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Abstract

In this paper, we address the problem of lane detection
and lane tracking. A linear model is used to approximate
lane boundaries in the first frame of a video sequence, us-
ing a combination of the edge distribution function and the
Hough Transform. A new linear-parabolic model is used in
the subsequent frames: the linear part of the model is used
to fit the near vision field, while the parabolic model fits
the far field. The proposed technique demands low compu-
tational power and memory requirements, and showed to be
robust in the presence of noise, shadows, lack of lane paint-
ing and change of illumination conditions.

1. Introduction

Researchers in the areas of computer vision and intel-
ligent vehicles have been devoting great efforts to develop
machine vision systems. Cameras installed inside a vehicle
can be used for constant monitoring of the road, detecting in
advance tendencies of lane departure or collision with other
vehicles [1]. Also, Autonomous Guided Vehicles (AGVs)
can rely on computer vision systems for unsupervised navi-
gation. In both applications, it is important to obtain robust
information about road boundaries.

Many road boundary detection/following systems have
been developed in the past years. However, several condi-
tions can decisively degrade the performance of lane detec-
tion techniques:

• shadows: trees, buildings and other vehicles project
shadows on the road, creating false edges;

• solar position: direct sunlight may saturate the ac-
quired images, or cause specular reflexes;

• climate: natural fenomena (such as fog, rain or snow)
may degrade significantly the quality of the images;

• occlusion: other vehicles may cause partial or com-
plete occlusion of road boundaries.

In this paper, we propose a linear lane model for the
first image of the video sequence (initial detection), and a
linear-parabolic model for all the remaining frames (road
following). In Section 2, some existing lane detection and
following techniques are reviewed. Section 3 describes our
method for initial road boundary detection based on a lin-
ear function. In Section 4, our linear-parabolic model for
lane following is presented. Section 5 contains some exper-
imental results of the proposed method, for video sequences
with different illumination conditions, shadows and weak
road paintings. Finally, the conclusions and ideas for future
work are given in the last Section.

2. Related Work

Many methods for road segmentation and lane following
have been proposed in the past years. Different approaches,
such as watersheds, deformable models and particle filter-
ing were used to tackle these problems.

Kluge [2] proposed a method for estimating road curva-
ture and orientation based on isolated edge points, without
the need of grouping them. This system works if at most
50% of input edge points are noisy, which may not happen
in practical situations (due to weak road markings, shad-
ows, etc.).

Beucher and his colleagues [3, 4] worked on road seg-
mentation and obstacle detection based on watersheds.
Their techniques consist of applying a temporal fil-
ter for noise reduction (and connection of ground mark-
ings), followed by edge detection and watershed segmen-
tation. Such methods demand a relatively high computa-
tional cost and the resulting road boundaries are typically
jagged (due to the watershed transform).

Another class of lane detection methods [5, 6, 7] rely
on top-view (birds eye) images computed from images ac-
quired by the camera. These methods are reliable in obtain-
ing lane orientation in world coordinates, but require online
computation of the top-view images.



Apostoloff and Zelinsky [8] proposed a lane tracking
system based on particle filtering and multiple cues. In fact,
this method does not track the lanes explicitly, but it com-
putes parameters such as lateral offset and yaw of the ve-
hicle with respect to the center of the road. Although the
method appears to be robust under a variety of conditions
(shadows, different lighting conditions, etc.), it cannotbe
used to estimate curvature or detect if the vehicle is ap-
proaching a curved part of the road.

Deformable road models have been widely used for lane
detection [9, 10, 11, 12, 13, 14]. These techniques attempt
to determine mathematical models for road boundaries. In
general, simpler models (e.g. linear functions) do not pro-
vide an accurate fit, but they are more robust with respect
to image artifacts. On the other hand, more complex mod-
els (such as parabolic functions and splines) are more flexi-
ble, but also more sensitive to noise. Hence, there is a trade-
off between accuracy of the fit and robustness with respect
to image artifacts.

A typical application for lane detection/following algo-
rithms is the development of lane departure warning sys-
tems. Parameters such as orientation and distance of the ve-
hicle with respect to lane boundaries can be used for lane
departure detection [15, 16]. As expected, the performance
of such systems is highly dependent on the accuracy of the
parameters obtained from the lane detection/following al-
gorithm (orientation, lateral offset, etc.).

In this paper, we propose a novel technique for lane de-
tection/following. Basically, our approach consists of two
steps:

1. Lane detection - this first step consists of detecting lane
boundaries from the initial image (the first frame of the
video sequence), using a linear lane model.

2. Lane following - this step consists of updating the de-
tection obtained in the previous frame to the subse-
quent one, using a new linear-parabolic lane model.
The linear part of the model is used in the near field
(locally, the road is assumed to be straight), and the
parabolic part is utilized in the far field (such that in-
coming curves can be efficiently detected).

The proposed model combines the robustness of the lin-
ear function with the flexibility of the parabolic function,
showing a good performance in the presence of noise, shad-
ows and different illumination conditions. Next, we de-
scribe in detail these two steps.

3. Initial Lane Detection

In this stage, the first frame acquired by the camera is
processed, and the two (left and right) lane boundaries are
obtained automatically. Our coordinate system coincides
with image coordinates, and a thresholdxm separates the

near and far vision fields, as shown in Figure 1. The choice
for xm depends on the size and the quality of the acquired
images, but a default value can be half of the image height.
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Figure 1. The initial frame of a video se-
quence, with our coordinate system and the
definition of the near and far fields.

For the initial detection, we chose a linear model for the
lane boundary, because of its simplicity and robustness. We
also assume that the following conditions are satisfied in the
first frame of the video sequence:

• the vehicle is initially located in a straight portion of
the road;

• the vehicle is approximately aligned with the road;

• there are no linear structures in the image, except for
the lane boundaries.

To detect the linear lane boundaries, we combine the
edge distribution functionapproach adopted by Lee [15]
with the Hough Transform [17].

3.1. The Edge Distribution Function

For the greyscale imageI(x, y), the gradient function
∇I(x, y) can be approximated by:

∇I(x, y) =

(

∂I

∂x
,

∂I

∂y

)T

≈ (Dx,Dy)
T

, (1)

whereDx andDy are differences computed in thex andy

directions (this differences can be computed using the So-
bel operator [18]). We can estimate the gradient magnitude
and orientation using the following equations:

|∇I(x, y)| ≈ |Dx| + |Dy|, (2)

θ(x, y) = tan−1

(

Dy

Dx

)

. (3)

To determine the orientation of the road boundaries, we
compute the edge distribution function (EDF), which is the
histogram of the gradient magnitude with respect to the ori-
entation1. To compute this histogram, the anglesθ(x, y)



within the range[−90◦, 90◦] were quantized in 90 subin-
tervals (each one with length of2◦). A look-up table can be
used to avoid the computation oftan−1 in Equation (3).

Assuming that lanes are the only significant linear ob-
jects in the image, and that the car is approximately aligned
with the road, it is expected that the largest peak on the
left portion of the histogram (corresponding toθ < 0) will
be related to the right lane boundary. Similarly, the largest
peak on the right portion of the histogram (corresponding
to θ > 0) will be related to the left lane boundary. Fig-
ure 2 shows the EDF (a Gaussian filter was used to smooth
the histogram) for the road image shown in Figure 1. The
largest peak in the negative region ofθ, which occurs at
α1 = −54◦, corresponds to the right boundary of the right
lane; similarly, the largest peak in the positive region ofθ,
occurring atα2 = 34◦, corresponds to the left boundary of
the right lane. There is a second peak close toα2, that is re-
lated to the left boundary of the left lane.
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Figure 2. Smoothed Edge Distribution Func-
tion (EDF).

Lee [15] used the EDF to determine the orientation
of each lane boundary. However, we want to detect these
boundaries explicitly, by fitting a linear function. Letα be
the orientation corresponding to the desired lane boundary.
Also, letg(x, y) be the directional edge image defined as:

g(x, y) =

{

|∇I(x, y)|, if |θ(x, y) − α| < Tα

0, otherwise
, (4)

whereTα is an angular threshold (in this work, we used
Tα = 2◦, to match the quantization used in computation of

1 Please, note that the gradient direction is orthogonal to the contour ori-
entation.

the EDF). It should be noticed thatg(x, y) contains edge
magnitudes of the original imageI(x, y) that are aligned
with the directionα. These magnitudes will be mostly re-
lated to the lane boundary, but there will be also some pixels
related to noise or other structures that are aligned with the
lane. Figure 3 shows imageg(x, y) for α = −54◦, which
corresponds to the right boundary of the right lane. Indeed,
some isolated pixels with small magnitude that are not re-
lated to this lane boundary appear in the image.

Figure 3. Magnitudes aligned with the right
boundary of the right lane.

3.2. The Hough Transform

Applying the Hough Transform to a set of edge points
(xi, yi) results in an 2D functionC(ρ, θ) that represents
the number of edge points satisfying the linear equation
ρ = x cos θ + y sin θ. In practical applications, the angles
θ and distancesρ are quantized, and we obtain an array
C(ρk, θl). The local maxima ofC(ρk, θl) can be used to
detect straight line segments passing through edge points.

In our case, the orientationθ can be obtained from the
EDF peakα described in Section 3.1 (in fact, we have
θ = α, as shown in Figure 4). Thus, we have a one-
dimensional search (only the parameterρk). Also, instead
of buildingC(ρk, α) by counting the number of edge pixels
belonging toρk = x cos α + y sin α, we use an alternative
approach, based on the Gradient Weighted Hough Trans-
form [19].

Let (xi, yi), for i = 1, ..., n, be the coordinates of non-
zero pixels of the thresholded magnitude imageg(x, y) cor-
responding to the orientationα. We defineC(ρk, α) as:

C(ρk, α) =
∑

j

g(xj , yj), (5)

where(xj , yj) are all the edge pixels belonging toρk =
x cos α + y sinα. By summing edge magnitudes instead of
counting the number of aligned pixels, we minimize the in-
fluence of edges with small magnitudes (typically related to
noise). Ifρα denotes the global maximum ofC(ρk, α), the



lane boundary corresponding to the EDF peakα is given by
the straight line:

y = −x cot α +
ρα

sin α
. (6)
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Figure 4. Relation between the EDF peak α

and the parameters ρ and θ of the Hough
Transform.

This line detection procedure is applied independently
to each lane boundary, resulting in one linear model for
each boundary. This initial detection is used to find the lane
boundary region of interest (LBROI), which will be the
search space for lane boundaries in the subsequent frame
of the video sequence. In this work, a “thick” line was the
chosen LBROI, and can be obtained by extending the linear
function in they directionw pixels to the right andw pix-
els to the left. The choice ofw depends on the width of the
lane markings (if they exist), the focal length of the camera
and the travelling speed of the vehicle. The LBROIs shown
in Figure 5 correspond to the lane boundaries depicted in
Figure 1 (usingw = 8 pixels).

It should be said that other variations of the Hough
Transform, such as the Progressive Probabilistic Hough
Transform [20], could be used to reduce the computational
cost of the initial detection. However, this gain would be in-
significant, because the procedure described in this Section
is applied just one time.

4. Lane Following

After the initial segmentation in the first frame, we need
to update the detection for the following frames. For the ini-
tial detection, a linear model was chosen, because it pro-
vides a robust automatic detection. However, this model
is obviously not suitable for curved roads. In fact, many
road/lane models have been proposed in the past years
[9, 10, 11, 12, 13]. Simpler models demand less compu-
tational power and are usually less sensitive to noise; on the

Figure 5. LBROIs corresponding to the initial
lane segmentation using the linear model.

other hand, models with more degrees of freedom can pro-
vide a more accurate fit to the lane boundary, but are more
likely to be affected by image artifacts.

In this paper, we propose a lane boundary model that
is flexible enough to follow curved roads, robust with re-
spect to road/backgroud variations (noise, shadows, weak
lane markings), and that can provide information about lane
orientation and/or curvature. This model is described next.

4.1. Lane Model Formulation

Our lane boundary modelf(x) is composed by a linear
function in the near field, and a parabolic function in the far
field:

f(x) =

{

a + bx, if x > xm

c + dx + ex2, if x ≤ xm
, (7)

wherexm represents the border between near and far fields.
We impose continuity and differentiability conditions on
the functionf , such thatf(x+

m) = f(x−

m) andf ′(x+
m) =

f ′(x−

m). These conditions imply that:
{

a + bxm = c + dxm + ex2
m

b = d + 2exm
. (8)

We can solve this system for the variablesc ande, obtain-
ing:

c = a +
xm

2
(b − d) and e =

1

2xm

(b − d) . (9)

Replacing these values back into Equation (8), we obtain:

f(x) =

{

a + bx, if x > xm
2a+xm(b−d)

2 + dx + (b−d)
2xm

x2, if x ≤ xm
.

(10)
Hence, we need only three coefficients (a, b andd) to de-
scribe our lane boundary model. To determine these param-
eters, we apply a minimum weighted square error approach,
fitting the proposed model to the detected edges within the
LBROI. This procedure is applied independently for each
lane boundary, and is described next.



4.2. Fitting the Lane Model

Let us consider that a lane boundary was detected in
the previous frame, and the corresponding LBROI was ob-
tained. The edge image|∇I(x, y)| of the current frame is
computed within the LBROI. Most of the edges will be re-
lated to the lane boundary, but some edges related to noise,
road texture or other structures will also appear. To remove
these undesired edges, we apply an adaptive threshold based
on the mean magnitudeMmeanof the edges. In fact, we re-
move all the edges with magnitudes smaller than0.5Mmean.
Let g(x, y) denote the thresholded edge image:

g(x, y) =

{

|∇I(x, y)|, if |∇I(x, y)| ≥ 0.5Mmean

0, otherwise
.

(11)
It should be noticed that this adaptive threshold is not af-

fected by varying illumination conditions, and does not re-
quired anya priori information about the contrast between
the road and the image background (or the intensity of the
lane markings, if they exist). Figure 6 shows the thresholded
edge imageg(x, y) for the right LBROI depicted in Fig-
ure 5.

Figure 6. Thresholded edge image corre-
sponding to the right LBROI.

Let (xni
, yni

), for i = 1, ...,m, denote them coordi-
nates of the non-zero pixels of the thresholded edge image
g(x, y) belonging to the near field, andMni

= g(xni
, yni

)
the respective magnitudes. Analogously, let(xfj

, yfj
) and

Mfj
= g(xfj

, yfj
), for j = 1, ..., n, represent the same

characteristics for then edge pixels in the far field.
Fitting the lane model (10) to the edge data results in a

linear system with3 unknowns andn + m equations:

{

a + bxni
= yni

, i = 1...m
2a+xm(b−d)

2 + dxfj
+ (b−d)

2xm
x2

fj
= yfj

, j = 1...n
.

(12)
Typically, (n+m) will be much greater than3, and this sys-
tem will not admit an exact solution. However, we can find
an approximated solution such that a specific error measure

is minimized. Assuming that edges related to lane bound-
aries usually have larger magnitudes than edges related to
other irrelevant structures (such as noise, road texture, etc.),
we propose the following weighted square error measure:

E =

m
∑

i=1

Mni
[yni

− f(xni
)]

2
+

n
∑

j=1

Mfj

[

yfj
− f(xfj

)
]2

.

(13)
This error is minimized when the following3×3 linear sys-
tem is solved:

A
T
WAc = A

T
Wb, (14)

where

A =


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T andb = [yn1

, . . . , ynm
, yf1

, . . . , yfn
]
T

.

It should be noticed thatAT
WA is a symmetric matrix.

Hence, only a triangular portion (upper or lower) of the ma-
trix must be computed, reducing the computation burden.

Figure 7 shows the proposed model fit to the second
frame of our video sequence, where the dashed line indi-
cates the border between the far field and the near field.
Since this Figure illustrates a straight portion of the road,
the parabolic part of the model is approximately linear. In
Section 5, some results are shown for curved roads.

Similarly to the procedure applied in the initial segmen-
tation, the LBROI is obtained by “thickening” the fitted
function in they direction,w pixels to the right andw pix-
els to the left.

In the subsequent frame, the edge image will be com-
puted only in a small region delimited by the LBROI ob-
tained in the current frame. The procedure described in Sec-
tion 4.2 is then repeated for the remaining frames.

The proposed lane following technique requires low
computational cost and memory needs. In summary, an
edge detector is applied at the LBROIs (which is only a
small fraction of the image), and edge magnitudes larger



xm

Figure 7. The proposed model superimposed
to the original image (second frame of the
video sequence). The dashed line indicates
the border between the near and far fields.

than a threshold are used to compute the3 × 3 symmet-
ric linear system given in Equation (14). Since this proce-
dure is applied to each lane boundary separately, the algo-
rithm can be parallelized.

5. Experimental Results

We tested our lane detection/following algorithm for dif-
ferent video sequences containing several conditions that
may degrade the accuracy of the proposed algorithm, such
as varying illumination conditions, presence of shadows and
weak painting of the lane markers. All video sequences in
this work were obtained at 30 frames per second, with a res-
olution of240 × 320 pixels.

The first video sequence depicts a road, and was obtained
with a travelling speed of approximately80 km/h. In fact,
only the central portion of the images (140×320 pixels) was
processed, because we needed to remove the horizon (top
of the image) and the windshield wipers (bottom of the im-
ages). Figure 8 shows twelve frames of this sequence, sepa-
rated by approximately 3 seconds. They are displayed from
left to right, top to bottom. It can be noticed that both lane
boundaries are efficiently detected, even in the presence of
shadows (frames 6-8), the reflex of a book on the windshield
(frames 1-7), different illumination conditions (please,no-
tice that the asfalt is much brighter in frames 1-2 in compar-
ison with other frames) and very poor painting conditions
(frames 10-12). As expected, the accuracy of the model fit-
ting is dependent on the conditions of the lane markers.

The second video sequence depicts the internal avenue of
our university, and was obtained with a travelling speed of
approximately40 km/h. The central portion of the images
was analyzed (110× 320 pixels), to remove the hood of the
car and the horizon. Figure 9 shows twelve frames of this se-
quence. It can be observed that the proposed algorithm also
works in unpainted roads, as long as there is enough con-
trast between the road and the background (in this video
sequence, the algorithm captures the contrast between the

road and the sidewalk to obtain the left lane boundary).
Markings on the center the road (such as speed limits and
arrows) do not affect our lane following procedure, as il-
lustrated in frames 8 and 12. However, pedestrian cross-
ings may cause some confusion to the algorithm, because
edges close to lane boundaries are detected. In this case,
our model tends to follow the crossing, as shown in the 6th
frame. As the crossing disappears, the model correctly fits
back the lane boundary. Also, it can be noticed that the al-
gorithm may work in intersections, if there is enough infor-
mation about lane boundaries (as shown in the 8th frame).

The third video sequence was obtained at night, and con-
tains1200 frames acquired at30 fps. An additional prob-
lem of nocturnal images is saturation caused by headlights
of incoming vehicles, as shown in Figure 10. This Figure il-
lustrates a time period of 1.6 seconds, when a truck and a
car were travelling towards the camera. Despite the strong
edges caused by the headlights and local saturation, the
proposed linear-parabolic model was robust enough to cor-
rectly fit lane boundaries.

6. Conclusions and Future Work

In this paper, we proposed a new lane detec-
tion/following algorithm. In the initial detection, a
linear model is fitted to the lane boundaries, using a com-
bination of the EDF and the Hough Transform. For the
lane following step, a new lane boundary model was pro-
posed, consisting of a linear model for the near field,
and a parabolic model for the far field. This model is fit-
ted to the lane boundaries by minimizing a weighted square
error.

The proposed model combines the robustness of the lin-
ear model with the flexibility of the parabolic model. As
shown in Section 5, our technique can accurately fit straight
or curved portions of the road, performing well in the pres-
ence of shadows, image artifacts, varying lighting condi-
tions, and poor painting of lane markings.

For future work, we intend to develop a lane depar-
ture warning system based on information (such as ori-
entation, curvature and lateral offset) extracted from our
linear-parabolic model. Another idea is to further extend our
method for autonomous driving.
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