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Abstract 
 

We propose an approach for efficient two-
dimensional skeletonization of binary shapes through 
numerical calculation of vector fields and curvature 
estimation by using the Weingarten formulae. It can be 
shown that potential valleys generated by vector fields 
have a close relationship with the definition of Intensity 
Axis of Symmetry. Given a binary image, the algorithm 
consists in generating a grayscale image corresponding to 
the magnitude of a vector field followed by a search of the 
points that belong to the bottom of the potential valleys or 
regions with minimum magnitude. It can be shown that 
these points provide a good approximation to the Medial 
Axis of the object in study. Also, the proposed method 
demonstrated good performance due to the fact that the 
vector field can be easily and rapidly calculated using the 
Fast Fourier Transform algorithm. 
 
 
1. Introduction 
 

Skeletonization algorithms have been identified as an 
important approach to represent the structure of two-
dimensional (2D) or three-dimensional (3D) shapes [1]. In 
the last years, many algorithms have been devised and 
applied to a great variety of patterns for different purposes 
such as shape representation and analysis [2][3][4].  

In this paper we describe an algorithm for eff icient 
two-dimensional skeletonization through the fast 
numerical calculation of vector fields by using the Fourier 
Transform (FT) alli ed to a curvature estimation scheme. 
This methodology is based on one of the few continuous 
approaches in the literature that identifies object skeleton 

as valleys obtained by using a potential model instead of 
the Distance Transform (DT) [5][6]. 

Given a binary image, the algorithm consists of 
generating a scalar field corresponding to the magnitude 
of a vector field followed by a search of the points that 
belong to the bottom of the potential valleys or regions 
with minimum magnitude. Indeed, it can be shown that 
potential valleys in the grayscale image that correspond to 
the magnitude of a vector field have a close relationship 
with the concept of Intensity Axis of Symmetry [7]. 
Hence, using differential geometry tools li ke the 
Weingarten formulae, it is possible to detect the points 
that belong to the Medial Axis (MA) of the object. 

The main contribution of this work is to provide an 
alternative and generic methodology based on potential 
fields for 2D skeletonization that is able to reduce the 
computational cost of the Distance Transform. In this 
sense, the originalit y of the proposed algorithm is the use 
of the Fourier Transform to calculate a vector field and 
associate its magnitude with the Intensity Axis of 
Symmetry. The method demonstrated a good performance 
due to the fact that the vector field can be easil y and 
rapidly calculated using the fast Fourier transform (FFT) 
algorithm. 

The definition of skeletons is discussed in the next 
section. Also, we briefly ill ustrate the relationship 
between medial axis and “potential valleys” . The 
proposed methodology for 2D skeletonization is presented 
in Section 3. Section 4 presents some results and 
discussions where we also discuss the extension and 
applicabilit y of the method to the 3D case. The 
conclusions of the work are given in Section 5. 
 
 



2. Skeletons, medial axis and potential valleys 
 
2.1. Definitions 
 

The definition of a skeleton is not unique. However, 
for our proposes, the skeleton of a region in a binary 
image can be defined through the Medial Axis Transform 
(MAT), or Symmetric Axis Transform (SAT), which was 
originall y proposed by Blum [8][9][10] as a means of 
expressing shape symmetry. 

The Medial Axis (MA), or the Symmetric Axis (SA), 
of a shape is defined as the locus of the centers of all it s 
interior maximal circles (2D case) or spheres (3D case). 
Frequently, the MA is derived through the Distance 
Transform (DT) [11]. Thus, the MA and the radii of the 
maximal circles (or spheres) associated with each point 
together define the MAT representation. In this sense, the 
MA can be assumed as the skeleton of a shape. For 
instance, Figure 1 shows the MAT for a rectangle. 
 

 
Figure 1. A rectangular shape and its skeleton together 
with three maximal circles. 
 

On the other hand, the MAT representation can be 
generali zed to describe grayscale images through the 
definition of the Intensity Axis of Symmetry (IAS). Gauch 
and Pizer [7] demonstrated the connection between ridges 
and valleys in a grayscale image and the curvature 
extreme of the level curves of that image. In this sense, 
the curvature extremes of level curves are shown to form 
connected curves called vertex curves, which mark the 
“tops of ridges” and “bottoms of valleys” in the image. 
Then, the IAS is derived from the MAT representation for 
each level curve of the image. 
 
2.2. Skeletons and potential valleys 
 

In previous works, Chuang et al. [5] [6] proposed a 
potential-based skeletonization approach for 2D and 3D 
MAT representation that identifies object skeleton as 
“potential valleys” using a potential model instead of the 
Distance transform. Therefore, in this case, instead of 
using a metric, a scalar function defined as the potential 
field due to the border points is adopted. This approach is 
based on a Newtonian potential field or on a generali zed 

one – the potential is made to decay faster with the 
distance than the Newtonian potential [5] [6]. 

Following Chuang’s work, due to the similarity of 
their definitions, the potential and the distance functions 
have similar spatial structures (“peaks” , “valleys” , and 
“ridges” ) and, in this sense, “potential valleys” are closely 
related to the corresponding MAT skeleton. In order to 
ill ustrate that, Figure 2 shows the MAT representation for 
a 2D L-shaped region and its relationship with the vector 
representation of a force field associated with a potential 
field. 
 

 
(a) 

 
(b) 

Figure 2. (a) L-shaped region and its MAT 
representation; (b) vector field associated with a potential 
field. 
 

Given a set of seed points, this iterative algorithm can 
be described as [5]: 

1. Follow the direction of the force to transverse the 
skeleton until a zero force is obtained, i.e., a 
potential minimum is reached; 

2. Repeat step 1 for each of the seed points;  
3. End the skeleton computation if there is only one 

potential minimum; 
4. Derive additional skeleton branches by 

identifying potential valleys connecting 
neighboring potential minima. 

 



We remark that this methodology is able to provide 
good performance results since it avoids the expensive 
task of computing the distance transform at each point. 
However, this algorithm was applied over 2D and 3D 
polyhedral regions where the great eff iciency also results 
from the fact that the potential functions and their 
gradients can be derived in a closed form. We notice that 
this limits the capabilit y of the algorithm when a close 
form for the potential fil ed cannot be found. Moreover, 
the method needs an initial set of seed points, defined by 
the user. 
 
3. The proposed 2D skeletonization algorithm 
 

We proposed a modification on the above 
methodology in order to improve the eff iciency and 
capabilit y of the algorithms based on potential fields. 

The first one is to calculate a vector field through the 
Fourier transform. This approach has the advantage to 
provide vector fields for generic shapes. In this sense, we 
do not need any other information about the shape of the 
object. Next, given the image formed by the magnitude of 
the vector field (a grayscale image), we look for points 
that belong to potential valleys by finding curvature 
extremes of the level curves defined in terms of the IAS. 
This procedure also eliminates the needs for seed points. 
We notice that now we have a non-iterative procedure 
where the skeleton is reached in only two steps. 
 
3.1. Calculating vector fields via Fourier 
transform 
 

Costa [12] proposed an effective way of calculating 
vectors fields based on the Fourier Transform. Given, for 
instance, a point charge 0Q  in the center of a 2D 
rectangular coordinate system, the vector field in the point 

),( yx=p  is 
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where α  is a positi ve constant and •  is the norm 
defined on the 

� 2. If a vector field ),( yxF  is the gradient 
of a scalar field ),( yxϕ , then ),( yxϕ  define a potential 
function for ),( yxF . In this sense, Eq. (1) can be written 
as 
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where ∇  is the gradient operator and ),( yxF  is a vector 
with two components. Now, consider the discrete 2D 
space and ],[ jic , i, j �  � , a function that represents the 
distribution of electrical charges. For practical proposes, 

],[ jic  represents the edge line of an object. From Eq. (1), 
each component of Eq. (2) can be written as 
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where �  is a sphere of radius R centered at (i,j). 
From Eq. (3) and Eq. (4) it is now possible to write 

the components of ],[ jiF  in terms of correlations. Then, 
],[],[],[ jihjicjiF xx ⊗=  (5) 

and 
],[],[],[ jihjicjiF yy ⊗=  (6) 

where the symbol “ ⊗ ” means the correlation operation 
and the functions ],[ jihx  and ],[ jihy  are given by 
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To ill ustrate, Figure 3 shows the convolution mask 
],[ jihx  for two values of α. The function ],[ jihy  has a 

similar behavior. 

 
(a) 

 
(b) 

Figure 3. Convolution mask ],[ jihx : (a) α=1; (b) α=2. 



Now, symmetry properties of Eq. (7) and Eq. (8) 
allow rewriting Eq. (5) and Eq. (6) in terms of convolution 
operations. Then, we have 

],[],[],[ jihjicjiF xx ∗=  (9) 

and 
],[],[],[ jihjicjiF yy ∗=  (10) 

where the symbol “* ” means the convolution operation. 
It is well known that Eq. (9) and Eq. (10) can be 

easil y calculated in the Fourier domain with the use of the 
FFT algorithms. 

Then, given the binary image, the convolution mask 
],[ jihx  and ],[ jihy  are used to create a vector field 

associated with the border points of the image object. 
Next, we create a new image with the magnitude of the 
vector field. 
 
3.2. Curvature estimation 
 

In this section we describe the methodology for the 
detection of the potential valleys. As mentioned before, 
the medial axis (skeleton) has a close relationship with 
potential valleys (regions with minimum magnitude). In 
this sense, the idea is to find potential valleys in the 
grayscale image formed by the magnitude of the vector 
field ),( yxF . 

Considering again the continuous three-dimensional 
space, let ),(),( yxyxI F= . Then, a hyper-surface 

⊂
� � 3 can be written as [7] 

)),(,,(),( yxIyxyx =
�

. (11) 
The curvature of the level curves of Eq. (11) can be 

easil y calculated with the use of the Weingarten map [13]. 
Then, given ),( yx

�
, we can write the Gauss equations as 

)),(,0,1(),( yxIyx xx =Ψ  (12) 
and 

)),(,1,0(),( yxIyx yy =Ψ  (13) 

where ),( yxI x  and ),( yxI y  are the first-order spatial 

derivatives of ),( yxI  with respect to x and y. 

A level curve normal vector ),( yxN  at ),( yx=p  
can be constructed from Gauss equations as 

)),(),,((),( yxIyxIyx yx −−=N . (14) 

Therefore, given ),( yxN , the Weingarten map at 
),( yx=p  is defined as 
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Due to the form as we construct the level curve 
normal vector, Eq. (15) is the Jacobian matrix of ),( yxI  
at point p. 

From Rodrigues theorem [13], )(NpD−  can be 
diagonalized and the components of the principal diagonal 

(eigenvalues) are called principal curvatures at point p. 
Then, 
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where 1λ  and 2λ  are called the principal curvatures. The 
symbol “~” means equivalence between matrices. 

Moreover, we denote the Gauss curvature at each 
point by 

21 λλ ⋅=
�

 (17) 
and the mean curvature by 

2
21 λλθ += . (18) 

For our proposes, we generate a new image where 
each point represents the mean curvature. It can be shown 
that regions with maximum curvature are associated with 
the IAS of the image [7]. 
 
4. Simulation results and discussion 
 

An evaluation of the proposed method has been 
conducted by processing various objects with different 
structures and shapes. 

The algorithm was implemented in C++ language 
running on Linux systems. 

The convolution operations of Eq. (9) and Eq. (10) 
were performed in the Fourier domain with the use of the 
Fast Fourier Transform algorithm where in all cases the 
images were extended by mirror reflections in order to 
avoid border problems. Both the FFT procedure and the 
routine to find the eigenvalues of Eq. (15) were as 
described on Numerical Recipes in C [14]. 

The experiments were conducted by assuming that 
the support of the convolution masks equals the image 
size and also by varying the parameter α  in Eq. (3) and 
Eq. (4). Then, for each image, given the grayscale image 
formed by the magnitude of the vector field, all the 
principal curvatures are calculated by the Weingarten map 
at each point and the mean curvature value is recorded on 
a curvature map image. The skeleton is reached by finding 
the maximum values on the curvature map. 

We observe that due to the fact that the entire image 
is blurred after convolution, the original images were used 
as a mask to filter the region of the interest. 

Figure 4 shows the results for a rectangular shape (as 
ill ustrated in Figure 1). In this example, we ill ustrate the 
behavior of the algorithm for five values of α . In this 
case, we observe that the method is able to produce a good 
approximation of the MA by using α = 1.5 or α = 2.0. 
However, for “ large” values of α  (> 3.0), we do not have 
the desired structure. This experiment also demonstrates 



the capabilit y of the algorithm to produce 1-pixel-wide 
skeletons. 

Figure 5 presents the result for the L-shaped region 
assuming 1=α .7. 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 4. (a) rectangular region; (b) magnitude of the 
vector field for 1=α .5 (logarithmic scale); (c) curvature 
map for 1=α .5; (d) skeleton for 1=α .5; (e) skeleton for 

2=α ; (f) skeleton for 5,2=α ; (g) skeleton for 3=α ; 
(h) skeleton for 5,3=α . 
 

  
(a) (b) 

  
(c) (d) 

Figure 5. (a) L-shaped region; (b) magnitude of the vector 
field for 1=α .7; (c) curvature map; (d) respective 
skeleton. 

Also, in this case, we note that the skeleton is 
extremely dependent on α. As a matter of fact, we have 
verified that we need to find the value of α that better fits 
the skeleton for each image. 

The algorithm is also robust in the presence of 
irregular edges. This is ill ustrated in Figure 6 and Figure 
7. The first one ill ustrates the behavior of the method in 
the presence of a lack. On the other hand, Figure 7 shows 
the result for an extremely irregular edge. 
 

  
(a) (b) 

Figure 6. (a) curvature map (assuming 2=α ) for a 
rectangular shape with a lack on the superior border; (b) 
respective skeleton. 
 

  
(a) (b) 

Figure 7. (a) curvature map for a rectangular shape with 
irregular edges assuming 2=α ; (b) respective skeleton. 
 

Comparing both the skeletons from Figure 6 and 
Figure 7 with the one in Figure 4, we observe that the 
method is stable in the presence of perturbations on the 
border. We tested the algorithm with several other images 
where we reached the same conclusions. However, for 
more complex structures (Figure 7), we observe that the 
algorithm produces littl e branches near the border of the 
object. In this case, we can just eliminate these littl e 
branches close to the border to have the skeleton. This 
result is similar to the one presented in [6]. 

Figure 8 and Figure 9 show other examples of 
skeletons generated by the proposed methodology. 
 

  
(a) (b) 

Figure 8. T-shaped region: (a) curvature map for α = 2; 
(b) respective skeleton. 
 



From all the results we conclude that the proposed 
2D skeletonization algorithm is able to produce smooth 
one-pixel-wide skeletons in a fast and reasonably accurate 
manner. 
 

  
(a) (b) 

Figure 9. (a) curvature map for a triangle assuming α = 2; 
(b) respective skeleton. 
 

As mentioned before, many algorithms for 
skeletonization have been proposed in the literature in the 
last decade. Many of them focus on two-dimensional 
images and the extension to the three-dimensional case is 
frequently computationally expensive. In fact, the 3D 
problem is more complicated than the 2D case due to the 
extra degree of freedom in point location. One remarkable 
fact in the approach of this article is that the extension of 
the method to the three-dimensional case is easy and 
direct. 

We have obtained preliminary results of the 
applicabilit y of the algorithm for tubular structures, such 
as neurons and arteries [2] [15]. In order to ill ustrate, 
Figure 10 shows pieces of two real neurons and their 
respective skeletons. In the experiments we have used the 
images provided by the Anatomy and Neurobiology 
Department from Washington University in St. Louis, 
USA. Both the 3D neuron images were acquired by using 
fluorescence microscopy. We used the Visualization 
ToolKit (VTK) [16] for the display in Figure 10. 
 

  
(a) (b) 

Figure 10. Pieces of two real neurons and their respective 
skeletons. In both cases the curvature maps were 
generated by assuming α = 3. 
 

The images in Figure 10 show that the algorithm is 
able to produce good results for tubular structures in the 
3D case. Indeed, the method has produced centrali zed, 
smooth and one-voxel-wide skeletons for the analyzed 
neurons. 
 
5. Concluding remarks 
 

We have presented an eff icient algorithm for two-
dimensional skeletonization based on potential fields. The 
method demonstrated good performance both in accuracy 
and computational cost due to the fact that the vector field 
can be easil y calculated using the Fast Fourier Transform 
algorithm. 

The results show that the algorithm can be extremely 
eff icient in both 2D and 3D images. In future works, we 
intend to make some experiments in order to verify the 
accuracy of the algorithm when compared with other ones 
proposed in the literature. On the other hand, we also 
intend to improve this methodology and apply the 
algorithm in more general volumetric objects, as well as 
an automatic procedure to setup the α parameter. 
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