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Abstract. The estimation of left ventricle motion and deformation from series of images has been an area of
attention in the medical image analysis and still remains and open and challenging problem. The proper
motion tracking of left ventricle wall can contribute to isolate the location and extent of ischemic or infarcted
myocardium. We present a method that automatically estimates the velocity vector field for a beating heart
based on the study of variation in frequency content of a time series of non-stationary images. Results
obtained with this automated method in synthetic images and cardiac gated-SPECT images are presented.

1 Introduction

Left ventricle contractile abnormalities can be an
important manifestation of coronary artery disease. Wall
motion changes may represent ischemia or infarction of
myocardium (Marcassa et al., 1990). Quantifying the
extent of regional wall motion abnormality can aid in
determining the myocardial effects of coronary artery
disease. It would also simplify the analysis of wall motion
changes after diagnostic and therapeutic interventions
and allows comparison of different imaging techniques to
assess their diagnostic accuracy. For this reason the
proper tracking of left ventricle wall can contribute to
isolate the location and extent of ischemic or infarcted
myocardium and constitutes a fundamental goal of image
modalities, such as Nuclear Medicine.

The process to obtain Nuclear Medicine images
involves the detection of the radiation emitted from a
patient’s organ or region after the administration of a
radiopharmaceutical. Using a gamma camera, the
detected radiation produce an image indicating the
distribution of radionuclide in the body. This distribution
represents the projection of a radioactive volume over the
detector’s face or, after tomographic reconstruction, the
radioactive distribution in a volume section or slice.

Some radiopharmaceuticals such as *°'TI and *™Tc-
MIBI can provide information about the myocardium
perfusion. Following intravenous injection, these
radioactive substances are extracted almost completely
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from the plasma during the first pass throughout the
various tissues. Defects on their distribution in the
myocardium indicate a muscle hipoperfusion due to
obstruction of the coronary arteries. Electrocardiographic
gating of MIBI SPECT images provides the additional
ability to determine the severity of abnormalities in wall
motion and wall thickening associated with perfusion
defects.

This work describes a new method to automatically
estimate the velocity vector field for a beating heart based
on the study of variation in frequency content of a series
of non-stationary images as time varies. Results obtained
with this automated method in synthetic images and
cardiac SPECT images are presented.

2 Methods

Spatial and temporal frequency (STF) signal analysis is
used for the description and understanding of signals
whose frequency content is changing with time (non-
stationary signals), which is the exact case when studying
non-rigid motion in series of images. The other major
motivation for considering the use of STF image
representation as a basis for computing velocity vector
field comes from the literature on mammalian vision. In
particular, recent investigations have demonstrated that
many neurons in various visual cortical areas of the brain
behave as time-frequency bandpass filters (Adelson and
Bergen, 1985, Gafni and Zeevi, 1977 and 1979).



In the field of non-stationary signal analysis, the
Wigner-Ville Distribution (WVD) has been used for the
representation of speech and image. Jacobson and
Wechsler (1987 and 1988) first suggested the use of the
WVD for the representation of shape and texture
information images. In particular, they formulated a
theory for invariant visual pattern recognition in which
the WVD plays a central role.

Given a time-varying image f(x, y,t), its WVD isa
6-dimensional function defined as:
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is the pseudocorrelation function, where * denotes
complex conjugation.

For the special case where a time-varying image is
uniformly translating at some constant velocity (v,,v,),
the image sequence can be expressed as a convolution
between a static image and a translating delta function:

f(x’yft)=f(x9y)*5(x_vxt’y_vyt) (3)

Using the convolution and windowing properties of
the WVD, we obtain
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The WVD of a linearly translating image with
constant velocity is everywhere zero except in the plane
defined by

{Goy,twe,wy,w)ivow, +v,w, +w,) =0} (5)

for fixed (v,,v,). Equivalently, for an arbitrary pixel at
x,yand f, each local spatial and temporal frequency
spectrum of the Wigner-Ville distribution is zero
everywhere except on the plane defined by

{we,wy,w)ivew, +v,w, +w,) =0} ©6)

From (1) the Wigner-Ville Distribution assigns a
three-dimensional spatiotemporal-frequency spectrum to
each pixel x,y,f, over which the image is defined
(Jacobson and Wechsler, 1987). However, the WVD
assigns a 3D spectrum with interference due cross
correlation (Cohen, 1995) when more than one frequency
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is present. In order to smooth the spectrum a filter must
be introduced. In this work the Hanning filter was used:

h=0,5*{1—cos(277mﬂ for 0<n<N-1 @)

After obtaining the smoothed 3D-frequency
spectrum, it is possible to estimate the velocity vector for
each pixel by determining the best fitting plane to the
points of WVD. The orientation of this plane in the space
is also directly related to the pixel velocity. The plane can
be obtained through a multiple linear regression (Chapra
and Canale, 1998 and Kleinbaum et al., 1988):

z=by+byx+byy+e ®)

The equation (8) is a linear regression extension
where z is a linear function of two independent variables.
The values of the coefficients bgy,by,b, are achieved by
solving the following linear system:
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xx, 2xt Yxy b =l Xxz )
Xy Xxy, Xy |b.] (X

The coefficients by,b, are related to the movement
on x and y directions, respectively.
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Figure 1 Flow diagram for the methodology.



Figure 1 represents the flow diagram of the
methodology applied in this work.

3  Results

Synthetic images

The synthetic image consists of a texture distributed in a
grid of 32x32, where dark pixels simulate hot regions in
SPECT images. Figure 2 represents one frame of the
synthetic image.

Figure 2 One slice of the synthetic image.

The velocity vector field was accomplished with the
Hanning filter. The simulations were done by translations
and rotations of the synthetic image.

Translation simulations were performed by
translating the entire image in x and y directions. As an
example of a translation simulation we obtain Table 1. In
this Table, v and STD are mean and standard deviation
of the estimated velocity in each direction, respectively.
The Root Mean Square Error (RMSE), in percentage, was
used to measure the global difference between real and
estimated velocities.

Table 1 Data for the simulation of translation
of 1 pixel/frame on x and y directions of the

synthetic image.

r VX vy STD RMSE
1 09629 0,8950 0,0169 8,67

2 09490 08862 0,0287 10,32
3 09358 08781 0,0358 11,58
4 09206 08741 0,038 12,49
5 09169 08719 0,0477 13,00
6 09168 08644 0,0546 13,75
7 09117 08593 10,0583 1449
8 09036 08556 0,0600 15,19
9 08918 08480 0,0687 16,63
10 0,8841 08360 0,0763 18,30
11 08749 0,8258 0,0813 20,19
12 0,8629 0,8138 0,0893 22,90
13 0,8428 . 0,7930 0,1084 27,55
14 08179 0,7653 0,1362 33,57
15 0,7834 0,7297 0,1789 41,52
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To verify the influence of the image border, we
measured the RMSE from the center to the border of the
image. Figure 3 shows the RMSE along the radii, from
the center of the image to the edge for the case of
translation.
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Figure 3 RMSE along the radii observed for-
translation of 1 pixel/frame on x and y
directions.

Table 2 shows the results for rotation where W and
STD are the mean and the standard deviation of the
estimated angular velocity, respectively. The RMSE is
also used to verify the difference between the real and the
estimated angular velocities.

Table 2 Data for rotation of 6 degrees/frame on
counter-clockwise direction of the synthetic

image.

r W STD RMSE
1 5,6895 0,0352 29,76
2 4,7441 0,0263 38,50
3 4,8644 0,0276 37,58
4 5,2254 0,0255 30,25
5 53572 0,0213 24,98
6 5,3113 0,0185 23,30
7 5,2769 0,0166 22,19
8 5,3285 0,0151 20,16
9 5,4087 0,0139 18,04
10 5,4374 0,0129 16,83
11 54374 0,0122 16,31
12 53858  0,0118 16,49
13 52254 0,0117 17,77
14 5,0363 0,0120 19,39
15 4,7269 0,0136 22,83

Figure 4 shows the graphic for the RMSE along the
radii from the center of the image. The error is higher at
the center of the image due to the low tangential velocity
of the pixels and at the edges due to the border effect.
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Figure 4 RMSE along the radii, for the case of
rotation of 6 degrees/frame on counter-
clockwise direction.

Figure 5 shows the velocity vector field obtained
after translation and rotation movements imposed to the
synthetic phantom.
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Figure S Velocity vector field for the
translation simulation of 1 pixel/frame on x and
y direction (left) and rotation of 6 degrees/frame
on counter-clockwise direction (right).

The results for all simulations of translation and
rotation are shown on Table 3 and Table 4, respectively.
To remove the contribution of the border effects, only the
pixels within 8 pixels radii are considered.

Table 3 Translation simulations data.

Table 4 Rotation simulations data.

w w STD RMSE
2 1,80 0,0065 22,65
4 3,59 0,0119 21,65
6 5,23 0,0151 20,16
8 7,08 0,0223 21,84
10 8,87 0,0264 20,85
12 10,67 0,0323 20,90
14 12,38 0,0401 22,15
16 14,01 0,0450 22,56
18 15,74 0,0522 23,06
20 17,68 0,0561 21,70

VX vy Vx vy STD RMSE
1 0 09029 00011 00310 11,69
2 0 1,7980 -0,0018 0,0762 12,58
0 1 00004 08717 0,0386 15,57
0 2 0,0001 1,7430 0,0790 15,64
1 1 09036 08556 0,0060 15,19
1 2 09023 1,7194 0,0985 16,42
2 1 1,7959 0,8631 0,0978 13,67
1 -2 09072 -1,7216 0,0962 16,28

-2 1 -1,7981 0,8675 0,0941 13,41
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The errors associated with the velocity measurement
are around 14,5% for translation simulations and around
22% for rotation simulations. These results show that the
methodology performs well for translation and rotation
applied to the phantom.

Real Images

The procedure to estimate the motion was also applied to
gated-SPECT perfusion study **"Tc-MIBI obtained from
a dual head rotating gamma camera (ADAC VertexPlus
with a LEAP Collimator). The acquisition process is
synchronized with the electrocardiogram and the cardiac
cycle can be divided into 8 or 16 frames per cycle. A total
of 64 projections were obtained over a semi-circular 180°
orbit. All projections images were stored using a 64x64,
16 bits matrix. Transverse tomograms were reconstructed
with a thickness of one pixel per slice (resolution of
6,47Tmm). The volume of transverse tomograms was re-
oriented, and sets of slices perpendicular to the long axis
(oblique transverses) and of slices parallel to the long axis
(oblique coronals and sagittals) were created.

The velocity vector fields were obtained from a
series of 2D gated-SPECT slices. Figure 6 depicts one
oblique SPECT slice at systole and diastole and the
superimposition of the velocity vector field.

Figure 6 Oblique SPECT slice at systole (left)
and diastole (right), superimposed by their
velocity vector fields that delineates the non-
rigid motion performed by the cardiac
structures.



The computational time spend in the process for
obtaining the velocity vector field for an image 32x32x32
is around 2:40 hours. One way to decrease the
computational time is to use a threshold eliminating the
pixels with lower counts, mainly the background. On
figure 7 we use a threshold of 30% of the maximum value
of the image, the computational time was reduced to 35
minutes for the same data.

Figure 7 Oblique SPECT slice at systole (left)
and diastole (right), superimposed by their
velocity vector fields calculated over the pixels
greater than 30% of the maximum value of the
image.

4 Conclusions

This work described a new methodology to determine
velocity vector field in cardiac images based on spatial
and temporal frequency (STF) analysis. The majors
motivations for considering the use of STF representation
as a basis for computing non-rigid motion are: (1) the fact
that it is used for the description and understanding of
signals whose frequency content is changing with time
(non-stationary signals), which is the case when studying
non-rigid motion in a series of images; (2) some
investigations on mammalian vision have demonstrated
that many neurons in various visual cortical areas of the
brain behave as spatiotemporal-frequency band-pass
filters.

The method was applied in synthetic images in
experiments involving translation and rotation and in real
images of a gated-SPECT study yielding the velocity
vector field that describes the corresponding motion.

In order to decrease the computational time a
threshold was applied to the cardiac image reducing the
number of pixels that has to be calculated. This solution
has decreased significantly the computational time.

Further research shall include:

1. Optimization of the computational time by the
segmentation of the cardiac images before the
processing, eliminating the pixels without movement
information.
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2. Extension of the methodology to 4D images.
3. Assessment of normality patterns.
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