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Abstract ~ Augmented shared workspaces are an instance of augmented reality which move the collaborative
work from ‘the desktop to the real workplace, enabling higher interaction level with coworkers and allowing
implementation of advanced techniques of human-machine interfaces. In this paper, we advocate the employment
of a constraint system as the document model (or program) for the implementation of augmented reality
applications. We show that constraint technology is synergistic with augmented reality and collaborative work in
many aspects. An architecture model based on agents and constraints is then proposed. Our point of view is
supported by the observation of this technology being employed in Computer Graphics and Human-Computer

" Interaction research and the implementation of typical cases.
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1  Introduction

In near future, as computer technology advances, tasks executed
by humans away from the desktop will gain computer support.
An enabling technology for this accomplishment is Augmented
Reality (AR). AR is a consequence of computer vision
algorithms, realistic rendering and advanced human-machine
interfaces. In AR, information can be displayed for the worker
directly in his workplace due to special glasses, projectors or
displays. AR is adequate for computer supported cooperative
work (CSCW). For instance, a computer system can monitor the
group of workers, anticipating their actions, enabling
communication among them and minimizing the effect of
remoteness, instruct them, warn them of mistakes and dangerous
situations and inform them what someone else is doing. The
same vision algorithms used for the reality augmentation can be
used for cooperative work support.

In this paper, we intend to show that using constraints to
represent AR applications is very appropriate and convenient.
Constraint-based systems have been used since the earlier days
of computer graphics and vision research. Constraints have been
used in graphics for automatic construction of geometric models.
Constraint propagation has been used in vision as a solution to
the edge labeling problem [Winston, 92]. Constraint systems are
recommended for expressiveness and difficult combinatorial
problems such as scheduling. They are also used for fast
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prototyping. Recently, constraints have earned more attention
from researches due to the higher processing power of
hardware and the benefit of short development time. The main
advantages of using constraint technology for modeling AR
applications are expressiveness, parallelism, incremental
solution, real time efficiency, ability to model geometric
relations, ability to model human-computer interface and
ability to model space and time dependencies.

This paper is organized as follows: in Section 2 we
discuss AR applied to shared workspaces; in Section 3 we
briefly introduce constraint-based systems and show the
usefulness of these systems in our context; in Section 4 an
architecture for augmented shared workspaces is proposed; in
Section 5, we present examples and results and in Section 6 we
present the conclusions.

2 Augmented shared workspaces

Augmented shared workspaces is a promising technology for
computer assisted work in near future. CSCW systems used to
be confined to desktop environments. AR systems allow
computer supported collaborative work away from the desktop.
Users can perform their manufacture and maintenance tasks in
real world, and the computer system can assist them with
additional information and augmented perception. Computer
assistance can be inserted in this context in a natural way, as



the discontinuity imposed to the work routine is minimal. A good
example of an Augmented Reality collaborative workspace is the
Studierstube project [Schmalstieg et al., 00].

2.1  Augmented reality

Augmented reality is a modality of virtual environment
where the perception of the real world is not blocked [Azuma,
97]. Instead, additional information represented by virtual
objects is superposed to the perception. On line AR can be
accomplished through the use of special see-through head
mounted displays (HMD). There are two kinds of display
technology involved: video see-through (VST) and optical sce-
through (OST). VST consists of a set (pair) of cameras and a pair
of displays meant for each eye. The real world is captured by the
cameras, rendering of virtual objects is performed and composed
with the real world perception stereo video and, finally, the
composition is displayed for the user. OST displays employ
semi-transparent lenses to perform the composition. Input video
can still be used, but it is not necessary. The rendering technique
must consider that real world perception will not be erased. Off
line AR is a special case of VST without the real time restriction.

Common applications of AR are visualization, annotation,
manufacture, maintenance, robot trajectory planning and
entertainment. More recently, the collaborative potential of AR
has been discovered.

AR demands computer vision algorithms for correct
alignment of virtual objects in the real world, for keeping control
of real objects so as to allow interpretation of events and for
depth estimation in order to represent accurately occlusion of
real objects by virtual objects and vice-versa. An important
problem is sensor fusion, as current systems tend to adopt hybrid
mechanisms for tracking instead of relying on just one type of
device. AR system designers should consider multimedia and
human-computer interfaces issues as well because such systems
may integrate many types of media and non-conventional (non-
desktop) interface devices.

The augmented environment can be inhabited by virtual
agents. Agents are entities able to sense the environment and
actuate on it. Agent technology has become a paradigm of
software development. Autonomous software agents can interact
with the augmented environment in order to present information
to users in a natural manner. These agents can be embodied in
virtual creatures, or avatars, such as virtual humans. An
augmented shared workspace can be modeled as an environment
for agents, where agents can be humans (the users), software
agents (act in virtual world) and robotic agents (act in real
world).

2.2 Supporting cooperative work

In order to support cooperative work, we can mimic desktop
multimedia shared workspaces. The developers of these systems
were concerned with the following aspects: a worker should be
able to observe the action of the other participants, he should be
able to initiate face to face communication with some group of
participants and he should be able to scratch the tasks the group
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will be performing on a cooperative whiteboard [Buford, 94]
[Fluckiger, 95].

Observing the action of other workers is what we call
WYSIWIS (what you see is what I see) interface. The biggest
problem in this case is the limited size of displays for the large
amount of information to be displayed. For non-desktop
workspaces, this may not be a problem as you can display the
tasks performed by other workers in the 3D environment as
virtual objects.

Face to face communication is perhaps the most important
issue as social behavior can surpass some collaboration
problems, such as access exclusion. Emotional signs are also
important for clear communication. The efforts are directed to
integrating. conferencing systems with the workspace. In the
out of the desktop case, with AR, people can see each other and
communicate directly. In the telepresence case, people can be
represented as avatars (virtual humans) in the augmented
environment.

The design of cooperative whiteboard in virtual
environments is a challenge for interface researchers.
Manipulating virtual objects by dragging, moving or activating,
just like a painting program, is the traditional approach. The
concern, here, is the concurrency problem. A concurrency
resolution policy should be adopted. The most common
approaches are relying on social behavior and implicit locking.
In the former case, no exclusion method is implemented,
leaving the control solely to the users. In the latter case, a lock
is created when a user begins his task, so that other users are
not able to interfere until the user stops for a small amount of
time. For augmented workspaces we should use the former
policy for real objects and the latter for virtual objects. Other
types of floor control are the moderator and explicit locking by
request, using queues. Another possibility is the indirect
manipulation of virtual objects through real world objects. An
example of cooperative indirect manipulation is presented in
[Baker et al., 98]. This approach has the advantage of being
naturally asynchronous.

Now, we move our discussion to the field of constraint
systems. The relation among augmented reality, cooperative
work and constraint systems will be established in section 3.3.

3 Constraint-based systems

A constraint is a relation between objects or variables. An
equation or inequality represents each constraint. The
constraint satisfaction problem (CSP) is the problem of finding
a state that satisfies all constraints. A constraint system solves
this problem, maintaining the constraints satisfied when a
variable changes.

“This paradigm has proven to be useful in a wide range of
problems and has attracted the attention of researchers in the
last few years [Bartdk, 99]. The term Constraint Programming
(CP) is used to refer to the study of computational systems
based on constraints. Constraint Logic Programming (CLP) is a
generalization of logic programming, where the logic
statements are also constraints.



Constraint systems firstly appeared in Al, graphics and
vision research. Recently, it is closed related to Operations
Research when dealing with NP-hard combinatorial problems.

There are many algorithms available for a variety of
constraint problems. The constraint solver depends on the
domain of the variables (boolean, finite domain, integer, interval,
real), the topology of the constraint system (one-way constraints,
linear multi-way constraints, presence of cycles, non-linear
simultaneous constraints), policies to deal with over or under
constrained systems and support for higher order constraints
(conditionals) and side-effects (procedure calls).

Common algorithms are topological sort for one-way
propagation, combinatorial search algorithms, arc consistency,
symbolical solution of equations, degrees of freedom analysis,
interval propagation, simplex based method, iterative numerical
methods among others. Surveys on algorithms can be found in
[Bartak, 99] and [Kumar, 92]. Introductory texts are [Rossi, 99},
[Wallace, 95], [Friihwirth er al., 92], [Freeman-Benson, 90] and
[Leller, 88]. Olsen [92] describes constraint systems in the
human-computer interface point of view.

Concurrent solution for constraint satisfaction is called
Concurrent Constraint Programming (cc). A framework for cc is
based in multi-agent systems, see [Montanari and Rossi, 95].

Existing systems are very application specific. Most have a
limited vocabulary of constraint and variable types. Those
systems using iterative numeric algorithms should be more
controllable so as to avoid stability problems. The
implementation of a completely new system for different
problems is very usual because crafting a generic constraint
system is very difficult.

Among the applications for constraint systems we can cite
scheduling problems (time dependency), layout design (spatial
dependency), assignment problems (combinatorial search), real-
time control, interfaces, multimedia orchestration, text page
layout, interactive graphics and animation, vision problems (edge
labeling), verification of system conditions, debugging,
diagnostics, constraint queries for databases, network
management, spreadsheets, interactive problem solving and
computational biology problems [Rossi, 99].

3.1 A motivation towards constraint logic programming

An example from [Leler, 88] to introduce CLP is the
conversion between temperature scales. While in conventional
imperative programming we need 6 attribution statements to
convert Celsius to Fahrenheit, Celsius to Kelvin, Kelvin to
Celsius, Kelvin to Fahrenheit, Fahrenheit to Celsius and
Fahrenheit to Kelvin, in CLP only the 2 statements shown in
equation (1) are necessary. When one of the variables C, K or F
changes, the constraint system corrects the other two in order to
maintain the constraints satisfied.

C=(F-32)x5/9 ®
K=C+273

This example illustrates the expressive power of the CLP
approach. Another example is a program to draw a regular
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pentagon. Doing this in an imperative language requires a lot
of calculations from the programmer. In a constraint language,
the programmer needs just to specify the position of a vertex
and the central point and declare that the distance between each
two vertices connected by an edge is the same and the
distances from vertices to the central point are equal. An
ambiguity problem arises here, as a five-pointed star is also a
solution that satisfies the constraints. In this case, the system is
under constrained, additional constraints can solve the
ambiguity problem, but can also make the system over
constrained, where a solution can be hard to find.

3.2  Geometric constraint systems

Surveys of geometric constraint systems are [Badros, 98]
and [Hower and Graf, 96]. Such systems should rely on non-
linear constraints. To achieve efficiency, a general numerical
constraint solver is often avoided. Another important
characteristic is the use of a limited vocabulary of constraints.
Constraint solvers intended for the layout problem and such as
CSVG [Badros et al., 00], Amulet [Myers, 96] and LayLab
[Graf, 96] use linear one-way or multi-way constraints. In
Bramble [Gleicher, 93], an incremental numerical non-linear
constraint solver is employed, considering continuous
movement of interface objects. GLIDE [Ryall et al., 96] is a
graph visualization system based in spring simulation for over
constrained declarations. In Chimera [Kurlander, 93] the
Levenberg-Marquadt algorithm (variation of Newton-Raphson)
is employed to find the solution of the non-linear system. The
constraint vocabulary of Chimera is very interesting as absolute
and relative constraints are considered. QOCA [Helm et al.,
95] employs quadratic optimization, which is useful for
constraints defined by Euclidean distance between points.
Diehl and Keller [00] implement constraints and some
application scenarios in VRML. Sced [Chenney, 93] is a
geometric editor supporting one-way non-cyclical constraints.
DLoVe [Deligiannidis, 00] is a distributed VR-based CSCW
system that employs a one-way constraint solver.

Numerical solvers based on Newton-Raphson algorithm
may not be efficient enough and requires an initial guess. Other
approaches are possible, such as interval methods [Benhamou,
95], degrees of freedom analysis [Kramer, 92] and symbolic
methods (NP-hard). The constraint system can be modeled as a
set of differential equations whose asymptotic equilibrium state
satisfies the constraints as described in [Witkin et al., 87, 88]
for animation control. The incremental nature of the problem
allows efficient implementation.

3.3  Synergistic advantages

We list some advantages of implementing AR
applications over a constraint-based system instead of
conventional imperative and event-based models. The general
advantages of choosing a constraint based implementation is
the expressiveness of constraint languages, their flexibility,
ease of use, ease of learning and fast prototyping.
Expressiveness means that the program description is closer to
the problem description instead of the solution description.



Flexibility is the ability to use the system in multiple contexts.
Ease of use and ease of learning mean that the languages can be
designed to be easily used and learned, with a limited vocabulary
of variable types and constraint types and visual representation
(see {Ryall er al., 96]). Fast prototyping is the ability to shorten
development time. Parallelism and real time efficiency are
desirable points for an on line AR system. The incremental
solution characteristic of the constraint satisfaction guarantees
that the implemented algorithms are incremental and provides a
solution each time it is necessary, i.e., the variables are always
consistent with the constraints. The ability to model geometric
relations is important for the alignment of real and virtual
objects. It is also important for clear visualization. The ability to
model human-computer interface is important for the
communication of the user with the system and his coworkers.
The ability to model space and time dependencies is important
for multimedia and for presentation applications such as tutoring
systems.

4  Architecture proposal

For easy reference, an architecture model is proposed here. In
this model, we suggest supporting a number of vision algorithms,
implementing a constraint system base for declaring and
processing the application constraints, an extension system based
in agents and modules for output and multimedia
communication.

4.1  Vision algorithms

Vision algorithms can be responsible for most input data.
Low level vision algorithms can rely on the constraint-based
system for handling high level problems such as occlusion. Usual
vision algorithms for our context are object recognition, pose
estimation, tracking, surface reconstruction, motion analysis and
matching between views.

4.2  Constraint-based application definition

The core of the application definition can be declared as a
combination of constraints and agents. First-order constraints are
only able to model reactive behavior. They are useful to solve
those typical problems based on constraint satisfaction, but they
are also useful to model real-world objects and passive virtual
objects for direct manipulation. Instead of providing support for
higher-order constraints (conditionals) or side effects (procedure
calls), we choose modeling the active portion of the application
as agents. The constraint system specifies the behavior of the
environment where the agents inhabit. Dix er al. [94] propose the
Agents, Medium and Objects (AMO) model for interface
analysis and suggest implementing the interface as the medium.
We propose a constraint system modeling real and virtual object
behavior as the medium.

4.3  Agent-based application specific extensions

While the constraint system models the reactive behavior of
the environment, agents can model intelligent autonomous
behavior. Agents are able to access some variables and
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constraints of the constraint system for reading or writing,
corresponding to the sensorial and motor functions. The
architecture for agent implementation is not relevant so long as
it runs in parallel with the constraint engine because only the
agent behavior is relevant. Agents can not only model active
components of the application but also users, robots and
previously unknown components. We believe this framework
can help to establish a formal model of user activity in
cooperative work.

4.4  Actuators, rendering, multimedia and telepresence

Signals for robotic devices, force-feedback output and
displays are generated by processing the output variables of the
constraint system. A haptic rendering system based on
constraints can be found in [Zilles and Salisbury, 95]. The
constraint system can also participate in rendering control. In
section 5.3, we describe a rendering control strategy for
displaying labels. Multimedia orchestration can be represented
by the constraint-based model, one example of constrained
based multimedia document model is Madeus [Jourdan et al.,
98]. Constraint systems are an alternative to scripting in
presentations. Telepresence can be emulated using virtual
objects such as avatars.

5 - Results in application scenarios

We analyze some application scenarios where the adequacy of
constraint-based systems for our purpose is quite evident. Each
scenario is meant to handle a different aspect of constraint
programming and the applicability to AR and CSCW.
Experiments for the scenarios 5.1 (virtual theatre) and 5.3
(annotation) were implemented and results are shown. For the
remaining scenarios, we made reference to related work and
pointed how to use constraints in each case.

5.1  Virtual theatre, MUD

Virtual theatre can be used for entertainment, art and
education. There are collaborative systems for role-playing
named MUD (multiple user dialogue), most of them is text-
based and desktop-based. Collaborative virtual theatre is,
therefore, an improvement of MUD. Inspired by puppet
theatre, we present an AR application scenario where a real
marionette is able to play the role of a virtual creature. This can
be used for collaborative storytelling, where each child controls
virtual characters like marionettes or body parts of them in
cooperation.

We implemented an off-line prototype AR system for the
animation of a virtual marionette. A movie of a real marionette
was recorded. The control rod of the marionette was prepared
with four landmarks (enough for pose estimation). The camera
was previously calibrated. A CSG model of the marionette was
created with some free parameters, as shown in figure 1. A set
of constraints (2) and (3) relating these parameters to the
position of the landmarks in 3D space was constructed. We
chose a gradient descent optimization framework for partial
constraint fulfillment. The virtual marionette is rendered with



POV-Ray™ [POVRAY] and the resulting animation is the
composition of the original video and the virtual marionette.

Results can be appreciated in figure 2. More frames
presented in figure 6.

distance(b,n3)=dl;

distance(h,nl)=d2;

distance(nl,n2)=d3;
distance(n2,n3)=d4;
distance(nl,11)=d5;
distance(l1, f1)=d6;
distance(n3,12)=
distance (12, f2)=

d7;
ds;

distance({a6,h)<d9;

distance(al, £1)<d10;
distance(az, £2)<dll;
distance(a$,b)<dl2;

fl1.y>0; £f2.y>0;
nl.y=h.y;
n3.y=b.y

less strict:

f1.y=0; £2.y=0;
h.y=0; b.y=0;
n2.y=0;

a3 a4

as

Figure 1 — Virtual marionettes. Constraints are
defined to model the skeleton, the control rod and
the relation between them.

are

@

3
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Figure 2 - Virtual marionettes. (a) frame #19
from original movie, landmarks are highlighted,
(b) image of virtual model for frame #19, (c)
composition of virtual object and real world,
frames #19 from the augmented movie.

The constraints (2) used in the modeled animated body are
Euclidean distance between points and positive y-coordinate
for all points, where negative values mean beneath the floor
level. In order to obtain the gravity effect, minimization of y-
coordinate for each point is represented as less strict constraints
(3) for partial constraint satisfaction.



Pose estimation was based in the detection of three of the
landmarks and the distance between each pair of landmarks.
Correspondence between an image point and the associated
landmark is maintained through the image sequence based on the
closest solution to the result from the previous frame.

The role of the constraint-based system in this case can be
seen from many perspectives: the system is used to align virtual
objects to real ones; the system collects 3D coordinates as input
(like optical motion capture) and uses them as control points for
an animation; the system models the behavior of a real object
and tries to mimic it when receiving similar input.

5.2  Augmented tutoring systems

Tutoring systems should be based on interactive
presentations. Interface agents should be employed to simulate a
human instructor. The agent must be able to convince the user
that it can actuate in the real environment. A constraint-based
system can model the real and virtual parts of the environment.
The agent should sense the environment through accessible
variables of the constraint system and actuate changing those
write-enabled variables. Sequence of events can be modeled by
“before”, “after” and “during” time relations, becoming a
scripting system. For an example of an agent-based virtual
tutoring system, see Steve [Rickel and Johnson, 98].

The roles of constraints in this case are modeling time
dependencies, modeling a working real system where people can
manipulate in both the real and the virtual case and serving as a
protocol for communication among participants of the
collaborative systems, i.e., agents.

5.3  Annotation

The problem of displaying labels well positioned for
readability and appropriate spatial semantics can also be modeled
in the constraint framework. We implemented a readable
annotation system, using constraints to avoid label overlapping
and to keep each label close to the corresponding object. The
object position is detected using image processing. The objects
were rendered in POV-Ray™. The employed constraints are
shown in (4). The geometric scheme can be seen in figure 3.

non_overlap(cl,c2); )
non_overlap(cl,c3);

non_overlap(c2,c3)

less strict:
distance(al,cl)=0;
distance(a2,c2)=0;

distance(a3,c3)=0;

The role of constraints here is modeling spatial
dependencies for appropriate visualization. The constraints were
designed with readability of the information and spatial relation
semantics in mind. See results in figure 4.
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Figure 3 - Annotation system. Variables are
rectangular label centroids and anchors in real
world objects.

Figure 4 — Annotation system. Upper: labels are
placed right on the anchored positions, lower: a
constraint system corrects the overlap and
semantic problem.

54  Design and manufacture

For tasks such as design and manufacture in the real
world, the system can provide users with real and virtual tools
as interface metaphors. One example of metaphor is the ruler
metaphor for the object alignment problem [Raisamo and
Raiha, 96]. In the desktop case, a mouse-controlled ruler
pushes objects with the purpose of aligning them. Extending
the desktop idea to AR, a real world ruler can be used to push
real and virtual objects. The alignment can be implemented as
a set of constraints activated when the ruler is on the
workspace. Another interface technique that can be imported
from the desktop to the augmented workspace is snap-dragging
[Gleicher and Witkin, 91]. In the desktop, snap-dragging holds
the object being dragged in valid positions. The user can only
move the object in its constrained domain. For AR systems,
snap-dragging can be implemented using real objects as control



instruments for virtual objects. In figure 5, the (hypothetical)
system should provide guidance for alignment of two real boxes.
Using the augmented version of snap-dragging, the virtual
contour of the box shows the closer position where the real box
will satisfy the specified alignment constraints. Differential
manipulation [Gleicher and Witkin, 91] is a technique for
incremental update of constraints face to bounded continuous
change of input. This technique is also very useful in the AR
context.

e

Figure 5 — Snap-dragging.

In this case, constraints are used to implement interface
metaphors importing spatial dependencies from real-world
situation and using an artificial spatial dependency (snap-
dragging) imported from graphics software.

6  Conclusion

We discussed in this paper the potential of employing constraint-
based systems for the specification of augmented reality
applications. We showed that the combination of these
technologies is synergistic. Our greatest motivation was the
creation of workspaces away from the desktop where workers
can collaborate using real and virtual tools. An architecture
model mixing constraints, agents and augmented reality was
proposed. Typical examples and corresponding results were
presented.
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Figure 6 - Virtual Marionettes. More frames from the original and the augmented videos.
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