Fingerprint 

Verification System”, Pattern Recognition Letters, 20, No. 

11-13, 1999, pp. 1371-1379. 

 

[10] Snelick, R., M. Indovina, J., J. Yen, and A. Mink, 

“Multimodal Biometrics: Issues in Design and Testing”, 

Proc. of Fifth International Conference on Multimodal 

Interfaces, Vancouver, Canada, November 2003, pp. 68-72. 

1859-1867.  


