A Robust Linear-Parabolic Model for Lane Following

Claudio Rosito Jung and Christian Roberto Kelber
UNISINOS - Universidade do Vale do Rio dos Sinos
Ciéncias Exatas e Tecroglicas
Av. UNISINOS, 950. %0 Leopoldo, RS, Brasil, 93022-000
Crjung@xat as. uni si nos. br, kel ber @l etri ca. uni si nos. br

Abstract In this paper, we propose a linear lane model for the
first image of the video sequence (initial detection), and a
In this paper, we address the problem of lane detection linear-parabolic model for all the remaining frames (road
and lane tracking. A linear model is used to approximate following). In Section 2, some existing lane detection and
lane boundaries in the first frame of a video sequence, us-following technigques are reviewed. Section 3 describes our
ing a combination of the edge distribution function and the method for initial road boundary detection based on a lin-
Hough Transform. A new linear-parabolic model is used in ear function. In Section 4, our linear-parabolic model for
the subsequent frames: the linear part of the model is usedane following is presented. Section 5 contains some exper-
to fit the near vision field, while the parabolic model fits imental results of the proposed method, for video sequences
the far field. The proposed techniqgue demands low compu-with different illumination conditions, shadows and weak
tational power and memory requirements, and showed to beroad paintings. Finally, the conclusions and ideas forritu
robust in the presence of noise, shadows, lack of lane paint-work are given in the last Section.
ing and change of illumination conditions.

2. Related Work

1. Introduction _ :
Many methods for road segmentation and lane following

Researchers in the areas of computer vision and intel-have been proposed in the past years. Different approaches,
ligent vehicles have been devoting great efforts to developsuch as watersheds, deformable models and particle filter-
machine vision systems. Cameras installed inside a vehicleng were used to tackle these problems.
can be used for constant monitoring of the road, detecting in  Kluge [2] proposed a method for estimating road curva-
advance tendencies of lane departure or collision withrothe ture and orientation based on isolated edge points, without
vehicles [1]. Also, Autonomous Guided Vehicles (AGVs) the need of grouping them. This system works if at most
can rely on computer vision systems for unsupervised navi-50% of input edge points are noisy, which may not happen
gation. In both applications, it is important to obtain rebu  in practical situations (due to weak road markings, shad-
information about road boundaries. ows, etc.).

Many road boundary detection/following systems have  Beucher and his colleagues [3, 4] worked on road seg-

been developed in the past years. However, several condimentation and obstacle detection based on watersheds.
tions can decisively degrade the performance of lane detec-Their techniques consist of applying a temporal fil-

tion techniques: ter for noise reduction (and connection of ground mark-
e shadows: trees, buildings and other vehicles projectings), followed by edge detection and watershed segmen-
shadows on the road, creating false edges; tation. Such methods demand a relatively high computa-

tional cost and the resulting road boundaries are typically

jagged (due to the watershed transform).

] ] Another class of lane detection methods [5, 6, 7] rely

e climate: natura_l feln.omena (such as fog, rain or SNOW) g top-view (birds eye) images computed from images ac-
may degrade significantly the quality of the images;  quired by the camera. These methods are reliable in obtain-

e occlusion: other vehicles may cause partial or com- ing lane orientation in world coordinates, but require oali
plete occlusion of road boundaries. computation of the top-view images.

e solar position: direct sunlight may saturate the ac-
quired images, or cause specular reflexes;



Apostoloff and Zelinsky [8] proposed a lane tracking near and far vision fields, as shown in Figure 1. The choice
system based on patrticle filtering and multiple cues. In fact for z,,, depends on the size and the quality of the acquired
this method does not track the lanes explicitly, but it com- images, but a default value can be half of the image height.
putes parameters such as lateral offset and yaw of the ve-
hicle with respect to the center of the road. Although the
method appears to be robust under a variety of conditions
(shadows, different lighting conditions, etc.), it caniet
used to estimate curvature or detect if the vehicle is ap-
proaching a curved part of the road.

Deformable road models have been widely used for lane
detection [9, 10, 11, 12, 13, 14]. These techniques attempt
to determine mathematical models for road boundaries. In
general, simpler models (e.g. linear functions) do not pro-
vide an accurate fit, but they are more robust with respect Figure 1. The initial frame of a video se-
to image artifacts. Qn the o_ther hand, more complex mod_— quence, with our coordinate system and the
els (such as parabolic functions and splines) are more flexi-  jefinition of the near and far fields.
ble, but also more sensitive to noise. Hence, there is a-trade
off between accuracy of the fit and robustness with respect
to image artifacts. o ) ]

A typical application for lane detection/following algo- For the initial detection, we c_hosg a linear model for the
rithms is the development of lane departure warning sys-ane boundary, because of its simplicity and robustness. We
tems. Parameters such as orientation and distance of the ved!S0 assume that the following conditions are satisfieden th
hicle with respect to lane boundaries can be used for langfirst frame of the video sequence:
departure detection [15, 16]. As expected, the performance e the vehicle is initially located in a straight portion of
of such systems is highly dependent on the accuracy of the the road:
par_ameters_ obta_ined from the lane detection/following al-  § e vehicle is approximately aligned with the road;
gorithm (orientation, lateral offset, etc.). ) ) )

In this paper, we propose a novel technique for lane de- ® there are no Ilnegr structures in the image, except for
tection/following. Basically, our approach consists obtw the lane boundaries.
steps: To detect the linear lane boundaries, we combine the
edge distribution functiorapproach adopted by Lee [15]
with the Hough Transform [17].

1. Lane detection - this first step consists of detecting lane
boundaries from the initial image (the first frame of the

video sequence), using a linear lane model. 3.1 TheEdge Distribution Function

2. Lane following - this step consists of updating the de-
tection obtained in the previous frame to the subse- For the greyscale imag&(z,y), the gradient function
guent one, using a new linear-parabolic lane model. VI(z,y) can be approximated by:

The linear part of the model is used in the near field o oI\T

(locally, the road is assumed to be straight), and the VI(x,y) = (_7 _> ~ (D,,D,)", (1)
parabolic part is utilized in the far field (such that in- dz” dy

coming curves can be efficiently detected). whereD,, and D, are differences computed in theandy

directions (this differences can be computed using the So-
bel operator [18]). We can estimate the gradient magnitude
and orientation using the following equations:

The proposed model combines the robustness of the lin-
ear function with the flexibility of the parabolic function,
showing a good performance in the presence of noise, shad
ows and different illumination conditions. Next, we de- \VI(z,y)| = |Dg| + |D,l, (2)

scribe in detail these two steps. D
O(x,y) = tan~! <Dy> . (©)]

3. Initial Lane Detection To determine the orientation of the road boundaries, we

In this stage, the first frame acquired by the camera is compute the edge distribution function (EDF), which is the

processed, and the two (left and right) lane boundaries arehistogram of the gradient.magnitude with respect to the ori-
obtained automatically. Our coordinate system coincidesentat'or;" To compute this histogram, the anglég, y)
with image coordinates, and a threshalg separates the




within the range[—90°,90°] were quantized in 90 subin- the EDF). It should be noticed thgfz,y) contains edge
tervals (each one with length 8f). A look-up table can be  magnitudes of the original imaggz, y) that are aligned
used to avoid the computation tfn~! in Equation (3). with the directiona. These magnitudes will be mostly re-
Assuming that lanes are the only significant linear ob- lated to the lane boundary, but there will be also some pixels
jects in the image, and that the car is approximately alignedrelated to noise or other structures that are aligned wih th
with the road, it is expected that the largest peak on thelane. Figure 3 shows imaggx, y) for « = —54°, which
left portion of the histogram (correspondingéo< 0) will corresponds to the right boundary of the right lane. Indeed,
be related to the right lane boundary. Similarly, the larges some isolated pixels with small magnitude that are not re-
peak on the right portion of the histogram (corresponding lated to this lane boundary appear in the image.
to & > 0) will be related to the left lane boundary. Fig-
ure 2 shows the EDF (a Gaussian filter was used to smooth
the histogram) for the road image shown in Figure 1. The
largest peak in the negative region @&fwhich occurs at 5
a1 = —5H4°, corresponds to the right boundary of the right \
lane; similarly, the largest peak in the positive regiord of .
occurring atws = 34°, corresponds to the left boundary of
the right lane. There is a second peak closedathat is re- ~
lated to the left boundary of the left lane. *

Figure 3. Magnitudes aligned with the right
45 boundary of the right lane.

3.2. TheHough Transform

Applying the Hough Transform to a set of edge points
(z4,y;) results in an 2D functiorC(p, ) that represents
the number of edge points satisfying the linear equation
p = xcosf + ysinf. In practical applications, the angles
f and distance® are quantized, and we obtain an array
C(pk,0:). The local maxima of”(pg, ;) can be used to

oL ‘ detect straight line segments passing through edge points.

-90 -54 o 34 90 In our case, the orientatiofhcan be obtained from the
orientaton (in degrees) EDF peaka described in Section 3.1 (in fact, we have
Figure 2. Smoothed Edge Distribution Func- 6 = «, as shown in Figure 4). Thus, we have a one-
tion (EDF). dimensional search (only the parametg). Also, instead
of building C(py, ) by counting the number of edge pixels
belonging top;, = = cos a 4+ y sin a, we use an alternative

Lee [15] used the EDF to determine the orientation %ﬁ?nro[ig?' based on the Gradient Weighted Hough Trans-

boundarics expiil, by iing a fnear fncton. Latbe. Lo (71101 f0r i = 1. ... be the coordinates of non
the orientationpcorrgép())/ndinggto the desired Ian.e boundaryZero pixels of the thresholded magnitude image, y) cor-
Also, letg(z, y) be the directional edge image defined as: responding to the orientatian We defineC(py, ) as:
Clor, @) = > g5, 95), ()
J

sum of magnitudes

_ [ IVI(z,y)|, if[0(z,y) —af <T,
g(x,y) = { 0, otherwise 4

where T, is an angular threshold (in this work, we used where(z;,y;) are all the edge pixels belonging t@ =

T, = 2°, to match the quantization used in computation of « cos a + ¥ sin a. By summing edge magnitudes instead of

counting the number of aligned pixels, we minimize the in-

1 Please, note that the gradient direction is orthogonakt@ontour ori- fluence of edges with small magnitudes (typically related to
entation. noise). If p,, denotes the global maximum 6f(p;, a), the




lane boundary corresponding to the EDF pedk given by
the straight line:

y=—zcota+ Lo (6)

sin o«

Y
lane boundary

Figure 5. LBROIs corresponding to the initial
lane segmentation using the linear model.

gradient vector

other hand, models with more degrees of freedom can pro-
vide a more accurate fit to the lane boundary, but are more
likely to be affected by image artifacts.

In this paper, we propose a lane boundary model that

Figure 4. Relation between the EDF peak « is flexible enough to follow curved roads, robust with re-
and the parameters p and 6 of the Hough spect to road/backgroud variations (noise, shadows, weak
Transform. lane markings), and that can provide information about lane

orientation and/or curvature. This model is described.next

This line detection procedure is applied independently 4.1 LaneModel Formulation

to each lane boundary, resulting in one linear model for
each boundary. This initial detection is used to find the lane
boundary region of interest (LBROI), which will be the
search space for lane boundaries in the subsequent frame

of the video sequence. In this work, a “thick” line was the fla) = { a+ bz, @f T > Tm
chosen LBROI, and can be obtained by extending the linear c+dr+ex? fx<ua,
function in they directionw pixels to the right andv pix-

els to the left. The choice af depends on the width of the
lane markings (if they exist), the focal length of the camera
and the travelling speed of the vehicle. The LBROIs shown
in Figure 5 correspond to the lane boundaries depicted in
Figure 1 (usingv = 8 pixels). a+bxy = c+ dr, + ex?,

It should be said that other variations of the Hough { b=d+ 2z, : ®)
Transform, such as the Progressive Probabilistic Hough ) ) ]
Transform [20], could be used to reduce the computational W& can solve this system for the variabieande, obtain-
cost of the initial detection. However, this gain would be in  'N9:
significant, because the procedure described in this Sectio

Tm 1
is applied just one time. c=a+—-(b—d) ande= G (b—=d). (9

Our lane boundary modgl(x) is composed by a linear
function in the near field, and a parabolic function in the far

; (1

wherez,,, represents the border between near and far fields.
We impose continuity and differentiability conditions on
the functionf, such thatf(x}) = f(z,,) and f'(z;}) =
f'(z;,). These conditions imply that:

] Replacing these values back into Equation (8), we obtain:
4. LaneFollowing

a+ bz, if x> xp,

After the initial segmentation in the first frame, we need J@) = { ZotemO=d) 4 gy OB g2 i g < g,
to update the detection for the following frames. For the ini " (10)
tial detection, a linear model was chosen, because it pro-Hence, we need only three coefficients § and d) to de-
vides a robust automatic detection. However, this model scribe our lane boundary model. To determine these param-
is obviously not suitable for curved roads. In fact, many eters, we apply a minimum weighted square error approach,
road/lane models have been proposed in the past yearf§itting the proposed model to the detected edges within the
[9, 10, 11, 12, 13]. Simpler models demand less compu-LBROI. This procedure is applied independently for each
tational power and are usually less sensitive to noise; @n th lane boundary, and is described next.



4.2. FittingtheLane M odel is minimized. Assuming that edges related to lane bound-
aries usually have larger magnitudes than edges related to

Let us consider that a lane boundary was detected inother irrelevant structures (such as noise, road textteg, e

the previous frame, and the corresponding LBROI was ob- we propose the following weighted square error measure:

tained. The edge imag&I(x,y)| of the current frame is . N

computed within the LBROI. Most of the edges will be re- _ 2 2

lated to the lane boundary, but some edges related to noise{z N ;Mni [ym; = fl@n.)] +Z;ij [vs = Flg)]"

road texture or other structures will also appear. To remove - - (13)

these undesired edges, we apply an adaptive threshold basefhjs error is minimized when the followirgjx 3 linear sys-

on the mean magnitud®/ean Of the edges. In fact, we re-  tem is solved:

move all the edges with magnitudes smaller than/mean

Let g(z,y) denote the thresholded edge image: ATWAc = ATWb, (14)
IVI(z,y)|, if|VI(z,y)| > 0.5Mmean where
g(z,y) = : :
0, otherwise 1 q
(11) Ty, 0
It should be noticed that this adaptive threshold is not af- : : :
fected by varying illumination conditions, and does not re- 1 Tn,, 0
quired anya priori information about the contrast between A = | { _1_ (12 + x;ﬂ) — L (x, —xm)? |
the road and the image background (or the intensity of the 2om f_l 2m
lane markings, if they exist). Figure 6 shows the threstalde : : :
ﬁ?egg imagey(x, y) for the right LBROI depicted in Fig- i 1 2301 (x?n +x,2n) _% (s, — ) |
F M, :
M
g W = Tm
N My, ’
L My, |

T T
c=[a,b,d]” andb = [y, YnpsYfrs-- > Yfn

It should be noticed thaA " WA is a symmetric matrix.
Hence, only a triangular portion (upper or lower) of the ma-
trix must be computed, reducing the computation burden.

Figure 7 shows the proposed model fit to the second
frame of our video sequence, where the dashed line indi-
, _ cates the border between the far field and the near field.

Let (zn,,yn,), for i = 1,...,m, denote then coordi-  gjnce this Figure illustrates a straight portion of the road
nates of the non-zero pixels of the thresholded edge imag&pe paranolic part of the model is approximately linear. In
9(z,y) belopglng to the near field, and,,, = g(zn,, yn,) Section 5, some results are shown for curved roads.
the respective magnitudes. Analogously, (tef, . y,) and Similarly to the procedure applied in the initial segmen-
My, = g(wg;,yp,), for j = 1,...n, represent the same  ya4i0n the LBROI is obtained by “thickening” the fitted

characteristics for the edge pixels in the far field. ~ function in they direction,w pixels to the right andv pix-
Fitting the lane model (10) to the edge data results in a gs tg the left.

Figure 6. Thresholded edge image corre-
sponding to the right LBROI.

linear system witt$ unknowns and: -+ m equations: In the subsequent frame, the edge image will be com-
) puted only in a small region delimited by the LBROI ob-
a+brp, = Yn,, i=1.m tained in the current frame. The procedure described in Sec-
204z, (b—d) +drs + (b—d)xz _ i1 . . . L.
- 5T e, Ty =Y N tion 4.2 is then repeated for the remaining frames.
(12) The proposed lane following technique requires low

Typically, (n+m) will be much greater thad, and thissys-  computational cost and memory needs. In summary, an
tem will not admit an exact solution. However, we can find edge detector is applied at the LBROIs (which is only a
an approximated solution such that a specific error measuresmall fraction of the image), and edge magnitudes larger



road and the sidewalk to obtain the left lane boundary).
Markings on the center the road (such as speed limits and
arrows) do not affect our lane following procedure, as il-
lustrated in frames 8 and 12. However, pedestrian cross-
ings may cause some confusion to the algorithm, because
edges close to lane boundaries are detected. In this case,
our model tends to follow the crossing, as shown in the 6th
frame. As the crossing disappears, the model correctly fits
back the lane boundary. Also, it can be noticed that the al-

Figure 7. The proposed model superimposed gorithm may work in intersections, if there is enough infor-
to the original image (second frame of the mation about lane boundaries (as shown in the 8th frame).
video sequence). The dashed line indicates The third video sequence was obtained at night, and con-
the border between the near and far fields. tains 1200 frames acquired &0 fps. An additional prob-

lem of nocturnal images is saturation caused by headlights

of incoming vehicles, as shown in Figure 10. This Figure il-
than a threshold are used to compute 3he 3 symmet-  lustrates a time period of 1.6 seconds, when a truck and a
ric linear system given in Equation (14). Since this proce- ¢ar were travelling towards the camera. Despite the strong

dure is app“ed to each lane boundary Separately, the algo_edges Cau.Sed by the head“ghts and local Saturation, the
rithm can be parallelized. proposed linear-parabolic model was robust enough to cor-

rectly fit lane boundaries.

5. Experimental Results
6. Conclusionsand Future Work

We tested our lane detection/following algorithm for dif-
ferent video sequences containing several conditions that In this paper, we proposed a new lane detec-
may degrade the accuracy of the proposed algorithm, sucHion/following algorithm. In the initial detection, a
as varying illumination conditions, presence of shadowes an linear model is fitted to the lane boundaries, using a com-
weak painting of the lane markers. All video sequences in bination of the EDF and the Hough Transform. For the
this work were obtained at 30 frames per second, with a res-lane following step, a new lane boundary model was pro-
olution of 240 x 320 pixels. posed, consisting of a linear model for the near field,

The first video sequence depicts a road, and was obtained@nd a parabolic model for the far field. This model is fit-
with a travelling speed of approximatedy) km/h. In fact, ted to the lane boundaries by minimizing a weighted square
only the central portion of the imagesi() x 320 pixels) was error.
processed, because we needed to remove the horizon (top The proposed model combines the robustness of the lin-
of the image) and the windshield wipers (bottom of the im- ear model with the flexibility of the parabolic model. As
ages). Figure 8 shows twelve frames of this sequence, sepashown in Section 5, our technique can accurately fit straight
rated by approximately 3 seconds. They are displayed fromor curved portions of the road, performing well in the pres-
left to right, top to bottom. It can be noticed that both lane ence of shadows, image artifacts, varying lighting condi-
boundaries are efficiently detected, even in the presence ofions, and poor painting of lane markings.
shadows (frames 6-8), the reflex of a book on the windshield  For future work, we intend to develop a lane depar-
(frames 1-7), different illumination conditions (pleas®- ture warning system based on information (such as ori-
tice that the asfalt is much brighter in frames 1-2 in compar- entation, curvature and lateral offset) extracted from our
ison with other frames) and very poor painting conditions linear-parabolic model. Another idea is to further extend o
(frames 10-12). As expected, the accuracy of the model fit- method for autonomous driving.
ting is dependent on the conditions of the lane markers.
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