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Abstract: Dynamic shapes, namely shapes that change with time, represent an important issue in
several scientific and technological contexts. The current article presents a model-based mathematic-
computational approach for inferring the processes governing some of the most representative types of shape

evolution, with special attention given to biological shapes.

The considered models include functional

mappings, convolution-based evolution and normal wavefront propagation. The methods are illustrated with
respect to stationary (global) and non-stationary (local) dynamic evolutions, and the obtained results
substantiate the potential of the presented methodology. Although concentrating on 2D shapes, the reported

results can be extended to higher dimensional objects

1 Introduction

Most processes in science and nature involve objects
whose shapes change with time. The growth of a leaf, a
cell, an organ or a crystal, as well as the erosion of a rock,
provide just a few examples of such changing shapes. The
geometrical study of such dynamical processes can yield
valuable information for understanding the related
physical or biological phenomena. For instance, as the
evolution of a neural cell is known [1] to be defined by
internal factors, such as gene expression and external
effects (influence fields such as gravity, electric fields,
neurotrophic gradients, etc.), the identification and
quantitative geometrical characterization of the processes
acting over the shape can provide valuable indication
about the biochemical processes underlying the nervous
system. However, in spite of its potential, the endeavor of
investigating the processes involved in shape evolution
has been particularly challenging given the infinite variety
of possible morphing processes. For instance, a shape can
grow while being attracted by an external field. In other
circumstances, a shape can inflate or deflate, and even
exhibit drastic changes over short time periods (a popcorn,
for instance), involving local and/or global modifications.
Other evolutions may be governed by the physical
properties at each neighborhood of the shape, and it is also
common to verify combinations of the above possibilities.
" Mathematically, there is no limit to the number of possible
morphing processes, which can even include bizarre
situations unlikely to be verified in nature. Indeed, most
of the natural morphing processes are characterized by a
relatively smooth evolution of the shapes, and restricted to
some particular classes of processes, such as those
involving evolution along the normal surface (dilations,
progressive accumulation of material around objects, and
wavefront propagation) as well as convolutions (solutions
of differential equations in terms of Green functions).
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Such relatively restricted classes of natural shape
evolutions have motivated the approach reported in this
paper, namely a model-based methodology for identifying
and characterizing morphing processes in nature, with
special attention given to biology and physics. More
specifically, a limited number of specific morphing
processes are considered and specific tests are devised in
order to verify if a given morphing sequence is possibly
governed by any of them and, if so, what are the involved
parametric  settings. The critical issue of the
correspondence between seriated sections is also
discussed, justifying the adopted alternative of using
curvature singularities as control points. Non-stationary
situations (i.e. involving different settings along time or
the shape position) are also considered.

The article starts by presenting the basic concepts
and reviewing the main related literature and proceeds by
describing the proposed model-based methodology and
the main considered morphing processes, which are
illustrated with respect to several synthetic and real
examples. Although the paper focus 2D shapes, the
reported results can be extended to higher dimensional
shapes.

2 Basic Concepts

As suggested in [2], a 2D shape is henceforth understood
as any connected set of points (in both continuous and
discrete image spaces). A morphing process is henceforth
understood as the mathematic-computational
characterization of the evolution of a shape along a time
period. Figure 1 shows the basic mathematical
representation of an evolving two-dimensional binary
shape, where the original contour
&(s.0)=(x(s.20 ). y(s.t5)), i.e. a time dependent curve
parameterized along s, undergoes a continuous series of
transformations (of which just a few are presented in the



figure) along the time z. Each instance of such a process is
henceforth represented in terms of its contour
&(s,t)=(x(s,2), y(s,2)), which can be obtained by
applying conventional edge detection approaches [2].

c(s,ty) c(s,1)

N v

t
Figure 1 The basic representation of a morphing
process in terms of the parametric contour of the
involved shape.

Observe that é(s,t)= ((s,2), ¥(s,2)) is the velocity
(a vector field along s for each instant f) of the shape
along time, in such a way that &(s,+Ar)=&(s,)+&(s,2)Ar .
Mathematically, a 2D morphing process can be defined in
several ways, such as by using differential equations,
functional mappings, 3D surfaces, and convolution
models. An example of the former situation is the equation
&"(s,t) = ai(s,t), where a is a real constant and 7i(s,t) is
the unit normal field to the curve oriented with respect to
the inside and outside of the shape, i.e. the curve evolves
along its normal with speed magnitude a. In the case of
functional mappings, the next instance of the curve
(considering time step Af) is represented as a vector
function of the previous shape instance, i.e.
E(s,t+At)= f((s,1)). The 3D surface approach involves

the surface defined by ¢(s,) as time varies, as illustrated

in Figure 2. The normal model is particularly suitable for
treating situations where the shape is uniformly dilated,
such as by internal pressure or by deposition of material
along its surface, or where the shape evolves like a
propagating front.

Finally, convolution models involve expressing the
shape in terms of the convolution
&(s,t+At)=¢(s,t)* h(s,t), where h(s,t) is the considered
convolution kernel. This model nicely reflects several
situations where the shape speed is defined by the
weighted combination of the values of physical properties
around a neighborhood of each of the shape elements.
Figures 1 and 2 present examples of such a type of
evolution considering a Gaussian convolution kernel (low-
pass filtering or blurring).
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Figure 2 3D Surface representation of a 2D
morphing process.

Given any two instances ¢(s,#;) and é(s,ty) of a

morphing process, an important issue is the association of
correspondences between each of the elements of these
two curves. In other words, such associations indicate
where a point in the first curve has been mapped along the
second curve. Observe that such a mapping is not always
one-to-one and onto, since some points may be created
and others eliminated. This association problem,
commonly known as correspondence or registration
between the shapes, which is closely related to the shape
velocity, is not easily solved as it ultimately involves the
knowledge of the respective morphing process governing
the specific shape dynamics. A possibility to cope with
this problem is to mark in some way reference points,
henceforth called control points, along the natural shapes
(for instance painting points along the surface of a
growing apple). However, as this is rarely possible, some
alternative scheme is necessary in order to define at least
some reliable correspondences along the subsequent shape
instances. In the present work, the correspondences are
stablished between landmark points [3, 4] defined by
peaks of curvature (i.e. curvature singularities) along the
contour of each shape instance, which may demand
human intervention [5,6]. The procedure for curvature
peak detection adopted in the present work involves three
steps, according [7]: (i) calculation of curvature modulus,
(i) detection of zero-crossing of first derivative of
curvature modulus, and (iii) identification of negative
points of second derivative of curvature. Figure 3(a)
presents a contour and its respective detected curvature
peaks, 3(b) shows the curvature modulus along contour
(6=20), (c) and (d) its first and second derivatives,
respectively, and (e) the curvature along the contour with
marked peaks, for a curvature modulus threshold equal to
0.03.
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Figure 3 (a) Original Contour, (b) curvature
modulus, (c) first derivative, (d) second

derivative, and. (e) curvature with detected
peaks.
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Although this approach can fail in some
circumstances (e.g. when curvature peaks disappear
during the process), it provides a reasonable approach to
the correspondence problem in many cases, while being
unavoidably biased. Figure 4 illustrates this strategy with
respect to a specific pair of shape instances.

Figure 4 Correspondence between two shape
instances in terms of curvature peaks.

At this point it is interesting to characterize some of
the properties exhibited by morphing processes. For
instance, they may occur so as to preserve the information
along the shape, in the sense that any previous instance
can be recovered from one of the posterior instances (the
inverse of the morphing along that time interval). Such
processes will be said to preserve information. In case the
type and parametric setting of a process does not change
in that time interval, the process is henceforth said to be
time stationary, otherwise it is called non-stationary. The
stationary classification can also be extended to the
process characterization along the shape contour, in which
case it is said to be spatial stationary or non-stationary.
Observe that some processes can be non-stationary in both
time and space. Another interesting characterization of
morphing processes is in terms of their continuity and
smoothness (i.e. existence and continuity of derivatives)
along the spatial and time domain, which can be stated in
terms of classical mathematical analysis concepts (e.g.
[8D.

The representation of a morphing process can be
done according to several levels of detail and abstraction.
At the most comprehensive side, the properties and
evolution of a morphing process involve mapping the
shape state (a vector in the phase space) considering as
state variables its x- and y-coordinates parameterized
along time, therefore defining a shape trajectory. Specific
behaviors of the morphing process, such as discontinuities
and conservation of specific properties (e.g. energy or



area), can be identified from the analysis of such
trajectories. Less comprehensive characterizations of
morphing processes are however obtained by the use of
global measures such as the shape perimeter, area, fractal
dimension or elastic energy, to name but a few, as state
variables. Such a possibility, which 1is typically
degenerated (i.e. involves information loss), is more
amenable for proper visualization and can still provide
valuable insights about the morphing processes. Figure 5
illustrates the trajectory of a dynamic shape (Gaussian
smoothing) in terms of the perimeter, area and elastic
energy of the shape instances, and the reconstructed
shapes for ¢ =2, 3, 5, 8, 50.

.
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Figure 5 Representation of a Gaussian
smoothing morphing process in the perimeter-
area-elastic energy phase space for =2, 3, 5, 8,
50.
3 Related Works
Although the specific problem of mathematic-

computational modeling of shape evolution, at least as far
as a more formal and unified approach is concerned, has
not received substantial attention from the scientific
community at large, several related issues have been
independently pursued in a variety of research areas.
Among those more closely related to image analysis and
computer vision, we highlight the areas of morphology
and pattern formation [9,10,11,12,13,14], statistical shape
analysis [3,6], morphing [15], dynamical contours [16,17],
registration [18,19,20], seriated reconstruction [21,22],
and biological growth process [23,24].
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As far as shape evolution and pattern formation [9]
are concerned, a number of approaches have been
developed. For instance, [10] describes a 2D discrete
growth model using probabilistic and deterministic
approaches, where the latter is capable of producing
anysotropic growth allowing compact, elongated and
concave morphologies. The model is used to describe
multiple sclerosis morphology in the brain. In [11] an
approach is reported to investigate the processes
governing the growth of human mandibles. Another
methodology related to shape evolution is in terms of
seriated reconstruction [21,22] of images, where each
section can be related to a shape instance. Registration
approaches have been surveyed in [18,19], and [20]
presents a systematic classification of the existing
techniques. Registration is strictly related to obtaining
markers from images, which may be extrinsic or intrinsic,
and automatic or semi-automatic. One of the most
commonly considered techniques involve deformable
models (such as snakes or active contours [17]) that are
based in a set of intrinsic markers in a semi automatic
way. Morphing is a transformation process where an
image is modified until approaching another image. The
whole process [15] is divided into 3 steps: definition of a
set of correspondences (features) that may be points or
lines, the interpolation function (using bicubic spline
interpolation, thin plate spline and snakes), and transition.

As far as biological morphing processes are
concerned, [23] provides a comprehensive treatment of
cell and tissue dynamics including cell division,
aggregation and cooperative motion, as well as
morphogenesis processes. As discussed in [1, 24] cell
motility and shape formation are believed to be directly
related to the polymerization dynamics of actin and actin-
associated proteins. The latter encompasses proteins that
regulate actin polymerization and establish cross-links
between actin filaments inside the meshwork as well as
cross-links between the meshwork and integrins, allowing
the cell to generate traction forces.

4  Methodology

This section presents the main morphing processes
considered in the present work, as well as the respective
tests for identifying their possible participation in specific
shape evolutions.

4.1 Functional Mappings

In this approach, the next instance of the shape evolution
is specified as a function f of one of its previous instances,
ie. &(s,r+At)= f(E(s,¢)). In particular, it is possible to
define each point in the new instance as a function of the
previous one, i.e.



¢, (s,1+Ar)= £, (E(s,2))
and

cy (s,t+At)= £y (E(s,t))

A straightforward approach to this problem is to
represent the functions f; and f; in terms of polynomials or
orthogonal series defined on the coordinates of the
previous shape instance. This is followed by interpolation,
such as in minimum squared methods, which minimizes
the differences between the estimated and real values of
the coordinates along the second shape instance [25].

An alternative approach that allows the incorporation
of general knowledge about the morphing process is to
consider a variational solution taking into account
additional restrictions such as several degrees of
smoothness. In such situations, it is interesting to identify
some of the most relevant points along the two shape
instances (i.e. the control points) and to obtain the
remaining points by using the variational approach. One
such a possibility is to use two-dimensional thin-plate
splines [2, 3], which impose minimal energy restrictions,
to interpolate between the shape control points, Figure
5(a) presents the previous (in black) and next (in gray)
shape instances, and Figure 6(b) illustrates the latter (in
gray) and its reconstruction obtained from the control
points in Figure 3(a) by using thin-plate splines (in black).
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(b)
Figure 6 Thin-plate based interpolation as a means of
checking for morphing mechanisms.

4.2 Differential Equations

As outlined in Section 2, several morphing processes can
be properly modeled in terms of differential equations. At
present we are especially interested in the two following
situations: (a) the speed is oriented along the normal to the
shape contour and (b) the differential evolution is modeled
in terms of convolutions involving the respective Green
function [26]. These possibilities are covered in more
detail in the following subsections.

4.2.1 Normal Evolution

In this case, the shape speed ¢(s,¢) at instant ¢ is oriented
along the normal 7#(s,) to the shape border, i.e.:

é(s,t)= £(s,t)i(s,t)

where f(s,z) is a general function of s and . In case
f(s.t)=a>0, the shape dilates (or expands) with constant

speed a. If a < 0 the shape shrinks with constant speed.

A possible natural means for investigating if a
specific instance of a shape has evolved along the normal
with respect to a previous configuration is to compare the
shape velocity field with the normal to the previous
instance.  Therefore, providled we have the
correspondences (or velocity field) and a means to
estimate the original normal, for instance by using the
Fourier transform derivative property [7], normal
evolution can be tested for each of the shape elements.
Figure 7 illustrates this possibility with respect to a neural



shape undergoing normal evolution along most of its
contour, except at its upper portion.

vt
P

Figure 7 Two instances of a neuronal shape
undergoing normal evolution along most of its
contour.

Since curvature peaks have been assumed as control
points, unwanted sensitivity of the normal near sharp
shape extremities (see the previous figure) tends to
deteriorate the above proposed test for normal evolution.
Therefore, it is interesting to avoid defining control points
at particularly sharp curvature peaks.

While the above test allows us to identity portions
along the shape contour undergoing normal evolution, the
magnitude of such a process has to be inferred by

(a)
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alternative means, which should take into account a wide
variety of possibilities (for instance, it can be defined in
term of the local curvature magnitude). As with the
general problem of shape dynamics identification, the
magnitude inference can be done based on a model
approach considering the most common schemes verified
in natural process. Currently we are particularly interested
in situations where the speed magnitude is constant or
proportional to the contour curvature.

4.2.2 Convolutive Processes

The more general case of time non-stationary convolution
(the convolution kernel is a function of &) in continuous
domain can be represented in terms of the following
expression:

L
cx(é,t+At)=J.cx(é—s,t)hx({.f,s,t)ds
0

where h,(£,s,1) is the convolution kernel acting at the

neighborhood of the parameter position £ The non-
stationarity arises from the fact that different kernels are
verified at different positions. Figure 8 (a,b) illustrates a
spatial non-stationary convolutive morphing processes
characterized by Gaussians with different standard
deviations as convolution kernels.

(®)



Figure 8 A pair of subsequent shape instances (a and b) produced by spatial non-stationary morphing process
(a). Some of the inferred convolution kernels (in black), including also the original kernels (in gray), are

identified in (c).

The currently considered approach for testing if a
specific morphing processes involves a spatial non-
stationary convolutive model consists in obtaining a
system of linear equations defined by the internal product
between the several convolution kernels (the problem
variables) and the shape contour, which are taken as
extending L positions to both sides along the curve
parameter domain. Each sought convolution kernel is
applied to Q points along both sides of the parameter
domain, yielding 20+1 equations for each point of the
shape contour. After obtaining such set of equations, the
convolution kernels can be estimated by applying the
pseudoinverse approach [27]. In order to cope with
instabilities, the ridge regression approach [28], a kind of
first order regularization [29], has been adopted. Figure 6
presents some of the convolution kernels obtained by
using the above described approach over the pair of
subsequent shape instances in Figure 7(c).

6 Conclusions

A novel model-based approach to identify and
characterize natural morphing processes has been
reported, discussed, and illustrated with respect to several
synthetic and natural shapes. The methodology involves
testing for several of the most plausible shape evolutions
found in nature, including non-stationary situations. The
obtained results have substantiated the potential of the
approach, which is being currently applied in order to
investigate the development of neural cells as well as of
embryos.
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