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Abstract.

This paper presents a novel and more successful learning based approach to extracting low level

features in a retina-like (log-polar) image representation. The low level features (edges, bars, blobs and ends) are
based on Marr’s primal sketch hypothesis for the human visual system [10]. The feature extraction process used
a neural network that learns examples of the features in a window of receptive fields of the image representation.
An architecture designed to encode the feature’s class, position, orientation and contrast has been proposed and
tested. Success depended on the incorporation of a function to normalise the feature’s orientation and a PCA
pre-processing module to produce better separation in the feature space.

1 Motivations

Traditional image feature extraction operators have usually
been designed by hand, work independently of each other
and act on Cartesian images (an artifact of sensor archi-
tecture). However, the architecture of the primate vision
system seems to be quite different, and we can use this to
produce interesting results in artificial vision systems.

The outermost primate retinal region is formed by rings
with approximately the same number of receptive fields,
whose distance from the retina centre can be expressed in
terms of an exponential function [14]. The mapping from
this region to the visual cortex can be mathematically ap-
proximated by a log-polar representation [13], which trans-
forms both rotation and scaling in the Cartesian domain
into translation in the log-polar domain and cuts off most
of the complexity involved when recognising objects at dif-
ferent scales and orientations [12]. Moreover, the represen-
tation is space-variant, i.e., there is a high resolution centre
surrounded by a progressively low resolution periphery, al-
lowing a more compact representation for the image data.
There are several examples in the literature of vision sys-
tems that take advantage of log-polar images [5, 9, 8].

The log-polar representation presented in this paper
_ is composed of low-level features extracted using a differ-
ent approach. The low level features (edges, bars, blobs
and ends) are based on Marr’s primal sketch hypothesis for
the human visual system [10].. The primal sketch repre-
sents aricher representation for the image data and provides
cues for an attention mechanism under the experimental ev-
idence that they seem to attract visual attention [15].

Instead of trying to manually build a model for com-
pletely describing the features, which could be error prone
and present some difficulties because of the unusual sensor
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geometry and the receptive field integration, learning the
features was a sensible option. In this paper, a neural net-
work approach was used due to its adequacy when learning
data in which there is no obvious symbolic representation.
An architecture designed to encode the feature’s class, posi-
tion, orientation and contrast has been proposed and tested.
Success depended on the incorporation of a function to nor-
malise the feature’s orientation and a PCA pre-processing
module to produce better separation in the feature space.

2 Related Work

Neural network learning of edge features has already been
discussed in the literature. Some attempts have obtained
only limited success, as for example the work of Pham and
Bayro-Corrochano [11], in which a concatenation of two
perceptrons was used: one for noise filtering and another
one for edge detection. The edge detection network was
trained to recover a given edge component within a 3x3
window at 8 different orientations (the position of an output
neuron represented the orientation, and the node’s output
value corresponded to the edge intensity value). The results
showed that the neural network approach presented a per-
formance slightly inferior to that of the Sobel edge detector.

Chen et al [2] presented an edge labelling process in
which a neural network was trained with synthetic data from
a model of an ideal step edge. The aim was to label the
central pixel of a 5x5 image patch as edge or non-edge. II-
lumination and rotation normalisation were performed over
the image patch before feeding it into the neural network,
which reduced some of the problem complexity. They com-
pared the visual output of their system with the output pro-
duced by the Canny edge detector when applied to the same
noisy data, and have found that the neural network has bet-
ter noise tolerance than the Canny edge detector.

It is important to establish the differences between our



work and the above approaches. A general difference is that
we have chosen a model which tries to capture interesting
properties of the primate visual system architecture. Most
previous research used a Cartesian feature space whereas
we detect features in the log-polar space. Moreover, our
aim is to classify several different features, in addition to
edges, at number of different orientations and contrasts.

In the system developed by Grove and Fisher [5], pri-
mal sketch features were extracted within a log-polar im-
age, as in this paper, but using a set of logical operators
instead of a learning based approach. The operators were
manually defined as expressions involving the pixels of a
1-ring window of 7 receptive fields which was applied
throughout the log-polar image. Figure 1 illustrates the op-
erators designed to detect blobs and edges.

+Blob=MIN(x—a,x-b,x—¢,x—d,x—e,x—f)
-Blob=MIN(a—x,b-x,c~x,d—x,e—x,f-x)

Edge@0=ABS(f+a+b—c-d-e)/3
Edge@60=ABS(a+b+c—d—e—f)/3 Q
Edge@120=ABS(b+c+d—e~f-a)/3 Q’o“,@
Edge@180=ABS(c+d+e-f-a-b)3 (e p—<{c )
Edge@240=ABS(d+e+f-a-b—c)/3 0,

Edge @300=ABS(e+f+a-b—c~d)/3
Edge=MIN(Edge @0, Edge @60, ..., Edge @300)

Figure 1: The mask used in Grove & Fisher’s system [5]
to detect features. Each pixel {x,a,b,c,d,e,f} corresponds
to a particular receptive field output in polar coordinates.
Detectors for blobs and edges are shown in the picture.

One of the problems with the above approach is that
operators are heuristically defined ‘and, therefore, there is
no guarantee that they will work correctly with all possible
cases and that they will allow graceful degradation. Also,
if a different window size or window shape was needed, it
would be necessary to manually design new logical expres-
sions for the operators, which can lead to mistakes.

3 Image Representation

The input Cartesian image is resampled through the use of
a mask consisting of concentric rings of overlapping circu-
lar receptive fields, whose centres are geometrically spaced
from the centre of the mask (Fig. 2). If we define an image
that is accessed by using the rings (logarithm of the distance
of the rings to the retina centre) and sectors of the previ-
ous mask, then we have a log-polar representation. The
innermost region, named the fovea, contains a high den-
sity hexagonal receptive field grid. We simulated a hexag-
onal packing outside the fovea by shifting each consecu-
tive ring by half of the angle defining a sector of receptive
fields. The radius of the n** outer retinal layer (or ring) is:
R(n) = "R(0), where R(0) is the radius of the first layer
exterior to the fovea and 4 defines the geometrical progres-
sion of distances of receptive field layers from the retinal
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centre (we have used 8 = 1.1). Similarly, the radius r(n)
of a particular receptive field in layer n is 7(n) = 8"r(0).
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Figure 2: Retina structure. In order to enhance details in
the figure, parameters different from those chosen in the
experiments were used.

We have defined the fovea as having 11 layers of re-
ceptive fields. Each receptive field in the fovea has a ra-
dius of 0.5 of a pixel. Outside the fovea, there are 33 more
layers of receptive fields distributed accordingly to the pre-
vious equation. A receptive field overlaps with each of its
neighbours by approximately 53% of its diameter. These
parameters produced a retina with a diameter of 256 pixels.

3.1 Estimating the Reflectance Information

The output of a given receptive field is calculated according
to the following equation:

> Iz,y)F(z,y)

z24y2<r2

0= M
where O is the neuron output, I(z, y) is the perceived inten-
sity and F'(z, y) is the receptive field function, defined as a
normalised Gaussian. Both I and F' are applied to points
(z,y) in the receptive field circular domain of radius r.

We designed a method for estimating the original re-
flectance information from the objects which is derived from
the receptive field computation. By taking the logarithm of
the intensities and assuming that I(z, y) = E(z,y) R(z,y),
where E is the irradiance falling on the object, and R is the
local surface reflectance, we have:

O =log(E)+ Y log(R(z,y)F(z,y) (2

z2+4y2<r2

The log(E) term in Eq. (2) is nearly constant over
local image regions and therefore makes the receptive field
computation O’ a good approximation for the weighted log-
arithm of the reflectance. Since the feature extraction op-
erators described in the next section have 1) linear pre-
processing in the initial projection stage and 2) the projec-
tion weights sum to approximately zero, then the projection



of the log(E) terms in a feature neighbourhood will also be
approximately zero. Thus, the feature extraction is primar-
ily based on the reflectance structure of the neighbourhood.

4 Proposed Approach

Features are trained and detected in a window of receptive
fields composed of a central receptive field plus its next 6
and 12 surrounding neighbours, totalling 19 receptive fields
hexagonally distributed.

When centred within these windows, the oriented fea-
tures (edges, bars and ends) can appear at several distinct
orientations. As a result of the receptive field window struc-
ture, we have decided to detect edges and ends at 12 possi-
ble orientations and bars at 6 possible orientations. Since
bars are indistinguishable by end direction, they have the
same angular resolution as the edges and ends.

For training purposes, synthetic exemplars of the fea-
tures are drawn in a fixed position on the input image corre-
sponding roughly to a particular window of receptive fields.
Then, the output of these 19 receptive fields is processed
and used as input to the neural network classifiers.

4.1 Feature Detector

The overall system architecture is discussed here and details
of the individual processes are given in subsequent sections.

The first step is to normalise the feature orientation
(Sec. 4.2). Then, principal components are computed from
a training set (counter-examples are not taken into account),
see Sec. 4.3. Finally, only a subset of the principal com-

ponents is chosen. This selection consists in choosing the
eigenvectors associated to the highest eigenvalues. This

is done for each of the 7 feature classes: edge, = bar, -
blob, + end (a + sign is assigned to features that have
a darker background and a — sign to features that have a
brighter background, Sec. 5.1 details this separation).

The next step is to project exemplars of features onto
the previously selected subset of eigenvectors and use this
information as training inputs to neural network modules
(Sec. 4.4). The desired outputs for the neural networks are
encoded from the feature’s contrast (Sec. 4.5).

In order to extract features from a real image, a process
similar to the training one is implemented, with the differ-
ence that the feature’s projection is fed into a set of trained
networks and a classification rule is used to interpret the
network outputs (Sec. 4.6).

The last step (Sec. 5.4) is to improve the feature sets by
selecting incorrectly classified features from real images,
which gives the ‘fine tuning’ aspect of the approach. The
above process is repeated until a satisfactory classification
is achieved over a set of test images.

4.2 Normalising the Feature Orientation

If a receptive field window could be normalised into a stan-
dard orientation before applying the PCA -technique (ex-
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plained in section 4.3), the problem could be simplified be-
cause now we would end up with a smaller set of principal
components related only to the normalised orientation.

To perform this task, we defined a symmetry operator
as a gradient mask by associating negative weights to a sub-
set of the receptive fields in the retinal window, and positive
weights to the remaining receptive fields. By iteratively ro-
tating the symmetry operator with respect to the central re-
ceptive field and applying it to a receptive field window, the
detected orientation will be the one which maximises the
absolute value of convolution. The last step consists of ro-
tating the feature to a standard orientation. The operator is
applied at the 12 orientations defined by the receptive fields
in the outer ring of the window, giving a resolution of 30°.

There is a different symmetry operator for each of the
oriented features. Note that it is not necessary to know
which feature type we have before normalising, as we nor-
malise with all feature types and apply the corresponding
PCA and classification. More precisely, the operator’s out-
put for orientation 8 € {0, 30, . .., 330} is defined by:

2
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Opf(n,s) = 3 Y wfG,5) V(GGi,dm,9))| 3

i=0 j=0

where f is the feature type: edge, bar or end; (n, s) are the
coordinates for the central pixel of the receptive field win-
dow; w(’; (2, 7) is the operator’s weight at the local window’s
coordinate (¢,7); G is a function that maps from local to
global coordinates within the retina; and V is the receptive
field value at a given retinal point. Depending upon the fea-
ture type and orientation, the weights at each position can
be either +% or — 1 where N + M =19, the number of re-
ceptive fields within the window (see Tab. 1). We select the
0 that maximises Eq. (3) and then rotate the 19 receptive
fields about the central field by —8.

edge bar end

I Oriented ator Oriented Operator Oricnted Operator
Orient. features masks features masks features masks
o= o=-N2 x-1ns
MEE-EE JE-NE SK-AE -
e onatie o= -irts

wl® Bleo & o | @
Q=17 @=-1/16

3300 @ os-112 @ o=1a

Table 1: Symmetry operators used to detect feature orien-
tations. White circles represent a weight of %, and darker
ones represent a weight of —47. N and M are the number
of white and dark circles within the operator’s mask, so that
weights always sum to zero within any given mask. Arrows
indicate the preferred feature orientation.



4.3 Principal Component Analysis (PCA)

PCA [6, 7] is a multivariate technique in which a number of
related variables are transformed into a set of uncorrelated
ones. These variables are called the eigenvectors and the
coefficients used to reconstruct the original data are called
the eigenvalues. These eigenvectors correspond to the
directions of the principal components of the original data
and their statistical significance is determined by the corre-
sponding eigenvalues. Given am X n matrix X containing
m observations of n variables, PCA entails finding matri-
ces V and D so that they satisfy the equation C V =V D,
where C = X7T X is the covariance matrix, V isan x n
matrix containing the the eigenvectors of C and D is a di-
agonal n X n matrix containing the eigenvalues of C. Ma-
trix X is normalised by subtracting, column by column, the
mean value of the variables from each of its elements.

The determination of the eigenvalues and eigenvec-
tors can be performed using Singular Value Decomposition

(SVD). The SVD theorem states that given a m X n matrix .

X (as above), then there are orthogonal matrices U (m x m)
and V (n x n) such that:

X=UxXxxVT )

where ¥ is am X n diagonal matrix containing the singular
values of X, which are also the positive square roots of the
(non-negative) eigenvalues of XT X, the columns of ma-
trix U contain the eigenvectors of X X T, and the columns
of matrix V contain the eigenvectors of XT X [6, 7].
Our goal is to decompose the training sets into their
eigenvalues and eigenvectors (or principal components).
One decomposition is obtained for each of the four fea-
ture type’s training sets (edge, bar, blob and end). We
don’t need to distinguish between positive (+) and nega-
tive (—) representations of features because the removal of
the mean values leaves the two forms being the negative of
each other. Each receptive field within a 19-receptive field
window will be a variable, and each sample in a feature’s
training set will be an observation. More precisely:

Ti,1 T1,2 T1,19
T2,1 T2,2 T2,19

=|. ) . &)
Tna Tp,2 Tn,19

where z; ; is the j*! receptive field of the i*P observation
or training sample. The principal components are stored in
a matrix V; of 19 x 19 values for each class of features <.
An unknown data sample named Y (in our case, a
19-receptive-field-window obtained from a test image) can
be projected onto the set of principal components V; (ob-
tained as described above) by a simple matrix multiplica-
tion: P; = Y’ x V;. The resulting projection P; repre-
sents that data sample in terms of the principal compo-
nents for a given primal sketch feature class ¢. If a com-
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ponent of the projection P; is large, then it suggests that
our data is close to the pattern the eigenvector represents,
and if we have a low valued projection the conclusion is the
other way around. We repeat this projection for all classes
i € {edge, bar, blob, end}.

Table 2 shows the first 7 principal components result-
ing from the application of the singular value decomposi-
tion on the normalised orientation training data.

[ [ edge [ +bar T -bar T +blob [ -blob T +end | -end ]

1 o o e |®
8307.51 M 2415.70 14811.19 25152.20

, |0 0| e ¢
2665.63 156.96 94.70 4442.84 2667.40

; % e 8|6 |
155.47 344 3.30 222.40 __ﬁl_

. | @ |w |0 |e
69.69 0.17 0.17 68.29 68.73

s 3| |e|le e
3195 0.16 0.15 ﬂ _E.Z.E_

] € s ¢ |8 | @
1007 0.15 0.13 _i 7.34

, & % |9 |8 ®
1.99 2.48 248 0.13 0.13 448 459

Table 2: Pictorial representation of the first 7 eigenvectors
and eigenvalues extracted from the training sets for each
of the primal sketch feature classes. Under each picture
is the corresponding eigenvalue. Note that the first 3-6
etgenvectors encode most of the variation.

PCA is used in our problem to transform the inputs
that the neural network modules will receive. However, in-
stead of using all 4x19 projections from the four feature
classes, we combine (concatenate) subsets of the most rep-
resentative principal components. There are in the litera-
ture several ad-hoc techniques to select only a subset of
the most important principal components [7]. The simplest
technique is to select the principal components associated
with the largest eigenvalues. The general idea behind this
selection is that we will be using the components that most
contribute to describing the data. On the other hand, we are
not interested in components representing the average in-
tensities of the input patterns (the first components of Tab.
2) because those components would not help the process of
spreading out the feature classes in the input space. More-
over the first component will not have approximate sum to
zero, which is unsuitable for the reflectance estimation dis-
cussed in Sec. 3.1. We also do not need to keep the com-
ponents for features of both positive and negative contrasts,
as they are almost the same in Tab. 2. From the above,
the following subsets of principal components were kept:
{2,3,4,5,6} for edge, bar and end; and {2, 3} for blob fea-
tures. Thus the input to the neural networks is reduced to a
vector of 17 elements.



4.4 Neural Network Architecture

We used MLP-backpropagation networks minimising a
least square error metric, due to its simplicity and reason-
able computational power. An initial attempt [4] was to par-
tition three of the feature classes (bars, blobs and ends) into
six new feature classes according to their contrast intensity
(positive or negative). Then, seven different neural mod-
ules, each one designed for a particular feature, was built.
These modules had an input layer composed of 19 neurons,
followed by a hidden layer and an output layer containing
neurons associated with each of the 6 or 12 standard ori-
entations plus one neuron representing a non-feature class.
The strength of response of an output neuron was trained
as a function of the feature’s contrast. In the case of blobs,
the network’s output layer had only 2 neurons, one cod-
ing the blob itself and the other coding the non-blob class.
The training of these networks converged quickly, however
there were lots of misclassifications when testing on real
images, probably caused by a training set with insufficient
examples and by poor separation in the input space.

In order to achieve better understanding of the prob-
lem, we performed a principal component analysis on the
training data. We realised how the complexity of the prob-
lem could be reduced by using PCA to increase the class
separation at the network inputs level. The lack of exem-
plars in the training set was tackled by using a bootstrap-
ping approach which is discussed in Sec. 5.

The final networks architecture was almost identical to
the architecture described above, differing only at the input
and output layers: (a) instead of receiving inputs directly
from the 19 receptive field windows, the networks receive
the results of the PCA pre-processing module; and (b) in-
stead of several output neurons to represent all the possible
feature’s orientations (now this is done by a separate mod-
ule), there were only 2 output neurons, neuron N represent-
ing the feature and neuron N representing the non-feature
class. A total of seven neural networks were built, one
for each of the seven feature classes: edge, +bar, —bar,
+blob, —blob, +end, —end. Each network had 17 inputs,
9 hidden neurons and 2 output neurons, all fully connected.

4.5 Coding the Contrast Information

The contrast within a retinal window is calculated accord-
ing to the Eq. (6) [1]. The desired output for a neuron
representing a particular feature was represented in terms
of this contrast.
_ |Lmaz - Lmi'nl
c=—7""— 6)
Lmaz + Lmin .

where L. and L,,;, are the minimum and maximum in-
tensities found in an image patch, respectively.

4.6 Classification Rule

We used a classification rule that takes into account the
strategy used during training: whenever a feature that should

be recognised by a neural module is presented then the net-
work is trained to output the feature’s contrast through neu-
ron N, and zero through neuron N; if a counter-example is
presented, then neuron /N should now output 0 and neuron
N , 1. However, we need to be more tolerant when clas-
sifying untrained features, as the network outputs will not
necessarily produce a sharp separation between feature and
non-feature classes. Let’s consider a neural module rep-
resenting a given feature class with its 2 output neurons;
the classification rule used in our experiments is presented
in the following pseudo-code, which basically states that a
module recognises a features whenever its neuron N pro-
duces an output that is above a threshold THD and also
above the output of the other neuron N:

if ((O(N) > O(N)) and (O(N) > THD))

then C = O(N)
elseC =0
endif

where TH D is the classification threshold, O() is a func-
tion that returns the neuron’s numerical output, and C is the
output of the classification rule, representing the contrast of
the detected feature (C is 0 when no feature is detected).
Section 5.3 explains how we obtained the value of THD.

5 Training and Evaluation

We constructed an initial training set from synthetically gen-
erated features. This seems to be a better approach than
manually extracting and labelling lots of features from real
images because a large number of feature variations can be
easily generated and, by using the hypothesis that the fea-
ture examples are chosen from a more descriptive set, this
allows for a smaller training set to be constructed. After
some initial experiments, we reached the conclusion that,
although the synthetic training set was very useful, the man-
ual selection of a small set of features from real images was
still required for achieving better results.

5.1 Synthetic Training Data

Contrasts within the set +:{0.3,0.4, 0.6, 0.8, 1.0} were used
when drawing bars, blobs and ends. A negative contrast
here means that the intensities in the feature background are
higher than the ones in the feature itself. Edges were drawn
using only positive contrasts, i.e. the intensities in the re-
gion above the feature orientation line are greater than the
intensities in the lower region in order to avoid the gener-
ation of the same pattern twice as the feature orientations
covers the whole circle. Fifteen different combinations of
intensity were used in the generation of the contrasts for all
of the features. One of the intensities was taken from the
set {85,170,255} and the other was derived according to
Eq. (6) to produce the desired contrast.

Ends and edges were generated at 12 different orien-
tations in the range (0°,..., 330°), in steps of 30°, while



bars were generated only at 6 orientations in the range (0°,
...,150°) due to symmetry reasons, and also in steps of
30°. Other sources of variability in the training sets were
the “size” of the feature and the use of Gaussian additive
noise. Blobs, bars and ends were allowed to vary in size
according to 0.6, 0.7 and 0.8 of the central receptive field
diameter. Gaussian additive noise was added to the drawn
features in order to broaden the training set.

Random counter examples were generated in order to
help the training process. These counter examples simulate
unstructured input data and data from other low level fea-
tures not considered in this work that are inevitably present
in real images. Counter examples sets were also enriched
with exemplars from the other feature classes. Table 3 con-
tains some examples of the training features.

counler
r edge ’ +bar I -blob I +end | example l
Cartesian not
inputs I . @ applicable
& ©
Retinal >
outputs - - : e

Table 3: Some examples of the training features. Differ-
ences in contrast between Cartesian inputs and retinal out-
puts are due to the logarithmic receptive field computation.

5.2 Initial Training

We used a learning rate of 0.005, momentum of 0.95 and a
neural module was considered trained when all the training
patterns passed with a 0.1 error bound. On average, it took
about one thousand epochs to train each module.

5.3 Evaluating the System’s Performance

The trained networks were tested with a set of unknown
synthetic features created using the same generators used
to build the initial training sets, with the difference that
now the features were generated at arbitrary orientations
and contrasts. We generated 80 test exemplars per class by
linearly varying the contrast within the range of 0.21 to 1.0,
with a step of 0.01 (-0.21 to - 1.0, for negative features). The
intensities used to produce the above contrasts were chosen
randomly as well as the remaining parameters specifying
orientation, noise level and size.

Figure 3 shows the target output contrasts (vertical
axis) used for all the testing sets (the horizontal axis shows
the pattern number). The first 80 patterns are examples of
the feature class in order of increasing contrast, and the
next 83 patterns are counter examples (the first 40 were
randomly generated and the remaining 43 were randomly
chosen from other class examples).

Figure 4 shows the actual network outputs of the edge
classifier when fed with the synthetic testing data. All the
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Figure 3: Target outputs for the testing sets.

other classifiers presented graphs very similar to that of the
edge classifier. The oscillations along the network outputs
for the testing sets when compared to the target outputs
in Fig. 3 are partially explained by the convergence error
of 0.1 used during the neural network training. The same
applies to the small oscillations in the second half of the
picture, corresponding to the networks response to counter-
examples. Reducing the neural network convergence error
could reduce the prediction errors during testing, but at the
cost of a slower training and risk of overfitting, which could
incur loss in generalisation. Another cause for the oscilla-
tions within the first half of the graphs are the small predic-
tion errors caused by the symmetry operators.
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Figure 4: Outputs from the trained edge neural module
when applied to its synthetic testing set.

We computed the absolute differences between real
and estimated orientations when processing the feature’s
through the symmetry operators. As an indication of good
performance, the top errors were all under the operator’s
resolution of 30 degrees.

The value of the threshold TH D (see Sec. 4.6) was
chosen as the highest classification threshold that produces
best overall performance. The reason for this is that we are
not interested in detecting very low contrast features. We



have varied the threshold from 0.0 to 1.0, in steps of 0.01,
and measured the classification errors. From these exper-
iments we observed that any threshold smaller than 0.15
is associated with the best overall performances (smallest
classification errors) in all the networks.

5.4 Adding Features from Real Images

The final step of the approach is to enrich the training sets
with features extracted from real images. Initially a set of
real images was tested using the modules trained with syn-
thetic features. Then a small subset of these images was
used as the source of additional training exemplars, which
were manually selected. The intensities used to compute
the contrast of these new exemplars are estimated from their
retinal outputs as if they were composed of uniform inten-
sity patches in the Cartesian domain (similarly to the syn-
thetic features). Finally, the neural modules were re-trained
with the improved training sets and tested over the same
initial set of images. This process is repeated until the vi-
sual output of the extracted features is satisfactory. Prelim-
inary experiments have shown that the addition of only a
few exemplars of real features (typically 5-10) was enough
to cause a visible improvement in the networks generalisa-
tion ability. Images illustrating this improvement were not
included in the paper because of limitations in space.

5.5 Experimenting on Synthetic and Real Images

In order to help the reader understanding the outputs of the
feature extraction system described in this paper and before
applying it to any real images, which may contain compli-
cated textures and features not easily spotted by the eye,
a number of synthetic images were initially used. These
examples are shown in Fig. 5. From a subjective evalua-
tion, apart from some small uncertainty with regards to the
feature location and smaller accuracy at the centre of the
image, where the receptive field size is too small to match
the feature’s size, it is possible to conclude that the clas-
sifiers are doing a reasonable job at detecting the features
they have been designed for.

Figure 6 compares the results of the proposed and pre-
vious approaches when applied to the same real test image.
There, we can see that the new approach brought a reason-
able improvement to the feature extraction process not only
with respect to accuracy (more features correctly extracted)
but also to the enhanced quantization of the contrast.

6 Concluding Remarks

A previous attempt to extract primal sketch features
achieved only partial success [5]. Features were detected
using a number of manually defined logical operators within
a fixed retinal window, which, when applied to real images,
failed to detect some low contrasting features as well as
misclassified a number of others (see Fig. 6 for reference).
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The approach presented in this paper takes advantage
of the inherent learning (from examples) and generalisation
properties of neural networks. Instead of designing feature
extraction operators from scratch, the main idea was to use
a set of exemplars of features and non-features to train a
neural network. An initial architecture received some re-
finements and ended up having seven independent neural
modules (only connected through the training sets, i.e. ex-
amples from one module used as counter-examples in the
others), one module for each of the feature classes consid-
ered, receiving inputs from a PCA pre-processing module,
whose main purpose was to spread out the classes in the
feature’s manifold.

This novel approach presented better results with re-
spect to the number of correctly classified features, pro-
vided a richer description for the image data with the ad-
dition of an estimate for the feature’s contrast, and became
a more flexible solution to the problem in the sense that
whenever a new feature class is required, only its training
set needs to be provided. Primal sketch features obtained by
the modules discussed in this paper are being successfully
used as image representations for the problem of learning
structural relationships from sets of iconic (2D) object mod-
els obtained from a sequence of scenes [3].
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Figure 6: Testing the classifiers on real images. From top to
bottom: final results from our approach and from a previous
approach proposed by Grove and Fisher [5].



