On Determining a Signature for Skeletal Maturity
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Abstract.

In this paper we present a computational framework for semi-automated assessment of

skeletal age based on a multi-scale image analysis approach. Through 2D digital X-ray images of the left
hand, maturity indicators are searched by means of a two-step process: the user interactively indicates
a point inside the middle finger, and the computational method analyzes the image intensity profile
along this line, searching for physiological signatures related to different epiphyseal events (ossification,
cartilage stage, early fusion and complete fusion). A scale-space approach is used to select the best scale
to enhance the edges between the bones and soft tissues. Initial results indicate that this approach could
be useful to facilitate the analysis of growth disorders in pediatrics.

1 Introduction

The assessment of skeletal maturity is crucial for the
analysis of growth disorders and plays an important
role in pediatrics. Several methods have been develo-
ped for estimating the status of bone development, the
two most widely-used being the Greulich - Pyle method
(GP) [1] and the Tanner - Whitehouse method (TW2)
[2]. Both rely on comparisons of observed features in
a radiograph of the hand and wrist with the images
in a specially-prepared atlas. The basic assumption
is that there is considerable regularity in the order in
which the carpals (wrist bones) and epiphyses (bone
extremities) begin to ossify, visible in the radiographs
as modifications in bone texture and shape.

The GP method [1] suggests a visual matching
between a radiograph of the left hand-wrist and a re-
ference set of patterns in the atlas developed in 1950s.
The skeletal age is determined by first trying to match
the radiograph with the standard of the same sex and
nearest chronological age in the atlas. If this compa-
rison fails, the radiograph is compared with adjacent
standards until a match is found.

The TW2 method (2], considered the most accu-
rate and reliable for this task, is applied only in a small
fraction of cases due to complexity and long examina-
tion times. It makes use of twenty bones in the hand
and wrist, which are assigned to a development stage
based on some shape features obtained manually. The
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radiologist uses these measures to give a score to each
bone. The sum of all scores corresponds to the TW2
maturity index used to determine the bone age by com-
paring with gender-dependent reference tables.

The goal of this project is to develop computer-
aided tools to facilitate the assessment of skeletal age.
As a first step, we propose an interactive scale-space
framework to determine changes in appearance, size
and fusion of the epiphyses, acknowledged in both GP
and TW2 methods as important maturity indicators.
We first introduce the rationale behind our current ap-
proach. Secondly we describe the method currently
implemented and some preliminary results.

2 Maturity Assessment based on Radiographs

Many researchers have made attempts at the develop-
ment of computer-aided system for skeletal age assess-
ment. Different approaches have been proposed, in-
volving bone segmentation and feature analysis. Edge-
based [3, 4] and region-based [5] methods with a priori
knowledge on shape of the bones {6, 7] have been at-
tempted, but results have not always been satisfactory,
mainly because in medical radiographs, boundaries are
often weak and blurred, obscured by other tissues, and
subject to spatial and biological variability [5]. Other
approaches directly relate chronological age to geome-
trical features which can be extracted more easily from
a segmented image, like the perimeter, area or axis of a



given bone [8, 9, 10]. However, difficulties were found
in the segmentation of the bones of interest, especially
for older children, when the carpals have indistinct and
overlapping boundaries. The results seem to be sensi-
tive to the exposure of the radiographs, particularly if
this affects the tissue structure of the bones and sur-
roundings tissues [9]. The effectiveness of such features
for maturity assessment has to be proved and depends
on the availability of an image database [11].

In January, 2001, the University Hospital of Santa
Marija started the construction of a digital hand atlas
of healthy Brazilian children. Image acquisition was
standardized using a CR system (Computer Radiogra-
phy), in which digital images of hand-wrist (Figure
1) and relevant patient data are incorporated into the
atlas [12]. The information obtained from this dataset
would overcome the shortage of studies assessing a sig-
nature for skeletal age maturity. The initial study is
based on the analysis of the variation in the image in-
tensity profile along the middle finger, searching for
events that correspond to physiological modifications
along the years. Usually, the middle finger is used in
the GP method as a primary reference for skeletal as-
sessment [9].
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Figure 1: Original image and the localization of bones.

2.1 Epiphyseal Development

At the end of long bones there is a little bone, called
epiphysis, which is initially separated by cartilage from
the shaft (diaphysis) of the bone and develops sepa-
rately. The epiphyseal cartilage or cartilage plate is a
connective semi-opaque tissue that recovers the bone
extremity during growth. This cartilage cannot seen
in radiographs of youngsters under 1 year old.

During child development, the cartilaginous plate
progressively is used, transformed into new bone, with
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the consequent elongation of the diaphysis and appro-
ximation with the epiphysis.

In the adolescence period, the cartilage disappears
and the fusion of epiphysis-diaphysis is revealed as a
radiopaque region in the interface. When the fusion is
beeing completed, a visible line appears on the radio-
graph. The growth of hand bones is completed when
this radiopaque line disappears. Figure 2 shows an
example of bone evolution in the middle finger and the
epiphyses development.

The radiologist is especially interested in the pre-
sence/absence of diaphyses and epiphyses, as well as
in the analysis of the evolution of epiphyseal appro-
ximation and fusion. In hand radiographs, however,
the trabecular texture inside the bone is also visible,
which is also detected in typical segmentation methods.
The scale-space approach overcomes these drawbacks
by using operators at different scales and selecting the
best scale for extracting a particular feature or object
in the image [13].

Figure 2: Epiphyseal development of the middle finger
along the growth (1 to 11 years old).

3 Scale-space Framework

Scale-space framework was developed by computer vi-
sion community for controlling the scale of observation
and representing the multi-scale nature of image data
(14, 15, 16]. The notion of scale is introduced by con-
volving the image with Gaussian kernels of increasing
width to obtain multi-scale measurements of structures
in the image. This approach has been used as a power-
ful tool in applications such as medical image segmen-
tation [17, 18, 19] and object detection [20].

For any N -dimensional signal f : ®¥ — R, its
scale-space representation L : RV x R, — R is defined
by

L) = [ fa-oeeae ()
EERN
where g : RV x R, — R denotes the Gaussian kernel

- (2)
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and the variance t = o2 of this kernel is referred to
as the scale parameter. Equivalently, the scale-space
family can be obtained as the solution to the linear
diffusion equation

WL = -21-V2L (3)
with initial condition L(-;t) = f.

The multi-scale theory provides a well-founded fra-
mework for dealing with image structures at different
scales, but it does not address the problem of how to
select the appropriate scale for the analysis of a scene.
The problem of selecting the adequate scale may be
intractable unless some a prior: information about the
image content is available.

Any image has a limited extent determined by two
scales: the outer scale, corresponding to the finite size
of the image, and the inner scale, given by the image
resolution. A scale selection method has been proposed
by Lindeberg in [16]. The basic idea is to select scale
levels from the scales at which a feature operator gives
maximum output. These operators are partial deriva-
tives of the Gaussian kernel, and, together with the
zero-th order Gaussian, they form a complete family
of scaled differential operators defined by the expres-
sion:

Lza(5t) = 0ye1 ,op L(55t) = (0,01 opg(5t)) » f.
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An important feature detector that is invariant to
uniform rescaling of spatial coordinates or size changes
is the ridge - see details in {21]. In short, a ridge point
can be defined as a point at which the brightness as-
sumes a maximum (or a minimum) in the main princi-
pal curvature direction. In terms of Cartesian partial
derivatives, the condition for a ridge point can be writ-

ten:

where L; is the first derivative in z at scale t, Lgy is
first derivative in z and y, L, is second derivative in
z, and L, is second derivative in y.

Introducing a local orthonormal coordinate sys-
tem (u,v), or gauge coordinates [15], where the v-axis
is parallel to the gradient direction, and the u-axis is
perpendicular, the ridge points will be those where

{

where L, is first derivative in v and v, L, is second
derivative in u, and L, is second derivative in v.

LoLy(Law — Lyy) — (L2 = L2)L,, =0,

5
(L2 — L2)(Low — Lyy) —4LoLyLoy > 0, (5)

Luv = 07
2
L2, - 12, >0,

(6)
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The ridge detector can be used to determine the
lines along the fingers or along the arm bones (radius
and ulna). Figure 3 shows the result of applying the
ridge detector to the hand image, illustrating a strong
dependency on the scale used to compute the Gaussian
derivatives. At very fine scales, the detector responds
to noise and spurious fine textures, but at higher scales
it localizes very accurately the longitudinal axis of the
long bones.

Figure 3: Ridges of image in figure 1 detected at scale
levelst = 3, 10, 30, 60. Points with L, < 0 correspond
to bright ridges and points with L,, > 0to dark ridges.

4 Constructing a Signature

In this project we propose the study of events in the
1D image profile along the middle finger and their cor-
relation with epiphyseal development. The goal is to
determine a signature of the physiological process of
skeletal maturity in terms of events that can be used
to objectively assess skeletal age.

The first step of the method is the determination
of a line along the longitudinal axis of the middle finger
(supporting line). The second step consists of detec-
ting the image structure of interest, edges in this case.
Finally, the edge image is sampled along the suppor-
ting line resulting in a 1D signal called profile line or
signature. The profile line is analyzed for the detection
of events related to skeletal maturity.

4.1 Segrhentation of the Supporting Line

The aim of the first step is to trace a curve passing
through the longitudinal axis of the phalanges. To
initiate the process, the user points inside the middle
finger proximal phalanx - this is the region of interest.
This position is used to determine the phalanx width in
pixels by growing radial lines around the clicked point
until it touches the nearest boundary (contrast ratio
of 20%). The radius of the resulting circle corresponds
roughly to the adequate scale level ¢t used as a reference
to compute image features in subsequent steps. A large
elliptical cursor prevents user from clicking near the
bone boundaries and avoids failure in width estima-
tion.



Next, the nearest ridge is detected using a multi-
scale approach. The ridge operator is applied at five
different scales relative to the phalanx width ¢, namely
t + 2, and the strongest outcome is selected.

An opening top-hat morphological operation [22]
(square structuring element size = 3) followed by thre-
sholding level equal 1 to remove the background. The
resulting points are interpolated by a cubic spline [23]
to generate a continuous curve along the longitudinal
axis of the finger. The curve is overlaid on the original
image for user judgement. The user confirms or ma-
nipulates the line position in the image before running
the next step.

4.2 Image Features

In this application, the most important image-derived
information indicates the presence (or absence) of edges
at the diaphysis and epiphysis of the finger bones. The
internal bone texture is not relevant, neither are soft
tissues.

The image feature adopted is the gradient magni-
tude (squared) of image intensity, denoted by ||V f|?
here. This operator outputs the slope steepness at
every pixel, and the scale-space framework allows us
to avoid the detection of irrelevant details.

To determine the best scale, the operator ||V f]|?
was applied at different scales (¢t € [1,10]) to repre-
sentative images of each skeletal age - see examples in
figure 4. Different optimal scales were found for ima-
ges at skeletal age, which are pre-set parameters in the
current implementation.

Figure 4: ||V f||? operator at scale t = 2, 3, 4 and 5,
left to right, up to down.
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4.3 Detection of Events

The challenge of this work is the identification and clas-
sification of aging epochs relating different stages of
epiphyseal fusion with events in the profile curve. The
events correspond to peaks in this curve at the position
of edges in the image.

At early stages of maturity, the profile is especially
useful because it clearly shows the phalanges and the
gaps between them (Figure 5 top). The distance bet-
ween the peaks can be used to determine the longitu-
dinal and gap dimension of each bone.

When the ossification of the epiphysis begins, an
epoch can be clearly identified near the shaft as a new
peak, even when this is not easily visible in the original
image (Figure 5 bottom).

Figure 5: Radiographs and profile curves (¢t = 3) for a
newborn (top) and for an one-year old child (bottom),
revealing when the ossification of the epiphysis begins.

A radiopaque line that fades with time visually
identifies the formation of cartilage plate between the
epiphysis and the metacarpal. In the adolescence pe-
riod, the profile curve has peaks at this radiopaque
line, where the epiphyses are merging with the dia-
physes (Figure 6 top). Bone growth finishes when this
line disappears and the epiphyses fuses with its shaft
(Figure 6 bottom).
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Figure 6: Radiographs and profile curves (¢ = 3) for
children at the age of 10 (top) and 18 (bottom), re-
vealing when the fusion of the metacarpal epiphysis.

5 Initial Results: Bone Age Assessment

The profile curve was manually thresholded to filter
out the non-relevant peaks. The distance between the
remaining peaks was used to determine the longitu-
dinal length and gap dimension between phalanges of
each bone. The ratio between two distances was mea-
sured: (1) the proximal phalanx length and (2) the gap
between the metacarpal and the phalanx. Results ob-
tained for a small dataset (20 males radiographs from
1 to 18 years old) are presented in Figure 7. These
initial data indicate that this ratio correlates well with
chronological age and could be used for skeletal age
assessment.

6 Conclusions and Future Work

We presented a computational framework for semi-
automated assessment of skeletal age based on a multi-
scale image analysis approach. Through 2D digital X-
ray images of the left hand, maturity indicators were
searched by means of a two-step process: the user in-
teractively indicates a point inside the middle finger,
and the computational method analyzed the profile of
gradient magnitude of image intensity along this line,
searching for physiological signatures related to differ-
ent epiphysial events (ossification, cartilage stage, early
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Figure 7: Ratio between the proximal phalanx length
and the gap metacarpal-phalanx measured for each
chronological age.

fusion and complete fusion). A scale-space approach
was used to select the best scale to enhance the edges
between the bones, epiphyses and soft tissues.

At each skeletal stage, this profile revealed peaks
at the epiphyses ossification and fusion process. The
ratio between the proximal phalanx length and the gap
between metacarpal and phalanx was measured and
compared along the growth, revealing that this param-
eter could be used for bone age classification. More
image data must be added to improve the accuracy of
this classification.

The initial results indicate that this approach could
be useful to facilitate the analysis of growth disorders
in pediatrics. For example, the development of bones
can be impaired by febrile or other illness. In these
cases, the image of the phalanges contains scars, re-
vealed as transverse lines of increased density along
the longitudinal axis of growth. These scars are asso-
ciated with severe illness on the developing skeleton.
The study of the gradient profile along the phalanges
could provide a useful tool to diagnose these cases as
well
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