Wavelet Compression of Vector Field Visualizations
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Abstract: Flow visualization has been an active research field for several years and streamlines have proved to be
an effective representation of two-dimensional steady vector fields. Online simulation of complex dynamic
systems, computed on powerful computers, become more and more common. Efficient steering of the
computational process requires the analysis of simulation results in real time. Visualization offers the possibility of
at-a-glance analysis of the data but requires to be able to download visualizations efficiently. Here we propose a
wavelet model and compression scheme for streamline based images of 2D steady vector fields. This method
allows us to decrease the size of the data by a factor of 2.5 for a visualization quality comparable to the original
image, and the compression factor increases to 10 if we accept small deformations.

1 Introduction

Vector field data are produced by scientific
experimentations and numerical simulations, which are
now widely used to study complex dynamic phenomena,
with various areas of applicability, such as global climate
modelling and computational fluid dynamics. Large-scale,
time-varying simulations are able to produce large
amounts of data in a short time and raises the need for
effective techniques to get insight in the data and to extract
meaningful information.

Several techniques have been proposed to visualize
steady flow fields, including icon plots, line
representations, and textures. A streamline is a line
tangential to the vector field at any point. The construction
of a streamline is performed by integrating the trajectory of
a massless particle that would have been released in the
flow at a given location. By covering the image with a set
of streamlines, the global structure of the vector field can
be visualized, its degree of turbulence can be estimated,
and the position of all critical points, such as sinks and
saddle points, can be easily located in the domain.

In order to visualize a vector field properly it is
necessary to pay attention to the quality of the
visualization. Following several observations we have
made, it appears that three main factors have a strong
influence on the quality of a streamline-based image:

« the length of the streamlines: the major visual property
of a streamline is that it allows the observer to follow
the path of the flow visually, thus the longer the
streamnline the better the quality of the visualization.

« streamline ends, which appear as visual artefacts in the
tmage, hence disturbing the interpretation of the flow
features. The tapering effect has proved to be a good
way to reduce the visual impact of streamline ends on
the quality of the visualization [7].
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+ image density, which can be defined as the ratio
between colored pixels, i.e. pixels covered by a stream-
line, and background pixels. If the image density is not
uniform, regions with a high density tend to appear as
more important than the others, because they concen-
trate more visual features. Unless this is a desired fea-
ture, whose aim is to highlight regions of particular
interest, it is important to ensure a uniform density.

This is illustrated by figure 1.
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Figure 1: A
visualized by means of streamlines. Left and middle
figures have been obtained by placing seed points at the
intersections of a regular grid. Left: short streamlines.
Middle: long streamlines. Right: image obtained by our
streamline placement algorithm.

steady

Turk and Banks proposed an image guided streamline
placement algorithm, which selects the best set of
streamlines among all possible ones so as to obtain a
uniform density in the image [7]. Their method was
extended to curvilinear grids later [4]. In [2] we have
presented a more effective approach to address the
streamline placement issue. In [3] we proposed an
extension of this technique to compute streamline images
at different levels of densiry. Basically a set of images are
computed, each one having a given (uniform) density.
Passing from one image to the next, resp. the previous, that
is increasing, resp. decreasing, the density, is achieved by
just adding, resp. deleting, a few streamlines. In other



words the streamlines sets are nested, a streamline defined
at level J of the hierarchy being defined for all levels I'>J.
Such a representation is very suitable for interactive
exploration of vector fields, the density being adjusted on
demand without any additional computation.

In this paper we extend the multiresolution property
by proposing a wavelet scheme for the representation of
streamline. While the previous work did only address
multidensity image representation, here we address the
multiresolution representation of streamlines themselves.
With both techniques we are now able to generate images
of a vector field of an arbitrary memory size. Thus we do
not only allow the user to monitor the density of the image
in real time but we can maintain any frame rate during the
exploration of the data by adjusting the level of details of
the streamlines representation. Particularly, in the case of
remote exploration of large data sets, the level of details
can be chosen as a function of the transfer rate.

It is important to note that we are interested in having
a geometric representation of the streamlines rather than
Jjust an image of the vector field. This does not only allow
the progressive transmission of the visualization but we are
also able to use the streamlines for various visualization
effects, such as mapping textures on them or highlighting
some particular flow path by dye advection for instance.
Hence traditional image compressing techniques are not
suitable in this case. The remaining of this paper is as
follows. In section 2 we give the necessary background on
the multiresolution theory, which is the mathematical
basement of this work, and we describe the computation of
a streamline. Section 3 describes our wavelet scheme for
streamlines and the results are presented in section 4. Last,
section 5 allows us to conclude.

2 Background

Here we give the necessary background to understand
the next section. We detail the streamline computation and
particularly an important property of our streamline
representation: they are discrete curves with evenly spaced
points. Then the part of the multiresolution theory that is
related to this work is presented.

2.1 Streamlines

A vector field is generally given by a set of points,
with various possible organizations, and a vector
associated with every point. Hence computing a
streamline, that is a flow path, can not be achieved
analytically but rather is performed by approximation,
using a so-called integrator. Such a program typically
generates a sequence of ordered points, which are called
sample points.
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The computation of a streamline starts by determining
the first sample point, called a seed point, from which the
integration of subsequent sample points occurs. The
position of this first point is important, especially for
streamline placement, although it does not have any effect
on the quality of the results produced by the method
presented here. Once a valid seed point has been found, we
process the integration forward and backward from that
point, in order to compute the positions of all sample
points for the current streamline. Basically each
integration step yields a new sample point. There is a wide
family of integrators that can be used to integrate flow
paths [5]. We use an integrator that produces evenly-
spaced sample points, such as DOPRIS5 [1]. The
construction of a streamline stops when we reach a
singularity of the flow (source or sink) or the border of the
computational domain has been reached.

To summarize this section, it is important to
remember that a streamline is a discrete curve composed of

“evenly spaced points.

2.2 Multiresolution Theory

Let us introduce wavelets, a well adapted model for
the representation of functions at different levels of details
(LOD).

2.2.1 Hierarchical Decomposition of Curves

Curves can be seen as piecewise-linear functions. Let
VY denote the vector space of all functions that are linear
over the entire interval [0,1). With this notation, V/
includes all piecewise-linear functions defined on the
interval [0,1) with linear pieces over each of 2! equal-sized
subintervals. A piecewise-linear function over two
intervals can always be defined as a piecewise-linear
function over four intervals, each interval for the first
function corresponding to a pair of intervals for the second
one. Spaces VJ are said to be nested, which is noted as

Vevievie..

The basis functions for spaces Vi are called scaling
functions and are usually denoted by the symbol ¢.
Building a multiresolution analysis imposes the definition
of a new vector space W/ as the orthogonal complement of
Vj‘ in Vitl A collection of linearly independent functions
\yj_ (x) spanning W) are called wavelets. '

" Then a function f(x) expressed in Vi*! as

J+1 j+1 j+1 j+1
f)=c ¢ (x)+c O (x)+...
0 0 1 1
j+1 j+1
+c o (x)
2]+1_1 2]4—1‘1



can be rewritten in terms of basis functions in Vi and W as

Jyi Syt i
fW=co()+...+c; ¢ ; (x)+d\ll(x)+
0°0 12 -
J

VISV

The main idea behind multiresolution analysis is the
decomposition of a function into a low-resolution part
represented by the coefficients ¢/ and a “detail” part
represented by d’ Such a decomposmon can be used for

compression, as explamed in the next section.

2/

(x)

2.2.2 Wavelet Compression

Wavelet decomposition is very suitable for efficient
compression of functions defined over various domains.
Wavelet-based compression is lossy and consists typically in
a three steps algorithm:

1) Filter bank decomposition: the original function,
defined by a sequence o), is broken down into a coarse level
approximation ¢’ and wavelet coefficients d°, dt, ..., di"!
corresponding to the levels O, ..., j-1, respectively.

2) Selection: a subset s of the detail coefficients is
selected from d°, d!, ..., ¢! according to a given criterion.

2) Reconstruction: a function is reconstructed from the
coarse level approximation c¥ and the selected wavelets
coefficients.

The decomposition and reconstruction steps are
implemented by applying filters to the coefficients defining
the function. We now introduce the concept of filter bank.

2.2.3 The Filter Bank

In [6] Stollnitz et al. proposed the following definition
for a filter bank. Consider a function in some approximation
space V). Let’s assume we have the coefficients of this
function in terms of scaling function basis. This coefficients
can be written as a column matrix of values:

i i T

c' = [co...cu(j)_]]
where ¢’ could be the coordinates of a curve’s control points
inR2% .

Suppose we wish to create a low-resolution version ol
of ¢] with a smaller number of coefficients v(j-1). The
standard approach for creating these values is to use some
form of linear filtering and to down-sample on the v(j)
entries of ¢l. This process can be expressed as a matrix
equation:

j=1

Al

where Al is a constant matrix.
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Since ¢/"! contains fewer entries than d,itis intuitively
clear that some amount of detail is lost in this filtering
process. If Alis appropriately chosen, it is p0551ble to capture
the lost detail as another column matrix d/"! , computed as

&' = Bl

where Bl is a constant matrix related to Al.

AJ and BJ are called _analysis filters. The process of
splitting the coefficients ¢! in a low-resolution part Jland
detail ! is called analysis or decomposition. Then ¢! can
be decomposed into a low-resolution part ¢ and detail ¢/,
and so on. Thus, the original coefficients o can be expressed
as a hierarchy of lower-resolution parts ¢, ¢!, ..., ¢! and
details d°, d!, ..., &1, This recursive process is known as a
filter bank.

Moreover if Al and B are appropriately chosen the
original coefficients ¢! can be recovered from ¢/"! and ¢! by
using two matrices P and Q! as follows:

o= Pl gl
Pl and Q' are called syntheszs ﬁlters and the process of

recovering ¢/ from ¢i*! and d"! is called synthesis or
reconstruction.

3 Streamlines Compression

Now we describe our wavelet scheme for streamline
and the different steps of the compression.

3.1 Decomposition Step

Stollnitz et al. show in [6] that the only functions that
can be hierarchically decomposed are those that can be
generated by a recursive subdivision process. The idea of a
recursive subdivision process is to create a function by
repeatedly refining an initial piecewise-constant function
£0 (x) to produce a sequence of increasingly detailed
functions f! (x), fz(x), ..., that converge to a limit function
f(x). The function fi(x) is constructed from function -1(x) in
2 steps: the splitting step, which introduces midpoints, and
the averaging step, which computes weighted averages. For
all subdivision schemes the splitting step is the same, and
only the averaging step differs.

If the function £~ 1(x) is characterized by the sequence
j-1

2t

i-1 j-1
< e
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Figure 3: Compression of streamlines images with our wavelet scheme. We are able to compress the data by a factor of 10

without any visual degradation.

then the splitting step for constructing fj(x) is written as
follows:

C _j
2i+1

j=1 -1
(C ;i Li+ l)
The averaging step is of the form:

J i
= r,.c
< ; K ivk

r, masks for various subdivision schemes are
described in [8]. As Lounsbery explained in [8] the chief
property of piecewise linear subdivision that leads to
simpler algorithms is tight locality. Then the analysis
filters AJ and B’ can be generated by simple technique
without the need for implementing sparse matrix
multiplication. Instead, the wavelet coefficients are
determined as:

N —

w=v-2(p-q)

where w is the wavelet coefficient associated with a new
vertex v which has been decomposed from the coarser-
level vertices p and q. Let us note that this definition of the
wavelet coefficient, i.e. the distance between m and v, is a
good evaluation of the approximation error. Now we
propose such a decomposition scheme for streamlines.

Let us recall that a streamline is a discrete curve with
n sample points. The decomposition process is recursive. It
starts by adding point s, and computing its distance to the
middle-point of points pair (sg, s,.1). Then this process is
repeated with points pairs (sg, s,2) and (sy, s;_1), and so
forth until all sample points of the streamline have been
added. This process is illustrated by figure 2.

Let us remark that this scheme involves that the
number of sample points of the former streamline be
2V 4 1. But it can be easily adapted so as to deal with any
streamline: if there is no more sample point between p and
q the subdivision process is stopped and no additional
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point v is generated. The consequence is that the resulting
tree will not be well balanced, which is not required by the
selection algorithm however.
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a. Computation of level 0: p = 5;,, 4 =5, and

V=3,

b. Computation of level 1: for w,: p=s,, ¢ = s,
and v = 5, for w]l: p=s,q9=s,and v = s,

Figure 2: Decomposition of a streamline. The sample
points of the original streamline are denoted by sy, ..., S,.1-
At any step a new point is added as follows: we compute m
as the middle point of (p,g) then we compute the wavelet
coefficient w as the distance between m and v.

3.2 Hierarchy Construction

All points of a given streamline are organized in a tree
whose root corresponds to the coarsest level and
subsequent levels correspond to the decomposition levels.
Basically, at level O of the tree a streamline is defined by
only 3 points: the first and last sample points of the former



streamline and the middle sample point. Each streamline
being decomposed independently, the resulting structure is a
forest composed of all generated trees. This forest is used for
both compression and interactive visualization of the vector
field.

Information stored at each node includes structural
information, for tree traversal, and qualitative information,
such as the approximation error. The structure of a node
includes:

* the coordinates of the point associated to this node (s,
on figure 2 for instance),

* the error associated to the node, i.e. the wavelet coeffi-
cient (or the distance) associated with that point (w, for
s, on figure 2),

» the maximum error of all nodes in its subtree, that is the
subtree whose root is the current node. This information
will be used for node selection during the reconstruction
process.

For the leaves of the trees, the maximum error is
obviously the error associated with the node. For the interior
nodes, the maximum error is computed by a propagation
algorithm from leaves to root.

This is a minimal structure but additional information
could be stored here, particularly any information useful for
the node selection, such as the degree of interest of the region
into which the current point falls.

3.3 Selection and Reconstruction

The forest structure can be used for image compression
or interactive visualization. In both cases all the nodes are
sorted according to a certain criterion. A usual criterion is the
approximation error, the nodes being sorted in decreasing
error order. In case of compression a ratio of compression R
is defined. Then the k first nodes in the sorted list are
selected, where K = Rx N, where N is the total number of
nodes in the forest. In case of interactive visualization it is
important to maintain a certain frame rate, particularly if the
data are accessed remotely. Wavelets coefficients are
imported in the image continuously, the goal being to have
the more accurate visualization as possible at any time.
Hence wavelets coefficients are processed in order according
to the sorted list.

Generally one try to minimize the approximation error,
which is the reason for which we have decided to store the
error and the maximum error in each node. For sorting the
nodes we use the maximum error because both “parents” of a
point should be included in the streamline definition if the
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point itself is, otherwise unpredictable results can occur, as
show on figure 4.

Figure 4: The maximum error should be used for sorting
wavelets coefficients. Here vertex v has an associated error
of 0, while errors for vertices v and v, are not zero. If we
use the mode error for sorting nodes, v and vy are used for
reconstruction prior to v, which leads to the red curve
whereas the original curve is drawn in black. Hence by
taking the maximum error this problem is solved.

The selection can be based on various criteria, such as
the degree of interest of different parts of the domain or the
value of an additional scalar field. If there are several criteria,
they are combined in a single function with respective
ponderousness coefficients. Then the function is evaluated
for each leaf of the forest and the maximum is computed for
all other nodes as explained in section 3.2. Then all nodes are
sorted according to their values. Note that the hierarchical
structure does not have to be updated when the selection
criterion changes but only a new sorted list has to be
computed.

4 Results and compression ratio

As explained earlier in the introduction, we want to
keep the meaning of the streamlines and thus we store for a
vector field a list of points associated with it. The average
time required to construct such a list on a bi-celeron 466MHz
with 128 Mbytes memory is 12.75 ps per point (137261 us
for 10783 points, 56523 s for 4432 points).

The compression rates are expressed as the ratio
between the number of points in the compressed
representation and the number of points in the original
streamlines.

Table 1: informations about pictures in figure 3

image a. image b. imagec. | imaged.

number of 4432 2216 444 222

points




Table 1: informations about pictures in figure 3

imagea. | imageb. | imagec. | imaged.
compres- 1 2 10 20
sion factor
number of | 76 76 71 41
streamlines
anpps” 58 29 6 5

* . .
anpps : average number of points per streamline.

The figure 3 and the table 1 show that no significative
degradation of the image quality can be observed for
compression factors lower than 10. The only degradation
we observe is the loss of some “simple” streamlines
(streamlines whose shape is close to a straight line). Indeed
we see on table 1 that when the compression factor
increases, the average number of points per streamline
(=anpps) decreases. Nevertheless the “complex”
streamlines are constructed with more points than anpps
and “simple” ones with less points than anpps. This tends
to unselect “simple” streamlines to keep good informations
for “complex” ones.

When the compression rate becomes greater than
90% some streamlines deformations can be observed (see
the last image in figure 3).

We can compare these results with those obtained by
compressing files containing the lists of points in binary
format with lossless compression methods, such as Unix
compress or GNUzip. For the set of streamlines of figure 3,
compress and gzip obtain compression rates of 17% and
36%, respectively. Note that such a “binary” compression
can also be applied to the compressed result data set from
our method.

5 Conclusion

In this paper we proposed a wavelet scheme for the
representation of streamline images at different levels of
details. This method allows to decompose hierarchically
each streamline in a list of points, which can then be
globally ordered as a function of various criteria, such as
the approximation error or the importance of the data, or a
combination of several such criteria. This hierarchical
representation of a vector field visualization can be used
for compression or progressive transmission. Another
crtieria, see in [3], is to maintain a spatial coherence
between streamlines like a uniform density over the whole
image.

For a visualization quality comparable to the original
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image, our method achieves higher compression rates than
classical non lossy compression algorithms. Moreover our
method is suitable for progressive transmission of the data,
which is not a feature of the traditional compression
methods.
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