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Abstract.

Deformable models are a powerful tool in both computer graphics and computer vision. The de-

scription and implementation of the deformations have to be simultaneously flexible and powerful, otherwise the
technique may not satisfy the requirements of all the distinct applications. In this paper we introduce a new method
for deformable model specification: deformable fields. Deformable fields are conceptually simple, lead to an easy
implementation, and are suitable for adaptive models. We apply our new technique to describe an adaptive de-
formable face, and compare three different adaptation strategies. Additionally, we show how our technique is

suitable to describe different individuals.

1 Introduction

Deformable models are at the heart of many applications in
both computer graphics and computer vision. These models
can represent rigid parts, such as in CAD applications; ar-
ticulated rigid bodies, such as in robots; or soft deformable
surfaces, such as the human face. It is not an easy task to
to represent and manipulate all these different objects in a
unified way.

In computer graphics, the models usually need more than
justrigid transformations to convey realism, whereas in com-
puter vision, model-based techniques use this same model
to reduce the search space of inverse problems, such as
tracking or fitting. A good model for the deformations will
allow better results and more robust implementations.

Concrete 3D models are usually represented by a finite num-
ber of vertices, whose connectivity is organized in a mesh;
that is, a discretization of the surface. This discretization
is critical to the application: too few vertices and the model
approximation will be poor; too many vertices and it will be
computationally too expensive to perform all calculations,
since many algorithms have higher than linear complexity.
Either, the designer needs a good understanding of the prob-
lem beforehand, so as to choose the right model resolution,
or we need a computer algorithm to automate the task.

In this paper we address the question of adapting and de-
forming models simultaneously. First, we introduce the
concept of deformable fields (Section 3). Deformable fields
are a new method to describe deformations that are resolution-
independent. They are conceptually simple, lead to an easy
implementation, and are suitable for adaptive models.

Then we describe how a powerful adaptive mesh library can

be plugged into the deformation description system (Sec-
tion 4), and compare different mesh-refining criteria to a-
chieve levels of detail best suited to the application at hand
(Section 5).

We present the deformation and animation of human faces
as a concrete application of the techniques described in this
paper (Sections 6). We derive a simple set of deformations
and show that they are indeed face independent.

2 Related Work

In order for a computer graphics or computer vision appli-
cation employ deformable models, it needs some type of
geometry and deformation representation [15, 24, 8, 4, 21,
11, 3]. In computer vision, these models have been used for
applications such as tracking, fitting, recognition, and seg-
mentation [15, 6, 2, 18]. Human faces are a particular type
of object that attracts a lot of attention [4, 7, 20, 21, 11].

There exist a significant number of problem domains in
which dynamic meshes are required. Consequently, the lit-
erature in this area is vast. Here we will mention only a
few illustrative examples. [5] employs an inflating balloon
model to reconstruct a surface from volumetric data. The
dynamic mesh is based on refinement by edge bisection.
[16] proposes a multiresolution shape representation based
on geometry smoothing and dynamic meshes. The adapta-
tion uses edge collapses, edge splits and edge flips.

Existing schemes for dynamic meshes are usually based on
operations defined on edges because of their good adapta-
tion properties. Multiresolution representations can be de-
fined through global or local operations on a mesh [10]. In



order to support adaptation, the multiresolution data struc-
ture has to be constructed using local operations. Progres-
sive meshes [14] constitute one example of such data struc-
ture. Another example are the hierarchical 4-K meshes
[22]. In this kind of representation, different meshes can
be dynamically extracted from the data structure. However,
the local operations need to be explicitly stored.

3 Deformations

Rigid models have their fair share of applications, but in
many applications, such as animation and model-based track-
ing, we need models whose shape and attribute can change
over time. Usually, these changes are controlled by a set
of parameters, such that the entire model can be fully de-
scribed by an instance of this, potentially large, parameter
space.

As laser scanners become more affordable, it becomes in-
creasingly easier to obtain detailed 3D rigid models of the
surfaces of interest. Yet, the basic problem remains the
same: how can we deform this surface according to our
needs, such that it will work across different instances of
this same object with minimal user interaction?

First, we need to fit the result of the scan to a “normalized”
mesh, so as to have a basis from which to work. We apply
a PCA based method [4] to accomplish this fit. The result
is a normalized 2D space representing the model’s surface,
called the u, v space, which describes the geometric features
of the face (such as the corners of the eyes) as a function of
u,v.

We now describe a novel method to describe deformations.
It is a cascaded composition of deformation fields applied
over the u,v space. Because this space is normalized, this
method results in resolution and person-independent defor-
mations.

3.1 Computation of model coordinates

In order to visualize, track, or process a model, we need to
calculate the three-dimensional coordinates of each point
Pi, given the value of the deformation parameter §. For ev-
ery point p;, in u;,v; there is a function F; = F,, ,, such that

pi=Fi=F(q,ui,vi) = Fy v, () ey
Conceptually, we represent the F; as a cascade of basic math-
ematical operations, such as adding a vector to a point,
scaled by a parameter [1]. Although simple, this representa-
tion is powerful enough to describe any number of complex
deformations, and also connects well with the concept of
deformation fields, which we describe in the following.

3.2 Deformation Fields

Deformation fields are a resolution-independent way to de-
scribe deformations over the whole model. Such a field de-
scribes how deformations behave with respect to the contin-
uous domain u, v of the model surface. This field can then
be sampled at discrete u,v points, one per model point, to
obtain the F,, that is, the cascade of basic mathematical
operations for the computation of the point’s 3D coordi-
nates.

There are three elements needed to define a deformation
field: the type of deformation itself, a set of vector fields,
and a set of parameters. Additionally, a deformation field
might operate over the results of other deformations fields,
allowing the compositions of results, which corresponds to
the aforementioned cascade of mathematical operations for
a model point.

A vector field V/ is a function V/ : R?2 — R3, defined over
the u, v domain. It is used any time when a deformation field
requires an u, v-dependent vector to represent its mathemat-
ical operation.

3.3 Two Examples of Deformation Fields

Example 1. A geometry image [13] is arigid model, which
can be treated as a special case of a deformation field. We
interpret the geometry image as a discretized description of
a vector field. The constant deformation field takes only
one vector field as a parameter, where its value at u,v pro-
vides us with the 3D position of the corresponding model
point.

Puy = Vgeo‘image(uj V)7 (2)
where Vge0image ig the continuous vector field, obtained from
the the discretized geometry image through interpolation.

Example 2. A description of a PCA face [4] is also eas-
ily accomplished through a cascade of deformation fields.
We describe the mean positions with a constant deforma-
tion field,

Pu(@) =V (1), 3)
where V™" behaves like in the previous example. For
every principal component k, we can define a vector field
VP%, We create a cascade of AddVector deformation fields,
where deformation field k£ will take into account all PCA
components < k. The k™ deformation field takes the k — 1™
deformation field and adds a parameter times a vector field.
We describe this cascade as

Phn(@ = P (@) + qe- VP (u,v), 4)

where ¢y is the parameter responsible for the k™ PCA com-
ponent.



3.4 Deformable Faces with Deformation Fields

A very simple deformable face, yet powerful and useful for
tracking, can be defined as a cascade of a few carefully de-
signed affine transformations; that is, AddVector deforma-
tion fields (Equation 4).

We start with a representation of the face at rest, which is
in no way an easy task, and a fertile area of study in its
own right [19, 8, 4]. First, we define the eyebrow deforma-
tions using a vector field, which is zero-valued outside the
influence area of the eyebrows. The vectors are assigned
monotonically decreasing magnitudes from a maximum at
the eyebrows themselves, to zero at the border (Figure 1,
top center). This deformation can be broken into two sep-
arate ones, if we require asymmetric eyebrow movements
in the face. This deformation simulates the effect of the
frontalis face muscle.

Simple lip movements can be modeled by the use of two
different muscles — the zygomatic major, which pulls the
lips and cheeks in the direction of the temples, and the riso-
rius, which pulls lips and cheeks in the direction of the ears.
Again, each deformation can be split into two for asymmet-
ric movements (Figure 1, top right and bottom left).

Finally, jaw openings can be modeled by a constant open-
ing area (chin), superior and inferior lips (that creates the
elliptic opening of the mouth), and decreasing values until
the border (Figure 1, bottom center).

The cascading of these simple affine transformations, al-
though with fairly complex vector fields, provides us with a
deformable face model that is sufficiently powerful even for
computer vision tracking from a single uncalibrated cam-
era [11, 12]. Our technique and framework allow us to use
representations constructed from captured data [3], to de-
sign deformations by hand [11], and even to use hybrids
approaches.

4 Adaptive Mesh

Recall that the deformable model is a discretization of the
target surface. One of the most common discretization meth-
ods is through a polygonal mesh that decomposes the base
domain and gives a piecewise linear approximation of vari-
ous properties defined over the domain — including the ge-
ometry in case of a parametric surface.

In applications that employ deformable models it is desir-
able to have all the computations structured independently
of a particular surface discretization. We have achieved
one half of this requirement through the use of deformation
fields over the u, v domain described in the previous section.
The other half consists of developing methods to make the

piecewise linear approximation sufficiently accurate for the
purposes of the application.

For this reason, it is desirable to have a mesh library that can
provide the application with a dynamic adaptive discretiza-
tion of the surface based on problem-dependent criteria. In
this way, it is possible to cleanly separate the application
specific computations from the mesh infrastructure mainte-
nance.

In the following we describe a dynamic adaptive mesh li-
brary based on stellar operators that addresses most of the
requirements of applications dealing with deformable mod-
els. This library encapsulates all the functionality for sup-
porting the mesh representation. The implementation is ro-
bust, computationally efficient and economical in terms of
memory usage. The library API is easy to use and provides
the right level of abstraction for the application.

This library has the following features:

e The mesh is based on the half-edge, a standard topo-
logical data structure. Because the half-edge is widely
adopted, there are many applications that can benefit
from this library.

e The mesh has an underlying semi-regular multiresolu-
tion structure. As a result, no additional storage beside
the current state of the mesh is required in the repre-
sentation.

e The mesh dynamically changes its resolution based on
general adaptation criteria specified by the application.
This is implemented through refinement and simplifi-
cation methods that maintain a restricted multiresolu-
tion.

e The library API includes operators for mesh creation,
dynamic mesh adaptation and topological query oper-
ators.

The library is based on results from stellar subdivision the-
ory and the notion of binary multi-triangulation. We now
give an overview of these concepts and describe the imple-
mentation of the library.

4.1 Splitting and Welding

The key to an adaptive mesh representation is an under-
lying multiresolution structure. A multiresolution mesh,
H = (My,My,...,My), is a monotonic sequence of trian-
gulations of a domain U, such that, |M;| < |M;|, for i < j,
where |M| is the number of triangles of a mesh M.

In general, the meshes M; € H are related by operators that
perform refinement or simplification to change the mesh
resolution. It is desirable that these operators affect the



Figure 1: Cascade of deformable fields that generate a simple face.

mesh only locally. This property makes it possible to create
many multiresolution sequences by piecing together inde-
pendent local modifications.

Stellar subdivision theory provides suitable local operators
to modify the resolution of a mesh. The stellar subdivision
operators for two-dimensional triangle meshes are the face
split and its inverse, the face weld; and the edge split and
its inverse, the edge weld.

The main theorem of stellar theory asserts that these oper-
ators can transform between any two equivalent triangula-
tions [17]. Moreover, stellar subdivision operators define
the most localized atomic changes to a triangulation. We
use stellar subdivision operators on edges as the building
blocks for multiresolution meshes.

4.2 Semi-Regular BMTs

The adaptive mesh maintains the multiresolution structure
of a semi-regular binary multi-triangulation. A binary multi-
triangulation (BMT) is a multiresolution structure formed
by applying edge splits to an initial mesh, M, called the
base mesh, and producing a final mesh, M, called the full
mesh. The BMT can be thought of as a directed acyclic

graph DAG describing all possible paths of local changes to
the mesh [22, 9]. In this DAG, arrows are labeled with stel-
lar subdivisions on edges, and the vertices represent sub-
meshes. Any cut in the DAG that separates M from M rep-
resents a valid mesh, called the current mesh.

A regular binary multi-triangulation (RBMT) is a binary
multi-triangulation that satisfies the following conditions:

1. The base triangulation is the union of basic blocks.

2. Edge splits are only applied to interior edges of basic
blocks.

A basic block is a pair of triangles with a common edge,
called the internal edge of the block. The other edges are
called external edges. In an RBMT, when the internal edge
of a basic block is subdivided, new blocks are formed with
the adjacent triangles and some additional edges may need
to be subdivided. In that way, external edges of previous
blocks become internal edges of new blocks. This process
is called interleaved refinement and produces a restricted
quad-tree [23], in which adjacent triangles differ at most by
one resolution level.

The regularity of the RBMT allows us to store only the cur-
rent mesh, yet allows us to refine or simplify the mesh ac-



cording to the multiresolution structure.

5 Adaptive Refinement and Simplification

The mesh adaptation is implemented in the library by en-
forcing a RBMT structure using operators for restricted re-
finement and simplification.

The library assumes that shape information is known to the
application independently of the mesh. More specifically,
the following requirements need to be satisfied:

e There is a base domain in which the surface geometry
and other properties are defined;

e It is possible to take and compute samples of points on
the surface.

The application provides four functions to the library through
a surface object: a procedure to construct a polyhedron that
defines the geometry and topology of the base domain; a
sampling function to evaluate the geometry of the surface
at a vertex of the mesh; and refinement and simplification
tests to determine where the mesh needs further subdivision
or coarsening.

The library API for mesh construction and adaptation is
composed of a mesh constructor, that takes as a parameter
the surface object, and methods for adaptive refinement and
simplification of the mesh. These methods use the adapta-
tion test functions and the sampling function of the surface.

The functionality of the mesh library is sufficient to create
adaptive meshes of dynamic surfaces for our application of
deformable models. In this context, some important spe-
cific aspects are:

e The base mesh incorporates all the important features
of the surface;

o The surface is defined by a parametric function;

e The criteria for mesh adaptation are derived from the
deformations driven by tracking, discussed in the fol-
lowing sections.

5.1 Obtaining the Base Resolution

One of the secrets for this method to work well is a prop-
erly built base resolution mesh. Ideally, the coarsest model
should already have the appropriate topological structure
for the adaptive mesh. Additionally, the model triangles
should have approximately the same surface area, for a vi-
sually pleasant refining process.

We satisfy the first requirement by enforcing compliance
of the base mesh with the topological requirements of the

adaptation scheme. The mesh library provides functionality
to bring the base mesh into the required form through a one-
time application of carefully selected edge splits.

Initial similar-sized triangles, on the other hand, imply a
good balance between minimal detail selection, and the vari-
ance of the edge sizes. So far we have maintained this bal-
ance through manual selection of points in the u,v space,
and triangulation of this space with constraints (with the
help of t riangle!) to find the base connectivity. We then
use the deformation fields themselves to generate the appro-
priate base geometry.

In Figure 2a we show a hand-crafted base model constructed
from coordinates in u,v, and in Figure 2b we show the
model after making it compliant with the RBMT structural
requirements.

5.2 Adapting the Mesh to the Model

Once we have the base model at the coarsest possible reso-
lution, we have to decide by how much to refine the mesh
to obtain a good-looking model. The optimal level of detail
depends on both the facial characteristics of the person, to
whom the mesh is being adapted, and which area of the face
we are looking at. An additional concern is the complexity
of the refined model — as the number of triangles increases,
so does memory consumption, and computational overhead
for the animation of the model. In the following we com-
pare three different refinement strategies.

5.2.1 Unconditional Refinement

This strategy is the simplest one possible: repeatedly re-
fine a model a fixed number of times (three times in the
examples presented in this paper). The advantages are that
this refinement method is very fast, because there are no
time-consuming tests, and that it is guaranteed to yield a
good-looking model with a high level of detail. Offsetting
the advantages, however, is the indiscriminately high num-
ber of vertices and triangles in the resulting model, with all
the complexity disadvantages mentioned earlier.

5.2.2 Normals-Based Refinement

The idea behind this strategy is to obtain a smooth model
by breaking up sharp ridges and valleys, and jagged angles
at the model edges. Ridges and valleys are defined by the
angle between the triangle normals of any two triangles that
share a common edge. If it falls above a threshold, we re-
fine the edge. Similarly, jagged angles at the model edges

1http: //www=2.cs.cmu.edu/~quake/triangle.html
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Figure 2: (a) Original mesh, (b) Mesh in RBMT form, (c) Unconditional refinement to constant depth, (d) Normals-based
refinement, (e) Surface contour error-based refinement. Left to right: Mesh in u-v space, Polygonal mesh, Face with texture
applied.



Figure 3: Different faces under deformations.

occur when the triangle orientations at the endpoints differ
greatly from one another. To compute the difference, we
average the triangle normals of the triangles surrounding
each respective endpoint. If the angle between the averages
falls above a threshold, we refine the edge in question.

This method is computationally inexpensive, and results in
reasonable approximations of the model surface contour.
The number of vertices and triangles in the resulting model
is much lower than with the unconditional refinement strat-
egy. On the other hand, if there are indeed sharp ridges
in the contour, such as around the eyes and the lips, this
method keeps refining unnecessarily without a correspond-
ing increase in the appearance of the model.

5.2.3 Surface Contour Error-Based Refinement
This strategy directly computes the quality of the polygonal

approximation to the true contour of the model. We define
the error of a polygon Poly at a point (u,v) to be:

) 5)

EP{)ly(uv V) = ‘Pu,v - PP{)ly(uv V)

where p,, is the 3D position of the contour, and Pp,;, (1, V)
is the 3D position of the polygon at coordinates (u,v).

Then the total error in the approximation of the surface con-
tour with the polygon is

Epoly = / ePoly(u, V) dudyv. (6)
Poly

The average error is obtained by dividing €p,;, by the area
of the polygon. If it falls above a threshold, we refine this
polygon. In addition, we compute the maximum error

max {pory (1) } ©)

which helps capture peaks and troughs in the model surface
contour, and lets us refine accordingly.

This method yields a visually pleasing refinement of the
model with far fewer vertices and triangles than with either

of the two other methods (Figure 2e), at a higher compu-
tational cost. Evaluating this criterion requires a discrete
approximation of the integral in Equation 6, via sampling
the polygon. For the models shown in Figure 2, this pro-
cess is three times slower than normals-based and uncondi-
tional refinement. Therefore, this criterion is best suitable
for applications where we change the model parameters fre-
quently, and refine the model only infrequently.

6 Case Study: Deformable, Retargetable Faces

We have coupled the library described in Section 4 with
an implementation of the deformation fields in Section 3
and the adaptation strategies in Section 5 to our deformable
model simulation and tracking system [11, 12]. Figure 2
shows that our description with deformation fields is res-
olution-independent. At this level of detail, animation of
the facial parameters can be done in realtime on a Pentium
4 system running at 2.4 GHz. The refinement of the base
mesh takes 0.7 seconds for the unconditional and normals
criteria, and 2.5 seconds for the contour-based criterion.

Because the u, v space is normalized across different human
faces (Section 3), in theory the deformation maps should
apply to any human face that can be represented in this
normalized space. To test this hypothesis, we applied the
deformations to a few of the subjects of the dataset PCA
dataset of [4], seven in total. An example selection of faces
is shown if Figure 3. This figure, as well as the supplemen-
tal movie, show that our method indeed makes retargeting
feasible with minimal effort.

Hence, we have three immediate benefits: we can animate
an arbitrary face, do model-based tracking of an arbitrary
person (after proper fitting), and retarget facial motions.

7 Conclusions and Future Work

In this paper we have described a unified approach for adap-
tive deformable models, with human faces as a case study.
This approach is based on representing the model geometry
in a normalized u,v space, and defining deformations via



deformation maps and vector fields operating on this space.
This method is sufficiently powerful to make the definition
of models and deformations both resolution-independent
and retargetable.

The framework for mesh adaptation described in this paper
is easy to use. The logic for when to refine and simplify
the mesh can be encapsulated in just two functions. We
have shown by way of three different refinement strategies
that it is easy to obtain just the right level of detail for the
application.

Currently, we are in the process of applying these tech-
niques in computer vision, for deformable face tracking.
For that we will need a working set of view-based and tex-
ture-based adaptation criteria. We are also investigating
possible techniques to learn deformations from real data in
an automated manner.
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