Loop Snakes: Snakes with Enhanced Topology Control
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Abstract for topologically adaptable snakes. These snakes have the
ability of changing their topology either by subdivision or
Topologically adaptable snakes, or simply T-snakes, are by aggregation allowing every segment contour to be ap-
a standard tool for automatically identifying multiple seg proached by exactly one snake or one snake from inside and
ments in an image. This work introduces a novel approach another from outside. In ideal circumstances, T-snakes are
for controlling the topology of a T-snake. It focuses on the used according to one of the following schemes:

loops formed by the so-called projected curve which is ob-  (a) Initially, the whole image is encircled by a closed
tained at every stage of the snake evolution. The idea is tosnake. During its evolution, that snake is continuously-con
make that curve the image of a piecewise linear mappingtracted and eventually broken into smaller ones which are
of an adequate class. Then, with the help of an additional sypjected to the same contraction process. When all snakes
structure—the Loop-Tree—it is possible to decide in O(1) have either been adjusted to a target contour or become too
time whether the region enclosed by each loop has alreadysmall, the process stops. (B) In a dual way, a series of very
been explored by the snake. This makes it possible to consmall snakes, theeed snakesire randomly spread over the
struct an enhanced algorithm for evolving T-snakes Whoseimage_ They are continuously expanded and when two of
performance is assessed by means of statistics and examhem collide they are merged into a single one. A contour
ples. having seeds in its interior will have a snake approaching
it from the inside, whereas seeds in the background gener-
ate snakes approaching the contours from outside.

1. Introduction The framework of a T-snake, is that of a common snake
plus a 2D-structure—thauxiliary Structurein short:AS—

The use of Active Contour Models or Snakes has be- containing information that makes it possible to directly a
come a standard technique for segmenting an image. HunSociate vertices of a polygonal curve which are close in 2D
dreds of works about the plain snakes model have been probut far apart along the curve. This additional structure-con
duced since it was introduced in [2]. One of its most ob- sists of a matrix whose elements are associated to the ver-
vious limitations, however, is the fact that for each contou tices [3], edges [1] or, as done here, cells of a square mesh
that must be identified, a fierent snake has to be initial- ~ covering the image domain.
ized by the user. Further, in some applications, all segesnent  The original motivation of our approach was to address
having certain properties must be found or simply counted some well-known dtficulties of the original strategy pro-
and the number of them is large enough as to render this apposed in [3], which is described in detail in Section 2. Sim-
proach totally inappropriate, for instance: identifyingl-c  ilarly to that strategy, the approach proposed in this work
lular structures of a given type in microscope images, all also generates at a stakietwo curves: (I) Thephysically
blood vessels in an angiogram or electronic components ontransformed curve—T Cy—which is defined by the new
a board. locations of the snaxels, after they have been moved by the

That limitation has been overcome with the introduction forces of the chosen physical model from their positions in
by McInerney and Terzopoulos in [3], of the T-snakes, short Sy, the initial snake of the stage (Il) The so-calledpro-



jected curve—PC—, which is defined by the sequence of iteration of the method. For the sake of visibilBy-snaxels

intersections betweehCy and mesh edges. andPCi-vertices on diagonal edges have been excluded.
Assume that the snake moves continuously figgto Procedure Evolving an_original T-Snake

PCy. Then, it sweeps (or burns or visits, which in this con- Step 1.Apply to each snaxe, the movement deter-

text are used as synonyms), a whole strip of points. Call mined by the physical model employed. The obtained

visited sethe set of points swept in all stages up to the cur- points ¢,i = 0,...,1) define the Transformed Curve,

rent one. While Mclnerney’s approach uses the Auxiliary TCe.

Sructure to explicitly control that visited set, this is ane
plished implicitly in our approach. We focus on the loops
formed by PCy, some of which will give rise to the new
shakes in stag& + 1. For this reason, we choose to call

e Step 2.Build the Projected CurvdlCy = [s’j, i=0,..,J]
by concatenating the edgeﬁ b s’jﬂ], defined by two
successive intersections BC with edges ofr.

themloop snakes. PGy is considered as the image of a di- ® Step 3.Fori =0,....1, let Qi be the quadrilateral de-
lated version of the snak8y by a piecewise linear map- fined bys_1, s, tj andti_;. These will be termed the
ping I'«. Defining T on a dilated version o8, makes it sweeping quadrilaterals &. Check whethe@; con-
easier to satisfy a few local conditions which are necessary  tains vertices of the mesh which are still unvisited and
for making the strategy computationally attractive. S®cti change thé\Scorresponding element tuisited” .

3 describes those conditions while Section 4 is dedicated to
show how they can be enforced in straightforward way.

Some loops ofPC, labeledopen or unexplored de- W Visited
limit regions yet to be visited by the snake while others, O Unvisited
the closedor exploredloops, enclose regions that have al- = Sweptat

stage k

ready been explored. Results shown in Section 5 demon-
strate that it is possible to infer thabel of a loop simply

by examining the label of adjacent loops found earlier. Even
loops that have no earlier adjacent ones can be correctly la-
beled inO(1) time.

The process is quite simple except for the case vit@n
returns to a cell already visited. Section 6 shows how to han-
dle that case. Two possibilities must then be explored: ei-
therC becomes aouble cel] that is, one with #C; vertex
on each edge, or a topological change involving the edges  Figure 1. One iteration of the original T-snake.
of PC contained inC must be realized. The implementa-
tion of such a change depends on whetR€x has a self-
crossing oikknotin C, or revisits an edge df. Revisiting a
cell triggers a more elaborated process but this occurs very
infrequently if compared to the enormous number of snax-
els generated, as is shown by statistics presented in 8ectio
7.

e Step 4.Consider that all transition edges are initially
unmarked and traverdeCy. Every time an unmarked
transition edgey is reached execute:

— a)Lete = g and lett be one of the triangles ad-
jacent toeg. Then, do:
% 1. Mark e and choose a poing on it consid-
ering the positions of the vertices B, or
Sk one.
x ii. Replacee by e’, the other transition edge
> Other T-snakes Models :gﬁgg:: :3:3 andt by t’, the other triangle
x iii. Repeat —iii until e = ep.
— b) Take the closed polygonal line defined by

Section 8 is devoted to conclusions and future works. For
concision sake, here we discuss the case where snakes only
contract. Nevertheless, the method can be easily extended
in order to handle expanding snakes.

Essentially, in the original approach [3], the T-snake of

stepk—Syx =[s,i=0,...,Il— is evolved as indicated be- .
low. The elements of the AS Matrix, which are related to pointsx. as a snake of stage+ 1.
the mesh vertices, are all initialized with “unvisited”.time Thus, a curve representing each connected component of

following, = will be the K1 triangulation of the mesh ver- the visited set boundary is constructed from its intersesti
tices, that is, the one obtained by cutting each cell alang it with the transition edges and becomes a new snake in step 4.
main diagonal. Aransition edge will be an edge of link- Some observations regarding the procedure above are perti-
ing a visited and an unvisited vertex. Figure 1 represents annent:



1. Checking whether unburned vertices are covered by A regular u-curve is one which is simple and has a sin-
the sweeping quadrilateraly; (Step 3) is time con-  gle vertex on a mesh edge. Since T-snakes must be regular
suming, since this must be done for every new snaxel. u-curves, so are the loops obtained by the approach given
[3] lists 16 diferent cases that must be treated. here. Twou-curves crossing the same sequence of mesh
edges are said to eguivalent
To represent a-curveS = [s;i1 =0,...,1 — 1] we use
the Cell—Edge of the cell—Point of the edge (CEp$tem
where eactls is represented by: (a) Theell coordinate—
C; —indicating theu-cell containing f, s.1]- (b) Theedge
¢ 3. Moving snaxels on diagonal edges has already beencoordinate E(s) indicating which of the four edges @;
proved not to be a good option. The possible gain in containss(the left, top, right and bottom edges Gf are
precision to be obtained by considering is largefit 0 represented by 0, 1, 2 and 3, respectively) i(®), the dis-
set by the fort necessary to make them evolve. tance betwees and its out-vertex expressed in pixels. The
out-vertex of 5, termeady; is the vertex of thei-edge con-

e 4. The use of &1 triangulation allows curves with . T . . .
4 snaxels in a square cell to be generated only if that 2NN S which is outside the region delimited I (the

- . 1 )1
curve does not cross the main diagonal of the cell. This in-vertex ofs; is defined analogously). Also, defiis)™",

makes the process orientation biased since there aré |m|I§1rIy tc; tEh(S)’ d:?\s thetccgiel of thSe engie V\r'h?zs Iocvas
curves which can be approximated by it but would lose an edge of the adjacent cel(s4). See Figure 2 below.
that property if rotated.

e 2. PC, may be traversed up to three times. Once in step
3, where it is constructed and twice in step 4, while
searching for initial transition edges and during the de-
termination of a new snake contour.

From these observations a set of goals which must be
pursued by a new T-snake schema can be established: (A)
No vertex burning because this can be costly. (B) No tri-
angulations or, more generallyp orientation bias. (C) All
curves of a stage must be traversed only oraree (turn
property). We will add thaho history must be necessary
— a stage should only process information obtained within
the stage itself. This property makes it easier to refine the
mesh during the process.

A first approach with those properties was introduced by
Bischdt and Kobbeit in [1]. That schema reduces the time
step thus allowing the Transformed Curve to inherit the sim-
plicity of snakeSy. The price of such a simplification is paid Figure 2. Elements used in the CEP system.
mainly by slowing the snake evolution and thus requiring a
large number of iterations.

The reason for adopting the CEP-system is that it makes
3. Theoretical background loop-processing more straightforward than using plaie-lin
column coordinates. In fac@; and E(s) have to be com-
We propose a method which repeats steps 1 and 2 of theputed anyway, no matter the system used.

algorithm presented earlier except that a verteXP@f is The p-Dilation of S—uD(S)—is the curve obtained by
computed as soon as the segmenT Gk containing it be-  replacing eveng by w;, = v; + €(s - Vi), wheree is a small
comes available. Also, our method does not use a triangu-positive numbeuD(S)is a curve u-equivalent toS, which
lated mesh. passes very close to the out-verticesof=0,...,1 — 1.

As the focus of this work is the control of a snake topol- Given twou-curves,SandR , let Cq,...,Cyx be a max-

ogy, we consider that the physical displacement of a snaxelimal sequence of mesh cells intersected by consecutive

is computed by a “black-box”. We only assume, as is usual edges of both curves. We say tt&p-intersects Rwithin

in the context of T-snakes, that physical displacements hav Cq, ..., Cy if any u-curve equivalent t& crossesR within

amplitudes which are smaller than the edge lengtih—ef one of those cells. This concept is illustrated in Figure 3

cells in theAS Also, hereafter: will refer to the mesh con- The existence or not of a-intersection within the se-

taining these cells. qguenceC,,...,Ck can be determined by computing the
We call au-curve any polygonal line such that: (a) Its product of three functions taking values {Al,Lwhich

vertices are the points where it intersects the edggs of can be tabulated: X, : {0,1,2,3}® — {-1,1} depend-

(b) No vertex of the curve coincides with any vertexiof ing on the three edges df; crossed by theu-curves,
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Figure 3. (a) Two wu-curves which do not u-inter-
sectand (b) A u-intersection and the three func-
tions used to detect it.
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om: 1{0,1,2,3}> — {-1,1}, which depends on the first
and lastu-edges crossed by both curves within the se-
quence of cells, an¥enq: {0, 1,2, 3)® — {-1, 1}, which is
like Xin; for C,,.

We call an elementary mapping (ermap a transfor-
mation between curves obtained at the same dtagfehe
T-snake evolution. In this work, three e-maps will be used:
Two e-maps take the initial snake of the st&yeonto T Cy
and ontoPCy. These will be termedy andPy, respectively.
E-mapI'y takes theu-dilation of Sy onto PC.

s i1

@

M(S)) =M(S; +1)

Figure 4. Non-Adequate ((a)-(b))and Adequate
Mappings ((c)-(d)).

4. Making the Mapping I' Adequate

Making Py adequate can be too restrictive since the ray
of Py at a given snaxel must be constrained to the cone de-
termined by the internal angle & at that snaxel. This can
be too strong a restriction if that angle is small.

Making I'x adequate avoids the case where a snake re-

Tk can be easily defined due to the correspondence beuvisits a cell it has already totally swept and, as the inter-

tween the vertices d, and T C. On the other hand, there
is no natural definition foPx andI'x. The first objective is

nal angles of:D(Sk) have at least 90 the rays will not be
too constrained. Moreover, this new objective requires con

to make them continuous order-preserving piecewise linearSiderably less computation. It can be achieved by acting in

mappings which associate points close to each other. To es:

tablish this last requirement in a more formal way the con-
cept of au-bounded e-map is introduced below.

Let f be a facet ofu (i.e, a vertex, edge or cell). Call
N(f) the union of all cells which are adjacent to the ver-
tices of f. An e-mapM is said to beu-boundedf for every
se f, M(9) is in the interior ofN(f). Of course, if the phys-
ical displacement of all snaxels is less ttdrthen Ty will

be u-bounded, and in that case, we may enforce this prop-

erty onPy andI, too.

Theray of a mappingM at pointsis defined as the open
segment delimited bgandM(s). If g = [s, s:1] is an edge
of the domain ofM, the pointss, 5.1, M(s)andM(s,; de-
fine thesweeping quadrilateradf M generated bg (Q)).

A contractingu-bounded e-map is said to beequatef
every one of its rays is interior to the union of the sweep-
ing quadrilateral®);_; andQ;, adjacent to it. Figure 4 illus-
trates this concept.

two moments. First, when physical displacements are com-
puted, we avoid moving a snax@| across the line orthogo-
nal to its edge which passes by its out-vertex;lfs the co-
ordinate of the displacement applied to a snaxel the di-
rection (horizontal or vertical) of its edge, prevent thasp
sibility by doing:

if E(s) > 1then A = min(A;, p(s))

elseA; = ma>(Ai - p(s-)).

There are no additional restrictions to be imposed on the
movement in the other direction.

The second intervention is performed when a vertex of
PCx is generated. It aims at avoiding two undesirable con-
figurations composed dby; snaxels and”Cy vertices. In
the first configuration, depicted in Figure 5(ACy crosses
uD(Sk) which maked'k not contracting. That configuration
is characterized by: (1) Snaxeds; ands, contained in a
cell C; and having the same out-vertex (2) the intersec-
tion of [Tk(s-1), Tk(s)] with cell C2, diagonally opposed to

If Py is adequate, then it generates no reverse sweepindC1in relation tov;, is the segment delimited by tfC, ver-

quadrilaterals and thus all of its rays will be interior t@ th
strip swept by the snake of stagerhis means that the bor-
der of the visited set is completely containedF@. If T'k

is adequate, each connected component of that borger is
equivalent to a loop oPCy, which is sificient for our pur-

poses. Also, a series of results, given in Section 5 can be ex-

plored to label these loops.

tices,s“j_1 ands“j, both lying on edges adjacentig and (3)

S andsj must belong to the same céll If such a configu-
ration is detected, the intersection betw®& anduD(Sk)

is eliminated by replacing;_, ands; by 5, ands, respec-
tively.

The second configuration to be avoided concerns the ex-
istence of reverse sweeping quadrilaterals. It is shown in



N create an oriented edge from the nodd_pto the node of
NS o T L, (See Figure 6).

: Loop-Trees of dierent topologies or with the same
topology, but with diferent loop-node associations can be
obtained for the same curve depending on the initial point
taken and the circulation used in traversing the curve. For-
tunately, any problems originated from this fact are avbide
if T'x is adequate, as can be derived from Lemma 5.1 be-
low.

Lemma 5.1. If k is an adequate mapping then (A) ev-
) _ ) ) ery open loop of P€is disjoint from other loops found
Figure 5. Undesirable configurations. in the process, and (B) any loop in a sub-tree rooted at
an open loop L will be disjoint from those in the other
sub-trees rooted at L and also from the ancestors of L
in the tree.
So, ifI'k is adequate, item (A) leads us to conclude that
the regions enclosed by the open loopsa will be to-
tally unexplored. In view of that, these loops can be made

Figure 5(B), where snaxels ands,; lay on edges which
are external to a celC, but are adjacent to the same ver-
tex of C, which is cut into two parts b;{/Tk(s_l),Tk(s)].
The two vertices oPCy in C, S, ands’j+l, lay on the same

mesh lines as ands, 1, respectively, which is only possi- .
ble i the quadrilatera®; is reverse. The correction, in this 1€ T-snakes of stagerlt. Also, (A) and (B) together imply

case, consists merely of replacifig(s) by . tha}t these loops are represented in any _Loop—TreIéCQf
Both cases are simultaneously handled by the procedureTh's means that these new T-snakes are independent of both

given below. The following notation is used:_cur and the initial point from whichPCy is traversed and the circu-

s’_prev refer to the two most recently obtaind®C, ver- lation used for that.

tices;i_cur andi_prev denote the indices of the two con- With respect to the labeling processlifis an adequate
secutive snaxels such thsitcur € [Ti(S_prev): Ti(Si_cur)]- mapping, then the following results regarding the nodes of
Also, s_cur ands_prey are denoted bg.cur andsprev, re-  aPC, Loop-Tree can be applied:

spectively and-cur is the current vertex o Gy Lemma 5.2. The parent of an open node is a closed
ProcedureMaking I'c Adequate node. A closed node, however, can have both open and
if i_cur = i_prevthen closed parents.

if E(s_cur) = (E(&cur))f1 then
t_cur « s _cur,
else
if E(S _cur) = E(s_preV) and C(s _cur) = C(s_cur) then A
S _prev« s_prev, s _cur « s.cur
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It should be noted that this procedure embodies all that
must be done when computing a new vertexP@j; in or-
der to ensure thdiy is adequate. We consider remarkable
that, in spite of the many complicate cases determined by
sequences of consecutive reverse sweeping quadrilaterals
or clusters ofT Cy vertices in the same cell, the problem
of makingl'y adequate admits such a simple solution.
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5. Loop-Trees and the Labeling Process \P(

A Loop-Treeof a closed curve& with no multiple self-
intersection points is a graph that can be obtained by the
following process: choose a poisitn C and a circulatiorD
(either clockwise or counter-clockwise). TraveZén that
direction starting at. Every time a poink is revisited cre-
ate a node to represent the loop formed by the patt loé- Lemma 5.3. If both parent and child are closed they
tween the two visits ta. Then, collapse that loop intoand must intersect each other.
continue the tour. After having completed it, for every loop These results allow us to label a loop by examining the
L1 which has been collapsed to a point of another lbgp label of its children in the Loop-Tree. Lemma 5.2 can be

Figure 6. A curve and its Loop-Tree.




used to label aslosed every node having aopen child. with a loop found before and must not be added to the loop
A loop having onlyclosed children, will beopen, if it is tree. The algorithm distinguishes between valid and non-
disjoint from its children (Lemma 5.1), or closed, if itimte  valid loops in the following way: WheCy revisits a cell
sects those children (Lemma 5.3). To start the process, how<C, all elements of the Open and Closed stacks greater than
ever, we must devise a method for labeling the leaves. Everthe index ofLastvertex(C) are popped out. If a new loop is
if 'y is adequate, it is not possible to get the label &G formed whenPC; returns toC and the number of remain-
Loop-Tree leaf if we focus only on the curve itself. Itis nec- ing elements in each stack is even, then that loop will be
essary to analyze the neighborhood of a snaxel in the loop.valid. Otherwise, it will be non-valid. For simplicity, hee-
The information necessary for that analysis is provided by forth we will assume that all loops formed are valid.
the Auxiliary Structure and the following result can be ap-  As loops must be regular-curves, if theLiC returns
plied if the leaf is a proper loop d?Ci. to an edgee, it is considered that a new loop has been
Lemma 5.4. Let s be any snaxel of a leaf L whichisa formed. Other loops are determined by the knot$@.
proper loop of PG. Then, L is a closed loop ifall cells  These loops are identified by a configuration where a cell
adjacent to the out-vertex of s are crossed by it. has two consecutive vertices BC, on its horizontal edges

It remains to consider the case where the Wiz is a and other two consecutive ones on its vertical edges.
simple loop. The simplest alternative in this case istokhec ~ The fact that the characterization of one type of loop is

whether the in-vertex of, has been swept by the snake. related to an edge and the other to a cell determines that
they are treated in ffierent ways. Let us start with the case

wherePC revisits an edge.
A typical configuration in this case is depicted in Fig-
If a cell is revisited, either it will become a double one or ureé 7 A.Sj_m,...,Sj,S,...,Sm With j < i areLiC ver-
aloop has been formed. To describe the actions taken by thdices which form what is calledlaottleneck That configu-
algorithm to identify a double cell or a loop and to make op- ration is characterized by: (/9. ands;_, are on the same
erational the results of Section 5 with respect to labeling a€dge, for n=0,..., m. (B) If theLiC enters a celC, at

6. Reuvisiting a cell

loop, some previous considerations are necessary. S+n then, at the moment that vertex is generatest ver-
(A) The Loop.in_Construction—LiC-is the polygonal line ~ teX(Cp) = Sj-n.
defined by thePCy vertices already determined which nei- Whens is generated, the lodp, , delimited bys;,; and

ther belong to the loops already found nor have been elim-s_;, is identified. Also, any vertex of the bottleneck is dis-
inated for laying on the same edge as a neighbor one. Thecarded for laying on the same edge of anothi€r vertex.

LiC can be considered as the root of the Loop-Tree of the However, the treatment of a bottleneck is not restricted to
part of PC, already determined. that because for labeling the loop, yet to be formed, con-
(B) To use the results of Section 5 it is not necessary to tainings.m.1, it is necessary to check whetie€, has au-
build the whole LoopTree of PC. It suffices to know the  self-intersection within the cells containing verticestloé
children of theLiC and their labels. For that reason, at the bottleneck. If that intersection does not exist the label of
creation of a loop, the indexes of its initial and final ver- that loop must be that dfy and both must be associated to
tices are pushed onto a stack relative to the loops with itsa same Loop-Tree node. They are, in fact, parts of a larger
label—either the Open or the Closed stack. When the par-loop which is subdivided into components which are reg-

ent of the loop is determined, and it is a child of th€ ular u-curves. On the other hand, if theself-intersection
no more, if those indexes are still there, they can be poppedexists Lo becomes a child of th&iC and its extremi-
out. ties must be pushed onto the stack of its label. The exis-

(C) To make it possible to obtain the so-called, “one turn” tence of gu-self-intersection is checked by using the tabu-
property, it is necessary to have a direct link between thelated functionsXjni, Xcom @nd Xenq introduced in Section 3.
initial and final vertices of a loop. For that, the element Thus, the complete treatment of a bottleneck can be de-
of AS associated to a cell stores a code identifying scribed as follows: (A) At the beginning of the bottleneck:
Lastvertex(C) also noteds,, the most recently found ver- LetEj, = E(5), evaluateX,; and find the label of . (B) At

tex of a projected curve which is {0. That code consists of:  the end of the bottleneck: EvaluaXg,q andXcom which de-

(1) the stage at whick; was created and (2) a record con- pends orEjy, andE(s;j_p). If the productXin;. Xcom Xend in-
taining both the CEP-coordinates sfand links (prv and dicates that a-self-intersection exists, thes)_, and s.m

.nxt) to the records of its antecessor and successor in the lasiust be pushed onto the stack of the labdlpfin any case,
loop containing it or in the curretiC . If (1) is not the cur- Sj—n-1 and si.ms1 Must be linked to maintain theiC con-

rent stage then (2) is of no use. nected. (C) For concision sake, the unusual case where there
(D) A loop just found is valid if it is totally contained in is a loop between two consecutive elements;of, ..., s;

the LiC , while a non-valid one shares part of its contour will not be considered here. In view of that, no action is re-



quired at the non-extreme vertices of the bottleneck other(B) or case (C) must be treated. At the creation of the first of
than updating thé&ink_vertex . That vertex must be linked these vertices (likg;), however, the only action that may be
to the next vertex to be generated, if the bottleneck finishesnecessary is to apply the End of Bottleneck treatment. Al
at the current one, in order to maintain ti€ connected.  these steps are summarized in the following procedure.

Procedure NonRepeatedEdge
if Cur_vertex.prevs also in a non repeated edten:

Last_vertex(C(Cur_vertex.prv)) .
X 2] Ly 5 1 if E(Cur_verte®y = E(Cur_vertexprv) then:
o i e Cur_vertex.pry Loop(Lastvertex(C(Currvertexprev)), Curvertex.prv)
It cis) elsethe cell has become a double one
Si X 2 S else ifCur_vertex.prevs in a bottleneckhen:
. ~__ 2 Apply the End of a Bottleneck treatment
- b — X ) Finally, a loop can be labeled and processed by the pro-
Cunsvie::;“ | Last vertex() g cedure Loop below.
N \‘://!’_1}< - Procedure Loop(Ini_vertex,Endvertex)
'*m*‘% Mve”ex ®) Cu?iCérTex if Ini_vertex> Lastloop_endthen Leaf Label(Endvertex)
i - '/ else if Ini_vertex< Lastintersection
Xend /‘ or Ini_vertex< Top(OpensStach then Label— CLOSED
%0 (A) elseLabel — OPEN
Lastloop_end« End.vertex
Figure 7. A bottleneck(7A) and a knot loop(7B). Remove the elements Ini_vertexfrom the two stacks

Pushini_vertexandEnd.vertexonto (Label)-Stack
Link End.vertex.nxto Ini_vertex.prv

_In the case of a bottleneck, the repeated edge of a vis- A |eaf L of the Loop-Tree can be identified by the fact
ited cellC is always that whereastvertex(C)is on. Itre-  that its initial vertex has been created after any vertex in
mains to consider the case whét€ returns to the edge of 5 |50p already found. Its label must be determined by one
Lastvertex(C).prev I_n that seco_nd case, bottlenecks can- of the schemes exposed in Section 5. Now, let us consider
not occur and there is alwaysuaintersection between the . ' .

the way a non-leaf looj is labeled. If a new loop inter-

loop formed and thé&.iC . Thus, that loop must be repre- h ready found th b .
sented in one of the stacks. Eventually, if that second case>€CtS another already found then, by Lemma 5.3, it must

determines the end of a bottleneck, the specific treatment fo P& closed. That intersection exists if the loop initiates be
that situation, given above, must be applied. In Procedurefore the last intersection of theiC with one of its chil-
RepeatecEdge below, all steps described above for treat- dren. If this is not the case, one may try to labeby us-

ing the two cases are put together. ing Lemma 5.2 which establishes that any loop having an
open child is closed. An open child existithe initial ver-

tex of L, Ini_vertex, has been generated before the one on
the top of the Open-Stack. If has not been labeled up to
this point, then it must be open, since a non-leaf closed loop

Procedure RepeatedEdge
if E(Cur_vertey = E(LastverteXC))~! then:
if Cur_ vertex.prvis not in a bottleneckhen:
Loop(Lastvertex(C).nxt,Curvertex.prv)

Apply the Begining of a Bottleneck treatment either has an open child or intersects its children. Bedades
elseLink vertex« Lastvertex(C).prv beling the new loop, it is necessary to update the stacks and
else ifE(Cur.vertex)= E(Lastvertex(C).prv)then: extend theLiC .

if Cur_vertex.pnis in a bottleneckhen:
Apply the End of a Bottleneck treatment

Loop(Lastvertex(C) prv, Cuertex.prv) 7. Statistics and Examples of Segmentation

Now, assume that tHeC reenters an already visited cell A program for evolving Loop-Snakes has been imple-
C by crossing a non repeated edge-at vertexs (See Fig-  mented and applied to a series of test examples. The statis-
ure 7B). When the next vertexs, - is determined, there  tjcs optained from these validation tests are the best argu-
are three possibilities: (A) 16,1 is on a repeated edge, & ment in favor of the approach introduced here. For evalu-
loop wil t_)e created by the routine Repea_mdge above. . ating the overall computationatfert required by that ap-
(B) If s,1is also on a non-repeated edge with the same ori- e .
proach, the snaxels have been classified according to the

entation ofeg, Cn LIiC will consist of two crossing seg- ) )
ments with extremities op-edges of the same direction. In umber of operations, with regard to the topology control,

that case a knot loop must be generated. (@ Hnds.1 that must .be performed when they are processed. _Here,
are on non-repeated edges dfefient directionsC will be- for simplicity, they will be grouped in the three following
come a double cell. Thus, at the creation of a second con-classes: (A) snaxels such thatTk(s-1), Tk(s)] cuts a cell
secutive vertex in a non-repeated edge (Bke) either case  into two parts. (B) snaxels at which the procedure to make



I'x adequate takes a corrective action . (C) Snagedsich is adequate, the work of burning the mesh vertices swept
that [Tk(s-1), Tk(s)] intersects an already visited cell. The by the T-snake can be reduced to label as visited the out-
number of snaxels in each of these classes was computedertex of everyPCy vertex generated. This property can be

for images of four dierent types - Synthetized images (I), extended to T-Surfaces and give origin to a faster method.
Noisy images (ll), Images with many segments (lll) and There are also 2D variants of the method yet to be explored.
Images with cells on a textured background (IV). The re- The most promising one does not even require that the pro-

sults obtained are presented in Table 1. It can be observegected curve be determined.

images 1| Images Il | Images Il | Images IV References
Group A | 142.605| 937.837 360.687 425.618
Groug B 1.806 95357 55 453 27,866 [1] Bischaf and L. Kobbeit. Snakes with topology contrdThe
GroupC| 6350 | 8540 | 12541 | 3.808 Visual Computer .
Overall | 557282 | 2.847.313| 1.183.100] 1.212.631 [2] A. W. M. Kass and D. Terzopoulos. Snakes:active contour

models.The Visual Computer

[3] T. Mclnerney and D.Terzopoulos. Topologically adaptable
snakes. Proc. of Int. Conf on Computer Visippages 840—
845, 1995.

[4] A. Oliveira and S. Ribeiro.
that the number of most costly snaxels, that is, those deter-

mining thatPCy revisits a cell (Group C), is considerably
small compared with the total number of snaxels, not reach-
ing 1.2%. Also, the snaxels in group A are no more than
36%, of the total which means that for the other, at least
64% of them, the only action specific of this approach is
testing whether_cur = i_prey, since limiting the displace-
ment of the snaxels and checking and updatingABeare
common to all approaches. Moreover, for the snaxels not in
B, at least 96% of the overall number , that action is lim-
ited to 4 tests. This means that: (1) the number of snaxels
requiring additional work is a negligible fraction of the to
tal and (2) for those 96% of the snaxels, the performance
of Loop-Snakes is clearly hard to beat. In fact, the num-
bers above attest the adequacy of the strategy employed in
this work: spend minimumfeort when processing a plain
snaxel and delay all the complication to the moment a loop
may be found.

Two examples where the method has been applied are il-
lustrated in figures 8 and 9. The first one shows the ability of
ignoring small artifacts present in the background. The sec
ond is an example where the T-snake splits multiple times.
The solutions indicated in both cases, have been obtained
without refining the mesh or applying any post-processing.

Table 1. The number of snaxels computed.

The loop snakes page:
httpy/ganimede.lcg.ufrj.gprojetogloopsnakes. 2004.

8. Conclusions and Future Work

A series of theoretical results (Sections 3 - 5) had to be
developed to support the Loop-Snakes approach. Based on
those results it was possible to create a methodology satis-
fying the four desired properties indicated in Section 2 and
having a clear computational gain when compared to the ex-
isting methods, as seen in Section 7.

With respect to future works , the possibility of expand-
ing the results obtained here for T-surfaces evolving in 3D-
images can be considered in the following contextl'df

Figure 9. Evolution with multiple splits.




