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Abstract

Images of underwater scenes suffer from poor contrast.
Water-induced contrast decay varies across the scene and
is exponential in the depths of scene points, which prevents
standard computer vision algorithms from operating prop-
erly. In this paper we show how to overcome this prob-
lem by adapting an existing model of light propagation in
the (foggy) atmosphere to describe the behavior of light in
liquid media. By integrating the resulting model within a
dense stereo algorithm, we recover disparity maps of scenes
immersed in water from pairs of images of these scenes
acquired from distinct viewpoints. Experiments performed
with real underwater images of various degrees of turbidity
show that the use of a physically-based light-propagation
model allows one to reconstruct underwater scenes more
accurately than with standard stereo algorithms alone.

1. Introduction

Sensing, mapping and manipulation in underwater envi-
ronments is a type of application of computer vision tech-
niques that has great potential for economic and social im-
pact. The ability to use vision as a sensing modality in
this kind of environment is very helpful in tasks as di-
verse as maintenance of underwater structures, water qual-
ity monitoring, and water fauna identification and assess-
ment [20, 14, 10]. Unfortunately, underwater images are
subject to strong influence of particles in suspension within
the liquid medium where light propagates and, as a conse-
quence of this, they are typically much less sharp than most
images acquired in the atmosphere [22], and in general not
amenable to standard computer vision techniques.

More specifically, two factors that impair traditional
computer vision algorithms when they are used in underwa-
ter scenes areabsorptionandscattering[1, 7]. Absorption,
the physical process in which light interacts with matter
and is converted in other forms of energy, makes bright ob-
jects have their apparent intensity reduced as they move

away from the camera used in the image-capture pro-
cess. The effects of this phenomenon are combined with
those of scattering, the physical process where pho-
tons “collide” with particles and change their propagation
direction, in general either by a small angle (forward scat-
tering) or by about 180 degrees (backscattering). As a
result of this later phenomenon, dark objects tend to ap-
pear brighter as they move away from the camera. Com-
bined, these two effects cause significant reduction in
image contrast.

Even though light propagation in various media has been
extensively studied in the areas of radiative transport [6, 3]
and computer graphics [8], the models developed in these
areas to explain the phenomena mentioned above have a
computational cost that is prohibitively high.

This has led many researchers, especially in the disci-
pline of Autonomous Underwater Robotics [21, 5, 15], to
usead hocimage enhancement methods that do not try to
model exactly how underwater images are formed, or to
use auxiliary sensors of other modalities such as sonars.
While this kind of approach works fine for tasks such as
autonomous navigation of underwater vehicles, it does not
solve the problem of understanding what exactly is the con-
tent of the images acquired.

On the other hand, computationally-efficient models of
absorption and scattering have appeared recently in the
computer vision literature [13]. But, as pointed out by
Narasimhan and Nayar [11], these models refer specifically
to the propagation of light in the (foggy) atmosphere and do
not describe in a precise way the behavior of light within
liquid media. Moreover, except in very particular scenes,
existing algorithms that use these models for recovery of
3D structure and removal of weather effects from images
[12] require the availability of two images of the same scene
on light-propagation media with significantly distinct prop-
erties (i.e., under different weather conditions), which may
take days to acquire. Thus, such algorithms are not useful
in applications where scene contents change faster than the
optical properties of the light-propagation medium, such as



fish identification and counting.
In this paper we introduce a methodology to reconstruct

the geometry of 3D scenes immersed in liquid media that
overcomes the limitations discussed above by:

1. adapting existing efficient models of light propagation
in non-transparent media to the environmental condi-
tions found in underwater applications;

2. using as input pairs of images of each scene acquired
from distinct viewpoints under the same absorption
and scattering conditions, rather than pairs of images
acquired from a single viewpoint under different light-
propagation conditions.

The second point above greatly increases the range of ap-
plications of the techniques developed because one can ob-
viously acquire distinct-viewpoint images simultaneously,
simply by using two cameras.

A motivation for using two views of each scene in our
methodology is the recent surge of interest on dense stereo
techniques within the computer vision community [17].
Dense stereo is a huge optimization problem. It amounts
to finding what is the mapping between individual pixels
of one image and corresponding pixels of a second image
that minimizes some pre-defined global matching error. Re-
search in this area has largely focused on finding restric-
tions on the set of possible mappings sufficiently strong
to make the problem manageable under various degrees of
computational-power limitation [19, 4, 16].

Dense stereo methods usually assume that the cameras
used in image acquisition have been calibrateda priori both
geometrically and radiometrically, so that the correspon-
dences between epipolar lines are known and pixels that
are images of the same 3D point should ideally have the
same colors. This last assumption, in particular, prevents
most existing dense stereo methods from working in under-
water scenes because, as shown in Figure 1, in such scenes
the color of each pixel depends not only on the illumina-
tion and on the radiometric properties of the scene’s visi-
ble surface, but also on the length of the water column that
light needs to traverse between the scene and the camera.
Thus, if the images in an underwater stereo pair are taken
from different distances from the scene, corresponding pix-
els in them may have colors that are very different.

Nonetheless, if the absorption and scattering properties
of a medium are uniform and knowna priori and the dis-
tance between the camera and an object is also known, it is
possible to take an actual image of the object in this medium
and to adjust the pixel intensities in order to create an ar-
tificial image that looks like a real image acquired in an
absorption- and scattering-free environment.

In this paper, we exploit this idea by (1) performinga
priori radiometric calibration not only of the camera (as in
traditional dense stereo) but also of the light-propagation

(a) no water (b) 0.5 m of water (c) restored image

(d) no water (e) 1.0 m of water (f) restored image

Figure 1. Removal of attenuation and scatter-
ing effects from underwater images. (a) Im-
age of a target out of water, (b) image of
the same target under 0.5 m of water, (c)
image generated by restoring (b), using the
light-propagation model of Equation (5), (d)-
(f) same as (a)-(c), but under 1.0 m of water.

medium, and (2) using this information within a modified
dense stereo algorithm in order to correct pixel colors when
comparing pairs of pixels on corresponding epipolar lines.
Note that such correctionsmustbe done during the execu-
tion of dense stereo when depths of various objects in the
scene with respect to each camera arenotknowna priori.

2. Light Propagation Model

Light absorption and scattering are complex phenomena
whose exact effects depend on the type, orientation, size and
spatial distribution of the particles that form the medium, as
well as on the wavelength and polarization of incident light
[14]. In this paper we use very simplified models of these
phenomena that are, nonetheless, sufficient to approximate
reasonably the process of image formation in scenes im-
mersed in water.

More specifically, we use a the light propagation model
that is largely inspired in that of Narasimhan and Nayar
[12], but is adapted to describe propagation of light in wa-
ter more accurately. As illustrated in Figure 2, this model
assumes that the intensity of each pixel has two compo-
nents:attenuated scene intensityandwaterlight. Attenuated
scene intensity is the effect of the energy that leaves the vis-
ible scene surfaces and travels in straight lines to the cam-
era. Of course, because of both absorption and scattering,
only a fraction of the energy that does leave the scene to-
wards the camera actually reaches the camera’s lens. Thus
the contribution of attenuated scene intensity to pixel inten-
sities decreases with the length of the water column between
the scene and the camera. Waterlight is the effect of energy



Figure 2. Light propagation model.

propagating along arbitrary directions within the water that
gets scattered along the direction of the camera and is per-
ceived as having come from visible surfaces of the scene,
when in fact it did not. Waterlight results in an increase of
pixel intensities and its contribution to the image formation
process increases with the length of the water column.

As in the model used by Narasimhan and Nayar [12], the
total radiance,E, captured by each sensor element, is a sum
of two terms, as shown the following equation [6]:

E(d) = Ea(d) + Ew(d), (1)

whered is the length of the water column between the sen-
sor element and the scene point imaged by it, andEa(d)
andEw(d) are, respectively, the attenuated scene intensity
and the waterlight radiance.

As illustrated in Figure 2, at each differential water col-
umn length that light traverses, a fixed fraction of its en-
ergy is absorbed [1, 7], which results in an exponential de-
cay of the radiance that exits the scene surface,Eobj as a
function of the total length of the light path in the water,d:

Ea(d) = Eobje
−αd. (2)

The scalar valueα in Equation (2), which we calloptical
density, measures the strength of absorption and scattering
in the medium.

Similarly, scattering towards the camera also occurs at
a fixed proportion per differential water column element.

However, part of the energy that enters the optical path that
leads to the camera is absorbed or re-scattered later on, be-
fore it exits the water. The resulting behavior is modelled in
the following equation [12]:

Ew(d) = K(1− e−βd), (3)

whereK is a scalar factor that depends on how the water is
illuminated and on the water’s scattering function, andβ is
a property of the medium that we callwaterlight coefficient.

Our model differs from that of Narasimhan and Nayar
[12] because we use separate coefficientsα andβ to char-
acterize the strength of attenuation and waterlight effects,
respectively, while they use the simplifying assumption that
α = β, which is reasonable in the atmosphere, but not in a
much optically denser medium such as the water.

In Equation (3), the radianceEw(d) is maximized when
d tends to infinity,i.e., if the “object” being imaged is actu-
ally the scene background. Substituting the valued = ∞ in
Equations (2) and (3) and combining the results via Equa-
tion (1), we obtainK = E(∞), i.e., K can be estimated
from the observedintensity of points in the scene back-
ground. Using this fact, we can re-write Equation (3) as

Ew(d) = E(∞)(1− e−βd). (4)

Putting everything together, the complete model for the
intensity E(d), in a specific wavelength, of an arbitrary
pixel in an underwater image is:

E(d) = Eobje
−αd + E(∞)(1− e−βd). (5)

Since absorption and scattering vary with wavelength in
very complex ways, we deal with color images simply by
having distinctα and β coefficients for each of the red,
green and blue channels.

Importantly, by a simple algebraic manipulation of Equa-
tion (5) we obtain a formula to estimate the radiance that
leaves the scene’s visible surfaces,Eobj , from the radiance
that is measured by the camera,E(d), after light traverses a
water column of lengthd:

Eobj =
[
E(d)− E(∞)(1− e−βd)

]
eαd. (6)

3. Underwater Stereo Methodology

A central problem in stereo vision, whose resolu-
tion yields the three-dimensional structure of any scene, is
the so-called correspondence problem. It amounts to iden-
tifying every pair of pixels that are visible projections of
the same 3D point in two distinct input images. The exis-
tence of ambiguities,i.e., of multiple plausible matches for
a given pixel, or on the other hand the absence of any fea-
sible correspondence for a pixel, due to occlusion, com-
plicate the problem. Fortunately, in geometrically- and



radiometrically-calibrated set-ups, there are a few con-
straints that greatly reduce the problem’s search space. A
strong one is the epipolar constraint, which restricts the ge-
ometric locus where a pixel’s correspondence may be found
to a line in the other image. But even with this type of con-
straint, which is universally employed in dense stereo tech-
niques, in order to find a pixel’s correspondence it is
still necessary to compare its color to those of its candi-
date matches, usually under the assumption that the closer
are the colors of two pixels, the more likely they are of be-
ing stereo matches.

In underwater environments the correspondence problem
is exacerbated by the medium, since each scene point will
typically be located at distinct distances from the two cam-
eras and hence, according to Equation (5), the measured in-
tensities at its projections on the two images will differ, po-
tentially by large amounts. Moreover, because these varia-
tions in intensities created by the immersion of the scene
in water are non-linear both along each image and with re-
spect to the unknown distances to the cameras, radiomet-
ric calibration techniques are not capable of compensating
from them, especially in cases where the differences be-
tween water-column lengths from the scene to each of the
cameras are large.

3.1. Stereo Using the Light Propagation Model

Removing attenuation and waterlight effects from under-
water images of unknown scenes before stereo matching
is an ill-posed problem, even if the parameters of the light
propagation model (α, β andE(∞), for each color channel)
are known. That’s because a fundamental piece of informa-
tion necessary to compute the contribution of these effects
to the images is missing: the depths of the scene points rela-
tive to the cameras. On the other hand, it is in principle nec-
essary to remove the effects of these phenomena from the
images in order for existing dense stereo techniques to be
able to solve the correspondence problem.

The key observation that we use to overcome this dif-
ficulty is that, even though the light propagation model can
not be applieda priori to a single image, it can be applied to
any arbitrary pair of pixels in corresponding epipolar lines.
That’s because the choice of one point in each epipolar line
unambiguously defines the depths with respect to the two
cameras. Thus, all that needs to be done to incorporate the
light propagation model within any existing dense stereo
technique that uses the epipolar constraint is to identify the
points where the colors of candidate matches are compared
and to perform a correction of these colors before the com-
parison, based on the positions of the pixels from which
they came from, and on Equation (6). This idea leads di-
rectly to Algorithm 1.

The key feature of this algorithm is the fact that it tries to

Algorithm 1 General Underwater Stereo Algorithm
Calibrate the cameras and rectify the images geometri-
cally and radiometrically;
Calibrateα, β andE(∞), for each image band;
for each pointp1 = (i, j) in image 1 (reference image):
do

for each pointp2 in row i of image 2:do
Compute the water column lengthsd1 andd2, rela-
tive to the two cameras;
CalculateEobj1 andEobj2, by substituting, respec-
tively, d1 andd2 in Equation (6);
Compute the residualε(d1,d2) = |Eobj1−Eobj2|.

end for
end for
The optimal disparities for all pixels are then obtained
by minimizing an energy functional composed of a term
ε(d1,d2) that measures how well each candidate pair of
pixelsp1 andp2 match, and potentially of other terms that
reward desirable properties of the reconstruction such as
spatial smoothness or preservation of discontinuities, and
penalize undesirable results such as unmatched pixels.

remove the effects of interactions of light with water from
the intensities of pairs of candidate matches before these in-
tensities are compared. For pairs of pixels that arenot ac-
tual matches, this compensation step will not do anything
useful, because the water column lengths will be estimated
incorrectly. But this does not matter, the important fact is
that for pairs of pixels that are true matches, water column
lengths will be correctly computed and by substituting them
into Equation (6), the pixel colors will be corrected, gener-
ating a small residualε(d1,d2).

3.2. Using Kolmogorov and Zabih’s Algorithm

The methodology described so far can be applied to
modify essentially any existing dense stereo technique for
use in underwater applications. In this paper, we chose to
perform experiments with Kolmogorov and Zabih’s algo-
rithm for energy minimization via graph cuts [9] due to its
exceptional ability in dealing with occlusion.

Occlusions areas are those image regions that depict
scene points that are not visible in the other image of the
stereo pair. the algorithm proposed by Kolmogorov and
Zabih [9] handles occlusions properly by using an energy
functional that imposes smoothness constraints but at the
same time tries to preserve discontinuities. More specifi-
cally, the algorithm’s energy functional is defined as a func-
tion of a disparity configuration,D, which is a set of dis-
crete values for the disparities of all pixels in an image:

ε(D) = εdata(D) + εsmoothness(D) + εvisibility(D). (7)

The definition above includes:



• a termεdata that captures the differences in intensity
between pairs of pixels in the two images;

• a termεsmoothness that encourages smoothness, mak-
ing neighbors pixels tend to have similar disparities;

• a termεvisibility that imposes a penalty for every pixel
that is labelled as occluded.

This energy functional is then minimized efficiently with
a maximum-flow algorithm developed specifically for the
types of graphs that arise in energy-minization applications
in computer vision [2].

4. Calibration of Model Parameters

The methodology described in the previous section as-
sumes that the parameters of the light-propagation model –
in particular, the values ofα, β andE(∞) for each chro-
matic band – have been estimateda priori. In this section
we describe the procedure that we used to extract these pa-
rameters from actual underwater images.

The basic idea of our calibration procedure is to place ob-
jects with homogeneous colors at regularly-spaced, known
distances inside the medium and then to measure average
intensities within their visible projections in the images. In
particular, to obtain the model parameters used in each ex-
periment reported in Section 5, we placed a half-black, half-
white planar target within a 120× 60× 30 cm fish tank and
then followed the steps below:

1. Take a picture of the target outside the water;

2. Place the target at a set of pre-defined distances within
the water and take a picture of it at each distance;

3. Measure average radiance values for the black and
white regions;

4. Use the light propagation model to compute initial val-
ues forα, β andE(∞) from the measurements;

5. Refine the values computed in the previous step, us-
ing an optimization algorithm to minimize the differ-
ences between the out-of-water images and the under-
water images corrected according to model.

4.1. Initializing the Parameters

Initially, we measure the value ofE(∞) by marking pix-
els that correspond to the longest water column in the scene
(about 120 cm), after which increasing the distanced prac-
tically does not affect the radiance collected by the camera.

Then, in order to obtain an initial value forβ, we use the
average intensity of the pixels in the target’s black patch,
with is regarded as havingEobj = 0. Substituting this value
in Equation (5), we obtain

βd = −ln

(
E(∞)− E(d)

E(∞)

)
. (8)
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Figure 3. Scaled distances αd and βd, as a
function of the known metric distances d.

At each known value ofd, we calculate the average value
of the scaled distanceβd using Equation (8). Now, we ob-
tain an initial value forβ simply by fitting a line to the points
in the upper curve of Figure 3.

To estimate an initial value forα, we use the average in-
tensities of the white patch,Eobj and E(d), respectively,
in the pictures taken with no water in the fish tank and in
the pictures taken with various values of the water column
length,d, between the target and the camera. Substituting
these values on Equation (5), we obtain

αd = −ln

(
E(d)− E(∞)(1− e−βd)

Eobj

)
. (9)

Similarly to what is done in the initialization ofβ, at each
known distanced the scaled distanceαd is calculated using
Equation 9. The inital value ofα is then obtained by fitting
a line to the points in the lower curve of Figure 3.

4.2. Refining the Model

Because the initial values for the parameters are calcu-
lated based on the simplifying assumption that the black
patch reflects no light, it is necessary to refine these val-
ues, in order to obtain a reliable calibration of the light-
propagation model. Such refinement is performed using
Equation (6) in order to recover the value ofEobj from the
underwater images. More specifically, the Residual Mean
Squares (RMS) error between the restored image and an ac-
tual image of the same target obtained without water is mea-
sured. This error functional is fed to a non-linear optimiza-
tion system that tries to minimize it by applying corrections
to the model parameters. In our implementation of this step,
we used the minimization functionfminuncfrom MatLab



Figure 4. Experimental setup: Cameras 1
(left) and 2 (right) were positioned so that
the water column lengths between them and
each object in the fisk tank ( d1 and d2, respec-
tively) were typically very different.

6.1. Figure 1 displays the calibration target used, both be-
fore and after its underwater images are restored with the
parameter values computed in the calibration.

5. Experimental Results

In order to verify if Algorithm 1 does yield more ac-
curate disparity maps of underwater scenes than those ob-
tained with dense stereo alone, we performed three experi-
ments where multiple objects with very simple shapes were
immersed in a 120× 60× 30 cm fish tank containing wa-
ter with different levels of turbidity.

The experimental set-up is illustrated in Figure 4. Two
cameras Sony DFW-X900 were positioned on different
sides of the fish tank, with their optical axes oriented along
perpendicular directions. More specifically, the cameras on
the left and on the right were set to face maximum water
column lengths of about 120 cm and 30 cm, respectively.

The two cameras were calibrated in unique global geo-
metric and radiometric reference systems, with RMS geo-
metric reprojection errors smaller than 0.5 pixels and RMS
radiometric errors of 5 to 10 gray levels. Moreover, coordi-
nates of the planes where each camera’s optical axis first in-
tersects the fish tank (in the same global reference system)
were estimated during the cameras’ geometric calibration,
so that the length of the water columns between the cam-
eras and the objects could be computed without the need to
place the cameras in contact with the fish tank walls.

5.1. Scene in Clear Water (Low Turbidity)

In a first experiment, the fish tank was filled with clear
water and three objects were immersed in it. A stereo pair of

images of this scene – rectified so that corresponding epipo-
lar lines became identically-numbered scanlines – is shown
in Figure 5. By comparing the two images, it can be ob-
served that the three objects are at very different depths
from the left camera (with water columns of about 54, 75
and 98 cm), and were at closer depths from the right cam-
era (about 19, 13 and 4 cm underwater, respectively).

Figure 6 shows the disparity maps obtained by apply-
ing to these images (a) the unmodified stereo algorithm
of Kolmogorov and Zabih [9], which we will callRegular
Stereofrom this point on, and (b) Algorithm 1 of this pa-
per, which we will callUnderwater Stereo. In these and all
other disparity maps presented in this paper, 100% white
pixels correspond to regions labelled as half-occluded (i.e.,
visible in the left image, but occluded in the right one).
Other graylevels correspond to various estimated dispari-
ties. More specifically, darker graylevels represent larger es-
timated depths with respect to the left camera.

Regular Stereo reconstructed the two objects closer to
the left camera relatively well, because the water column
lengths between each such object and the two cameras are
not excessively different. However, it missed the deeper ob-
ject completely, making it evident that when the underwa-
ter distances to the cameras are very distinct, using a light-
propagation model to correct effects of attenuation and scat-
tering is essential in order to get good reconstructions.

Underwater Stereo, on the other hand, reconstructed the
deeper objects well, but failed to match the lighter stripes
of the closer object. This happened because the radio-
metric calibration of that particular color was particularly
noisy (which can be verified by comparing the two images
in Figure 5). Since the corrections dictated by the light-
propagation model resulted in an increase of the pixel in-
tensities in this particular image area, the radiometric noise
was amplified in the Underwater Stereo Algorithm, which
could not find the correct correspondences. In future work,
we intend to deal with this problem by weighting the resid-
ualsε(d1,d2) = |Eobj1−Eobj2| in a statistically optimal way
before they get used in the last step of Algorithm 1.

5.2. Scene in Water+ Milk (Medium Turbidity)

In a second experiment, 5 ml of milk were added to the
about 200 liters of water in the fish tank, in order to in-
crease the water turbidity. Three objects slightly different
from those of the first experiment were placed at slightly
different positions within the fish tank, so that their under-
water distances with respect to the left and right cameras
were, respectively,{59, 80, 105} cm and{17, 11, 2} cm.
The rectified stereo pair of this scene is shown in Figure 7.

The disparity maps recovered by Regular and Under-
water Stereo are show in Figure 8. In this scene, because
the radiometric calibration was more precise, both meth-



(a) left image (b) right image

Figure 5. Rectified stereo pair used in the low-turbidity experiment.

(a) Regular Stereo (b) Underwater Stereo

Figure 6. Disparity maps for pair of Figure 5.

ods managed to reconstruct all objects reasonably, but con-
trary to Underwater Stereo, Regular Stereo failed to iden-
tify matches for the two areas that appear as white patches
in the central region of its depth map (Figure 8).

5.3. Scene in Water+ Sand (High Turbidity)

Finally, we performed an experiment where about 150 g
of sand where mixed in about 200 liters of clear water, in or-
der to create a high-turbidity medium. The objects and their
positions within the fish tank were almost identical to those
of the previous experiment. In Figure 9, we show real im-
ages of this scene acquired by the left camera both with the
fish tank empty and with it filled with water and sand.

Because of the high turbidity, even Underwater Stereo
failed to identify the upper part of the deeper object, but it
recovered its lower part object reasonably, as well as most
of the two objects closer to the left camera (Figure 10). Reg-
ular Stereo not only missed the deeper object completely: it
missed large chunks of the middle object as well.

6. Conclusions

In this paper we introduced a methodology that uses
a physically-based model of underwater light propa-
gation within dense stereo algorithms in order to re-
construct scenes immersed in liquid media. In experi-
ments with real underwater scenes, we have found that
the three-dimensional reconstructions obtained with this
methodology are in general more accurate than those ob-

tained by applying dense stereo alone to the same images,
especially when the lengths of the water columns be-
tween the scene and the two cameras are very distinct and
the medium has high turbidity.

We are currently working towards deploying the devel-
oped methodology in a real mechanism of fish transposi-
tion, located in the Grande River, MG/SP, Brazil, where we
are doing experimental evaluation of various algorithms for
fish tracking and classification.

Unfortunately, the proposed methodology has a few
drawbacks. It requires very careful radiometric calibra-
tion of both cameras and of the light-propagation medium,
which may be hard to achieve outside a lab. As fu-
ture steps, we are planning to ameliorate these difficulties
through the development of radiometrically-uncalibrated
underwater stereo techniques. We are also planning on do-
ing a rigorous empirical comparison between our method-
ology and the underwater reconstruction algorithm based
on light polarization that was presented by Schech-
ner and Karpel [18] at the latestIEEE CVPR(after the
date in which this paper was submitted for publica-
tion).
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