Skeletonization of Two-Dimensional Shapes via Fast Numerical Calculation of
Vector Fields

Murillo R. P. Homem®; Luciano daF. Costal; Nelson D. A. Mascarenhas’
! Ingtituto de Fisica ce SdoCarlos, Universidade de SdoPaulo, USP - Av. Trabadhada S&oCarlense,
400, CEP:13.560-970, SaoCarlos, SP, Brazl
{murill o, luciano}@if.sc.usp.br
2 Departamento de Computaéio, Universidade Fedral de Sdo @rlos, UFSGar - Via Washington
Luis, Km 235 CP 676, CEP: 13.565-905 SaoCarlos, SP, Brazl
nel son@dc.ufscar.br

Abstract

We propocse an appoach for efficient two-
dimensiond skdetonization d binary shapes through
numerical calculation d vedor fields and curvature
estimation by using the Weingarten formulae. It can ke
shoawn that potential valleys generated by vedor fields
have a close relationship with the definition o Intensity
Axis of Symmetry. Given a bnary image, the algorithm
consistsin gererating a grayscale image @rresponding to
the magritude of a vedor field followed bya search d the
paintsthat belongto the bottom of the patential valleys or
regions with minimum magntude. It can ke shown that
these paints provide a good appoximation to the Medial
Axis of the objed in study. Also, the propcsed method
demonstrated good rformance due to the fact that the
vedor field can beeasily andrapidly calculated usng the
Fast Fourier Transformalgorithm.

1. Introduction

Skeletonization algorithms have been identified asan
important approach to represent the structure of two-
dimensional (2D) or threedimensional (3D) shapes[1]. In
the last years, many algorithms have been devised and
applied to a great variety of patternsfor different purposes
such as shape epresentaion and aralysis [2][3][4].

In this paper we describe an algorithm for efficient
two-dimensional  skeletonizetion through the fast
numerical calculation of vedor fields by using the Fourier
Transform (FT) allied to a curvature estimation scheme.
This methodology is based on one of the few continuous
approaches in the literature that identifies objea skeleton

as valleys ohtained by using a potential modd instead of
the Distance Transform (DT) [5][6].

Given a binary image, the agorithm consists of
generating a scalar field corresponding to the magnitude
of a vedor field followed by a search of the points that
belong to the battom of the potential valleys or regions
with minimum meagnitude. Indeed, it can be shown that
potential valleysin the grayscale image that correspond to
the magnitude of a vedor field have a close relationship
with the oncept of Intensity Axis of Symmetry [7].
Hence using dfferential geometry tods like the
Weingarten formulae, it is posshle to deted the points
that belong to the Medial Axis (MA) of the ohjed.

The main contribution of this work is to provide an
aternative and generic methodology based on potential
fields for 2D skeletonization that is able to reduce the
computational cost of the Distance Transform. In this
sense, the originality of the proposed algorithm is the use
of the Fourier Transform to calculate a vedor field and
asciate its magnitude with the Intensity Axis of
Symmetry. The method demonstrated a god performance
due to the fact that the vedor field can be esly and
rapidly calculated using the fast Fourier transform (FFT)
algorithm.

The definition of skeletons is discussd in the next
sedion. Also, we briefly illustrate the relationship
between medial axis and “potential valleys’. The
proposed methodol ogy for 2D skeletonization is presented
in Sedion 3. Sedion 4 presents Me results and
discusdons where we also discuss the etension and
applicability of the method to the 3D case. The
conclusions of the work are given in Sedion 5.



2. Skeletons, medial axisand potential valleys
2.1. Definitions

The definition of a skeleton is not unique. However,
for our proposes, the skeleton of a region in a binary
image @n be defined through the Medial Axis Transform
(MAT), or Symnetric Axis Transform (SAT), which was
originaly proposed by Blum [8][9][10] as a means of
expressng shape symmetry.

The Medial Axis(MA), or the Symmetric Axis (SA),
of a shape is defined as the locus of the centers of all its
interior maximal circles (2D case) or spheres (3D case).
Frequently, the MA is derived through the Distance
Transform (DT) [11]. Thus, the MA and the radii of the
maximal circles (or spheres) asociated with each point
together define the MAT representation. In this sense, the
MA can be asaumed as the skeleton of a shape. For
instance Figure 1 showsthe MAT for aredangle.

Figure 1. A redangular shape and its keleton together
with threemaximal circles.

On the other hand, the MAT representation can be
generalized to describe grayscale images through the
definition of the Intensity Axis of Symnetry (1AS). Gauch
and Pizer [7] demonstrated the mnnedion between ridges
and valleys in a grayscale image and the airvature
extreme of the level curves of that image. In this snse,
the arvature extremes of level curves are shown to form
conneded curves called vertex curves, which mark the
“tops of ridges’ and “batoms of valleys’ in the image.
Then, the IASis derived from the MAT representationfor
each level curve of theimage.

2.2. Skeletons and potential valleys

In previous works, Chuang et al. [5] [6] proposed a
potential-based skeletonizaion approach for 2D and 3D
MAT representation that identifies objed skeleton as
“potential valleys’ using a potential model instead of the
Distance transform. Therefore, in this case, instead of
using a metric, a scalar function defined as the potential
field due to the border pointsis adopted. Thisapproach is
based on a Newtonian potential field or on a generalized

one — the potential is made to decy faster with the
distancethan the Newtonian potential [5] [6].

Fallowing Chuang's work, due to the similarity of
their definitions, the potential and the distance functions
have similar spatial structures (“peaks’, “valleys’, and
“ridges’) and, in this sense,” potential valleys’ are dosely
related to the crresponding MAT skeleton. In order to
ill ustrate that, Figure 2 showsthe MAT representation for
a 2D L-shaped region and its relationship with the vedor
representation of a force field associated with a potential
fidd.

(b)
Figure 2. (a) L-shaped region and its MAT
representation; (b) vedor field asociated with a potential
fidd.

Given a set of seal points, thisiterative algorithm can
be described as [5]:

1. Follow thediredion of the forceto transverse the
skeleton until a zro force is obtained, i.e, a
potential minimum isreached;

Repeat step 1 for eah of the £ed points;

End the skeleton computation if there isonly one

potential minimum;

4. Derive additional skeleton
identifying  potential  valleys
neighbaring potential minima.
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We remark that this methodology is able to provide
goad performance results snce it avoids the expensive
task of computing the distance transform at each point.
However, this algorithm was applied over 2D and 3D
polyhedral regions where the great efficiency also results
from the fact that the potential functions and their
gradients can be derived in a closed form. We notice that
this limits the apability of the algorithm when a close
form for the potential filed cannot be found. Moreover,
the method needs an initial set of seed points, defined by
the user.

3. The proposed 2D skeletonization algorithm

We proposed a modification on the abowe
methodology in order to improve the dficiency and
capahility of the algorithms based on potential fields.

Thefirst oneisto calculate a vedor field through the
Fourier transform. This approach has the advantage to
provide vedor fields for generic shapes. In this snse, we
do not neead any other information about the shape of the
objed. Next, given the image formed by the magnitude of
the vedor field (a grayscale image), we look for points
that belong to potential valleys by finding curvature
extremes of the level curves defined in terms of the IAS.
This procedure also €iminates the needs for sead points.
We notice that now we have a non-iterative procedure
where the skeleton isreached in only two steps.

3.1. Calculating vector fields via Fourier
transform

Costa [12] proposed an effedive way of calculating
vedors fields based on the Fourier Transform. Given, for
instance, a point charge Q, in the ceter of a 2D
redangular coordinate system, the vedor field in the point

p=(xy)is
- Q p
Fp)=—— , 1
2aifp|” [Pl ”

where a is a postive onstant and || is the norm
defined on the IR? If a vedor field F(x,y) isthe gradient
of ascaar fidd ¢(x ), then ¢(x,y) define a potential
function for F(x,y) . In this $nse, EQ. (1) can be written
as

F(xy) =00(xy,2) = (Fx(x y,2),Fy (X Y. 2) 2
where O isthe gradient operator and F(Xx,y) isavedor
with two components. Now, consider the discrete 2D
spaceand i, j], i, j € Z, afunction that represents the
distribution of eledrical charges. For practical proposes,
cli, j] representsthe alge line of an ohjed. From Eq. (1),
each component of Eq. (2) can be written as

a+l

Fli,jl= Sdi+r j+s|@Qri+s?) 2 ©)
(r,s)0Q
and
a4
F i jl= Sdi+r,j+s|Bar?+s?) 2 (4)
(r,s)Q

where 2 isa sphere of radius R centered at (i j).
From Eg. (3) and Eq. (4) it is now possble to write
the omponentsof FIi, j] intermsof correlations. Then,
Fuli, j1=cfi, j10hyi, j] ©)
and
Fyli, i1 =cli, jl1Ohy[i, j] (6)
where the symbd “ 0" means the crrelation operation
and thefunctions h,[i, j] and h[i, j] are given by
a+l
hli,j1=idi%+j?) 2 @)
and
_a+l
hi,j1= M2 +j%) 2 . ®)
To illustrate, Figure 3 shows the cnvolution mask
h[i, j] for two values of a. The function h[i, j] has a

similar behavior.

200 .20

(b)
Figure 3. Convolution mask h,[i, j]: (a) a=1; (b) a=2.



Now, symmetry properties of Eq. (7) and Eq. (8)
alow rewriting Eq. (5) and Eq. (6) in terms of convolution
operations. Then, we have

Fuli, i1 =i, j1Oh,[i, j] 9)
and

Fyli, jl1=cfi, jTOny[i, j] (10)
where the symbd “*” meansthe cnvolution operation.

It is well known that Eq. (9) and Eq. (10) can be
easily calculated in the Fourier domain with the use of the
FFT algorithms.

Then, given the binary image, the @mnvolution mask
h(i, j] and hi, j] are used to create a vedor field

assciated with the border points of the image ohjed.
Next, we aeate a new image with the magnitude of the
vedor fidd.

3.2. Curvature estimation

In this ®dion we describe the methodology for the
detedion of the potential valeys. As mentioned before,
the media axis (skeleton) has a close relationship with
potential valleys (regions with minimum magnitude). In
this snse, the idea is to find potential valleys in the
grayscale image formed by the magnitude of the vedor
field F(x,y).

Considering again the @ntinuous threedimensional
space let 1(x,y)=[[F(x,y)|. Then, a hyper-surface
¥ 0 R® can be written as[7]

¥(xY)= (%Y. (xY). (1)

The arvature of the level curves of Eq. (11) can be
easily calculated with the use of the Weingarten map [13].
Then, given ¥(x,Yy) , we canwrite the Gaussequations as

W, (x,y) = @01, (x ) (12
and

Wy (x,y) = (011,(xy)) (13
where 1,(x,y) and I,(xy) are the first-order spatial

derivatives of |(x,y) with resped to x andy.

A leve curve normal vedor N(x,y) a p=(xY)
can be mnstructed from Gaussequations as

N Y) = (=1 (X y),=1y (% ). (14)
Therefore, given N(X,y), the Weingarten map at
p =(X,Y) isdefined as

Oy |
s

| o (15)
yy[J

Due to the form as we onstruct the level curve
normal vedor, Eqg. (15) is the Jacobian matrix of 1(x,y)
at point p.

From Rodrigues theorem [13], -D,(N) can be
diagonali zed and the componentsof theprincipal diagonal

(eigenvalues) are a@lled principal curvatures at point p.
Then,

O Iy @y 0O
O~ 0 (16)
ayx Iyyl] Ep A0
where A; and A, are alled the principal curvatures. The
symbd “~" means equival ence between matrices.

Moreover, we denote the Gauss curvature at each
point by

K =AM, a7
and the mean curvature by
o= % . (19)

For our proposes, we generate a new image where
each point represents the mean curvature. It can be shown
that regions with maximum curvature are associated with
the IAS of theimage [7].

4. Simulation resultsand discussion

An evaluation of the proposed method has been
conducted by processng various objeds with different
structures and shapes.

The agorithm was implemented in C++ language
running on Linux systems.

The mnvolution operations of Eqg. (9) and Eq. (10)
were performed in the Fourier domain with the use of the
Fast Fourier Transform algorithm where in all cases the
images were etended by mirror refledions in order to
avoid border problems. Both the FFT procedure and the
routine to find the dgenvalues of Eq. (15 were as
described on Numerical Redpesin C[14].

The eperiments were mnducted by assiming that
the support of the cnvolution masks equals the image
size and also by varying the parameter a in Eq. (3) and
Eq. (4). Then, for each image, given the grayscale image
formed by the magnitude of the vedor fied, all the
principal curvatures are calculated by the Weingarten map
at each point and the mean curvature valueis recorded on
a curvature map image. The skeleton isreached by finding
the maximum values on the arvature map.

We observe that due to the fact that the entire image
isblurred after convolution, the original imageswere used
asamask to filter theregion of theinterest.

Figure 4 showsthe resultsfor aredangular shape (as
illustrated in Figure 1). In this example, we ill ustrate the
behavior of the algorithm for five values of a . In this
case, we observe that the mehod is able to produce a good
approximation of the MA by using a= 1.5 or a= 2.0.
However, for “large” values of a (> 3.0), we do not have
the desired structure. This experiment also demonstrates



the @pahility of the algorithm to produce 1-pixe-wide
skeletons.

Figure 5 presents the result for the L-shaped region
asuming a =1.7.

@ (b)
N\ /|
/ N\
(© (d)
(€ (f)
(9) (h)

Figure 4. (a) redangular region; (b) magnitude of the
vedor fidd for a =1.5 (logarithmic scale); (c) curvature
map for o =1.5; (d) keleton for o =1.5; (€) skeleton for
a=2; (f) keleton for a = 25; (g) skeleton for a =3;
(h) skeleton for a = 35.

@ (b)

(© (d)
Figure 5. (a) L-shaped region; (b) magnitude of the veaor
field for a=1.7; (c¢) curvature map; (d) respedive
Skeleton.

Also, in this case, we note that the skeleton is
extremely dependent on a. As a matter of fact, we have
verified that we neel to find the value of a that better fits
the skeleton for each image.

The algorithm is also robust in the presence of
irregular edges. Thisisill ustrated in Figure 6 and Figure
7. The first one ill ustrates the behavior of the method in
the presence of alack. On the other hand, Figure 7 shows
the result for an extremely irregular edge.

(@ (b)
Figure 6. (a) curvature map (asuuming a =2) for a
redangular shape with a lack on the superior barder; (b)

respedive skeleton.
@) (b)

Figure 7. (a) curvature map for a redangular shape with
irregular edgesasuming a =2 ; (b) respedive skeleton.

Comparing bath the skeletons from Figure 6 and
Figure 7 with the one in Figure 4, we observe that the
method is gable in the presence of perturbations on the
border. We tested the algorithm with several other images
where we reached the same mnclusions. However, for
more complex structures (Figure 7), we observe that the
algorithm produces littl e branches near the border of the
obed. In this case, we @n just eiminate these little
branches close to the border to have the skeleton. This
result is similar to the ane presented in [6].

Figure 8 and Figure 9 show other examples of
skel etons generated by the proposed methodol ogy.

(@) (b)
Figure 8. T-shaped region: (a) curvature map for a = 2;
(b) respedive skeleton.



From al the results we conclude that the proposed
2D skeletonizetion algorithm is able to produce smoath
one-pixel-wide skeletonsin afast and reasonably accurate
manner.

@ (b)
Figure 9. (@) curvature map for atriangleassuming a = 2;
(b) respedive skeleton.

As mentioned before, many agorithms for
skeletonization have keen proposed in the literature in the
last decade. Many of them focus on two-dimensional
images and the extension to the threedimensional caseis
frequently computationally expensive. In fact, the 3D
problem is more complicated than the 2D case due to the
extra degreeof freedom in point location. One remarkable
fact in the approach of this articleis that the extension of
the method to the threedimensional case is easy and
direa.

We have ohtained preliminary results of the
applicability of the algorithm for tubular structures, such
as neurons and arteries [2] [15]. In order to ill ustrate,
Figure 10 shows pieces of two real neurons and their
respedive skeletons. In the experiments we have used the
images provided by the Anatomy and Neurobiology
Department from Washington University in St. Louis,
USA. Both the 3D neuron images were acquired by using
fluorescence microscopy. We used the Visualization
TodKit (VTK) [16] for the display in Figure 10.

(b)

Figure 10. Pieces of two real neurons and their respedive
skeletons. In bath cases the arrvature maps were
generated by asauming o = 3.

The images in Figure 10 show that the algorithm is
able to produce goaod results for tubular structures in the
3D case. Indedd, the method has produced centralized,
smoath and one-voxel-wide skeletons for the analyzed
neurons.

5. Concluding remarks

We have presented an efficient algorithm for two-
dimensional skeletonization based on potential fields. The
method demonstrated good performance bath in accuracy
and computational cost due to the fact that the vedor field
can be easily calculated using the Fast Fourier Transform
algorithm.

The results show that the algorithm can be extremely
efficient in bath 2D and 3D images. In future works, we
intend to make some eperiments in order to verify the
accauracy of the algorithm when compared with other ones
proposed in the literature. On the other hand, we also
intend to improve this methodology and apply the
algorithm in more general volumetric objeds, as well as
an automatic procedure to setup the a parameter.
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