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Abstract. = We propose an integrated framework in which local perception and close manipulation
skills are used in conjunction with a high-level behavioral interface based on a “smart object” paradigm
as support for a virtual agent to perform autonomous tasks. In our model, virtual “smart objects”
encapsulate information about possible interactions between the agent and its environment, including
sub-tasks defined by scripts that the agent can perform. We use the information provided by low-level
sensing mechanisms to construct a set of local, perceptual features, with which to categorize at run-time
possible target objects. Once objects are activated, based on their interactivity information and on the
current task script, the agent can reparametrize its behavior, according to its mission goal defined in a
global plan script. A challenging problem solved here is the construction (abstraction) of the mechanism
to link individual perceptions to actions. As a practical result virtual agents are capable of acting with

more autonomy, enhancing their performance.

1 Introduction

We introduce techniques that can be used by a vir-
tual agent to perform tasks in a more autonomous way,
based on possible interactions with the objects in its
environment. We provide an interface to derive virtual
models for each object type, which contains, besides
its geometry, information about possible interactions
with the agent. Such information contains, for exam-
ple, a set of previously defined simple scripts that the
agent can perform according to the object type and
interaction capabilities (this has been called the smart
object approach [1]). We embed in this model low-level
mechanisms used for local perception and close manip-
ulation, approximating our agent to realistic models
(as for example, robotic platforms or humans). The
perception mechanism is mainly used to provide per-
ceptual data. Meaning features are abstracted, which
can be used to define an object category. This in-
dex is used to retrieve the virtual model of the object,
consequently its interactivity information, allowing the
agent to perform actions that contribute to the task
goal accomplishment. The agent is driven by a global
behavior, also defined in a script-like language that
tells the mission plan to the agent. In this approach,
the agent system does not need to keep information
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about the several tasks nor about the objects or the
environment itself. The concepts of mission planning,
plan decomposition in tasks, and tasks achievement

. (see [4]) are substantially simplified. The knowledge

about interactions with the scene objects are retrieved
from the objects representation, once the agent ap-
proaches them in order to perform a given task.

Our complete definition and representation of in-
teractive objects is based on the description of interac-
tion features: parts, movements, graspable sites, func-
tionality, etc. In particular, interaction plans for each
possible agent-object interaction are defined, detailing
all primitive actions that need to be taken by both the
object and the agent, in a synchronized way. Objects
defined with such interaction information have been
called smart objects [1]. We present some experiments
using a human agent based simulation environment
and also a simulated robot, both with the built-in ca-
pability to simulate agent-object interactions, provid-
ing an automatic agent control for interactions with
the smart objects. The agent common environment
(ACE) [2] has been used to validate modeled interac-
tions on a simulated virtual environment. ACE in-
corporates many new solutions regarding the control
of interactive virtual environments, and has been used



as a system platform for research in behavioral anima-
tion. We have created and tested grasping interactions
with primitive objects in ACE, coordinated by a local
perception mechanism reused from a simulated robot
environment.

Concerning our robot simulations, we combine
pure reactive plans with a script like plan, choosing ac-
tions mainly based on current perceptions of the world
at different positional and temporal scales rather than
by planning over previously given geometric models as
in traditional simulation techniques. Also, as we use
reduced and abstracted information obtained from a
simplified world representation, our system performs
fewer computations and substantially improves its per-
formance at the cost of less adaptability when facing
non predicted situations. As a result, the mechanisms
developed here provide real-time feedback to different
stimuli type. For these reasons, this system architec-
ture is particularly relevant to agent systems as robots,
but also for virtual agents.

As a result, we present in this work an integration
of a local perception module derived from a simulated
robotics system with a graphical simulation environ-
ment where a virtual human is able to grasp simple
objects. In our case, low level interaction information
is defined and encapsulated per object within their
description. We show examples of the object inter-
actions introduced in this work in different grasping
applications, and the results obtained are shown and
discussed.

2 Background and related work

To implement an artificial agent system one can start
from the development of individual and basic skills in-
cluding perception and basic (low-level) manipulation
of the agent resources, like the path planning and mov-
ing of an arm toward a given target (e.g. reaching
and/or grasping). Higher levels can use these basic
tools as support in order to achieve tasks, taking right
decisions as answers to environmental stimuli. If we
treat these issues separately, the set of low-level skills
or perceptual abilities will eventually not agree with
the necessities of the high-level operating processes.
Or, on the opposite, it may be necessary strong adap-
tation for the implementation of the high-level mis-
sion/tasks control system. We propose in this work to
use the “smart object” approach, in which some per-
ception and high-level skills can be treated together
as agent-object interactions, in order to minimize the
above implementation problems.

Different applications on the computer anima-
tion and simulation field face the problem of animat-
ing agent-object interactions. Such applications en-
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compass several domains, as for example: virtual au-
tonomous agents in virtual environments, human fac-
tors analysis, training, education, prototyping, and
simulation-based design. A good overview of such ar-
eas is presented by Badler [5]. As an application ex-
ample, an interesting system is proposed by Johnson
[6], where a virtual human agent teaches users how to
correctly operate machines in many situations in an
interactive application.

Commonly, simulation systems approach agent-
object interactions by programming them specifically
for each case. Such approach is simple and direct, but
does not solve the problem for a wide range of cases.
Another approach is to use recognition, planning, rea-
soning and learning techniques in order to decide and
determine the many manipulation variables during an
agent-object interaction. The agent’s knowledge is
then used to solve all possible interactions with an ob-
ject. Moreover, such approach should also address the
problem of interaction with more complex machines
with some internal functionality, in which case infor-
mation regarding the object functionality must be pro-
vided.

Agent-object interaction techniques were first
specifically addressed in a simulator based on natural
language instructions using an object specific reason-
ing module [7]. Our smart object description is more
complex, encapsulating interaction plans, allowing to
synchronize movements of object parts with the agent’s
hand, and to model the functionality of objects as state
machines.

Not enough attention has been addressed to
solve general agent-object interaction issues, includ-
ing robotic agents. Most of the concerns are related
to sub-problems, as for the specific problem of grasp-
ing. For instance, from the robotics area, a classifi-
cation of hand configurations for grasping is proposed
by Cutkosky in [9]. Also, Huang [8] proposes an algo-
rithm for the automatic selection of hand shapes for
grasping,.

Concerning the model used for perception in real
robots, we are inspired by several new approaches that
have been suggested using multi-feature extraction as
basis for cognitive processes [10, 11, 12]. In previous
contribution [13] we provided a working model for low-
level perception and close manipulation control using
a real stereo head robot. Our model uses a practical
set of features extracted from real-time sequences of
stereo images, including static (spatial) and temporal
properties, and also stereo disparity features. We have
developed a pure reactive system, treating low-level
manipulation and control of the robot resources based
on local perceptions of the environment.



The idea of using vision-based sensors for virtual
human agents simulations is not new. The first work to
address this problem [18] uses a rendered image buffer
of the virtual scene but with colors coding objects ids,
thus simplifying the recognition phase. In our low-level
perception module we use stereo vision results pro-
jected into a simulated retina, being thus much more
realistic and general. However, in this work we use
the simplification of working with an unidimensional
retina. Once the perception selects the correct object
to be manipulated (in order to achieve a given high
level task), the used low-level manipulation informa-
tion is retrieved from the smart object representation.

3 Smart objects

Consider the simple example of opening a door: the
rotation movement of the door must be provided a
priori. Following a top-down Al approach, all other
actions should be planned by the agent’s knowledge:
walking to reach the door, searching for the knob, de-
ciding which hand to use, moving body limbs to reach
the knob, deciding which hand posture to use, grasp-
ing, turning the knob, and finally opening the door.
This simple example illustrates how complex it can
be to perform a simple agent-object interaction task.
To overcome such difficulties, we use a bottom-up ap-
proach, that is, we include within the object descrip-
tion more useful information than only intrinsic object
properties. By using feature modeling concepts, we
identify all types of interaction features in a given ob-
ject and include them as part of the object description.
Our graphical interface program (Figure 1) allows the
user to interactively specify all different features in the
object, defining its functionality, its available interac-
tions, etc. This smart object modeler application is
called “SOMOD”.

The adjective smart has been already used in dif-
ferent contexts. For instance, for interactive spaces
instrumented with cameras and microphones to per-
form audio-visual interpretation of human users [17].
This ability of interpretation made them smart spaces.
In the scope of this work, an object is called smart
when it has the ability to describe in details its func-
tionality and its possible interactions, by describing all
needed low-level manipulation actions. A smart ob-
ject does have reactive behaviors, but more than that,
it is also able to provide the expected behaviors for its
”users”. In the case of our agents, reaction to the envi-
ronment stimuli (perception) is programmed in order
to correctly select which object to interact with, then
to perform the required low level interaction, local in-
teraction information stored within the smart object is
used.
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Figure 1: Interactive graphical interface for
modeling objects and their interactions.

Different applications can retrieve useful informa-
tion from a smart object to accomplish desired interac-
tion tasks. The main idea is to provide smart objects
with a maximum of information to attend different pos-
sible applications for the object. A parallel with the
object oriented programming paradigm can be made,
in the sense that each object encapsulates data and
provides methods for data access. Applications using
smart objects will have their own specific smart, object
reasoning module, in order to retrieve only the appli-
cable object features for their specific needs.

4 Owur Control Schema

Figure 2 shows the main aspects of the control schema
that manages the low-level simulation step in our robot
model, derived from [14]. Briefly, the agent uses sen-
sory information perceived (calculated) plus its pose
and functional state to define a set of perceptual fea-
tures. This feature set will input to a classifier produc-
ing an effective categorization (a virtual index) for the
object (or region) in focus. We have currently imple-
mented two types of classifiers: a) a multi-layer per-
ceptron trained with a backpropagation algorithm; b)
a self organizing map [15]. This index allows our agent
to retrieve the set of associated interaction information
in the the correspondent smart object. So, the possi-
ble interactive actions can be retrieved and the agent
effectively moved to perform the physical action. Also,
note that if the current script goal is reached, other
tasks can be chosen. A motion effectively brings the
agent to a new pose and eventually puts a set of new in-
formation about other smart objects in the dexterous
workspace (manipulation space). Once the new sen-
sory information is acquired (simulated), the process
can be re-started (feature extraction).
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Figure 2: Control schema.

We remark that this low-level operating loop fol-
lows a control theory approach, what guarantees sta-
bility and global convergence of the agent resources
(controllers) in the achievement of an action. At each
time step, a small movement is performed followed by
an update in the perceptual information of the agent.
For example, if another smart object, with interac-
tion attributes that are more important to the task
goal acomplishment than the one being manipulated
reaches the dexterous workspace of the agent, the first

object can be posted somewhere (its scripts are dis- -

regarded) and other interaction scripts with the sec-
ond object can start, considering the current situation
(positioning) of the agent. This produces smooth and
differentiable motion and also allows the agent to even-
tually reparametrize its task goal on-line during the ex-
ecution of an action, taking into account the changes
in perception. This approach is somewhat reactive,
choosing actions based on perceptions of the world at
rather than by using a geometric model as in tradi-
tional planning techniques. Also, as time is a critical
parameter for real-time agent applications, by using
this approach we guarantee that all computations nec-
essary to perform a given step of motion are computed
during the time interval given by the clock rate.

5 Modeling interactive object features

Feature modeling is an expanding topic in the engi-
neering field [16]. The word feature may have several
meanings, and a general definition is simply ”a region
of interest on the surface of a part”. The main diffi-
culty here is that, in trying to be general enough to
cover all reasonable possibilities for a feature, such a
definition fails to clarify things sufficiently to give a
good mental picture.

5.1 Interaction features

In the smart object description, a new class of features
for simulation purposes is used: interaction features.
In such context, a more precise idea of a feature can be
given as follows: all parts, movements and descriptions
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of an object that have some important role when inter-
acting with an animated agent. For example, not only
buttons, drawers and doors are considered as interac-
tion features in an object, but also their movements,
purposes, manipulation details, etc. Interaction fea-
tures can be grouped in four different classes.

Intrinsic object properties are properties that
are part of the object design: the movement descrip-
tion of its moving parts, physical properties such as
weight and center of mass, and also a text description
for identifying general objects purpose and the design
intent.

Interaction information are useful to aid an
agent to perform each possible interaction with the ob-
ject: the identification of interaction parts (like a knob
or a button), specific manipulation information (hand
shape, approach direction), suitable agent positioning,
description of object movements that affect the agent’s
position (as for a lift), etc.

Object behavior are used to describe the reac-
tion of the object for each performed interaction. An
object can have various different behaviors, which may
or may not be available, depending on its state. For
example, a printer object will have the ”print” behav-
ior available only if its internal state variable ”power
on” is true. Describing object’s behaviors is the same
as defining the overall object functionality.

Expected agent behavior is associated with
each object behavior. It is useful to have a description
of some expected agent behaviors in order to accom-
plish the interaction. For example, before opening a
drawer, the agent is expected to be in a suitable posi-
tion so that the drawer will not collide with the agent
when opening. Such suitable position is then proposed
to the agent during the interaction.

This classification covers the needed interaction
features to provide common agent-object interactions.
Still, many design choices appear when trying to spec-
ify in details each needed interaction feature. The most
difficult features to specify are those relative to be-
haviors. Behavioral features are herein specified using
pre-defined plans composed with primitive behavioral
instructions (scripts). This model has shown to be the
most straightforward approach because then, to per-
form an interaction, the agent will only need to ”know”
how to interpret such interaction plans in a straight-
forward way.

In the smart object description, a total of 8 in-
teraction features were identified, with the intention



to make the most simple classification possible. These
interaction features are described in Table 1.

Feature Data
Class Contained
Descriptions Object property
Parts Object Property
Actions Object Property
Commands | Interaction Information
Positions Interaction Information
Gestures Interaction Information
Variables Object behavior
Behaviors Object/agent (scripts)

Table 1: Types of interaction features.

5.2 Interpreting Interaction Features

Once a smart object is modeled, the agent system will
be able to load it and to animate it with physical ac-
tions. To do that, the agent system will need to imple-
ment a smart object reasoning module, that will cor-
rectly interpret the behavioral plans (scripts) to per-
form interactions. For a complete description of such
concepts see [3]. In the scope of this work, in order
to demonstrate the integration of the local perception
module, we have used mainly the interaction features
related to define grasping actions with some primitive
models.

Figure 3: Simulated robot.

Figure 4: Examples of 1D simulated
retinas.

6 Mapping objects characteristics into local
perception

For the purposes of understanding the integrated
framework, we describe how a robot simulator op-
erates [14], that is, we show how local perception
and close manipulation can be combined in our agent
system. The simulated platform shown in Figure 3
has several integrated controllers (small programs or
scripts) including control of pan (like a neck horizontal
rotation) and vergence (eyes convergence/divergence)
movements for its head and control of joints for each
of its two arms. By developing an agent like the one
shown in Figure 3, our main goal is to provide a virtual
device with which to develop computational models for
robots, also to study the relationship between vision
and touch sensory systems. The construction of such
being would allow the definition of new approaches to
robotics based on simulation, thus decreasing opera-
tional costs and also assuring a safe management of
the resources. The geometrical information (shape)
and texture of a given virtual object model can be
directly mapped into visual information for our agent.
Note that here we start to build a more realistic virtual
agent, with built-in perception capabilities. A visually
perceived scene can be seen in Figure 4. The visual and
haptics servoing is done in the same way as close ma-
nipulation, that is, in a closed loop. So, this agent can
use perception provided in its retinas (it might also be
in a haptics storage area) in real time, for example, to
help disambiguating objects. Perception information
can be easily mapped into the working configuration

- space of this simulator because it regards a topologi-
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cal relation with the object positions. In this way, we
get an agent that can work in a continuous and more
complex world, besides the virtual environment from
which the sensory information was simulated is dis-
crete and simple. We conjecture that a virtual agent
can have more realistic behaviors by being constructed
in this way. Another motivation that can be used is
that its application to real robot systems is straight-
forward task. Finally, one of the main advantages is
that problems as agent entering inside an object, ob-
stacle avoidance, can be avoided here, since the agent
can infer from visual information the position of ob-
jects in its path.

6.1 Constructing perception

Figure 3 shows a situation of local perception and pos-
sible close manipulation of objects in a room. Coin-
cidentally, the virtual environment used here is rep-
resented exactly in the same way as in the SOMOD
application, that is, as a list of objects, ordered by its



distance to the agent position. This sorting is very
fast because it works in a reasonable set of objects.
Each object has also the history of interaction with
the agent. For example, a sphere would have a script
that gives a different configuration for the agent to per-
form a grasping than a cube. We embedded this model
in the resulting architecture in a straight forward way.

Visual sensing is directly simulated from the objects - -

contained in the simplified environment definition. For
example, for each one of the pixels in the agent’s reti-
nas, an intensity value can be calculated in function of
the radiance of the environment (object) patch corre-
sponding to it by using a simple Phong illumination
model. A Gaussian noise process can simulate acquir-
ing errors, asserting a more natural retinal image. Hap-
tics (including proprioceptive and tactile) simulation
can be done based on the arbitrary value attributed to
each object mass. Also, based on local movements, the
current positioning of the agent (odometry) can be up-
dated and the objects list re-sorted. We assume that,
in a given instant, only a small sub-set of all objects
present in the virtual environment are close enough to
the agent to result in interactions. In this case, the
simulation process does not need to traverse the whole
list of objects (remember they are sorted by distance).
This visual, haptics, and positioning simulation
basically provides local sensed information to be used
by the simulated agent to construct its perception. We
yet use simple image processing operations to reduce
and abstract this input data, resulting in a multi-
resolution (MR) retina representation for data reduc-
tion. The classifier uses a set of multi- features over
the MR images to provide feature abstraction for cat-
egorization. The result is an object index, with which
all other information relative to an identified object
(mainly, interaction features) can be retrieved.

Figure 5: Defining a grasping interaction
with different object types.

7 Experiments and demonstrations

In a practical experiment, we defined scripts for the
best grasping to be executed by our agent interactively,
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according to the object types seen in Figure 5: a cone,
a cylinder and a sphere.

Figure 6: Modeling objects interaction fea-
tures (grasping).

» s L
Figure 7: Object grasping.

In the interaction feature modeling phase, proper
hand posture is chosen by an operator as seen in Figure
7. This set of objects (with its interaction features) is
stored in our virtual environment. Then, by using the
simulated perception, the agent is able to detect the
object index and to retrieve this information to be used
by the subsequent grasping, shown in the sequence of
Figure 8.

We remark that the information generated by this
perception simulation is a realistic retina like image,
very close to a natural image of the object, and that the
tools used for categorization were tested by a real robot
platform [13] also applied to pattern categorization.

To illustrate how perception and the low-level re-
source manipulation skills operate in real-time in the
simulated robot environment, we include a sequence
(Figure 9), in which our simulator reach/grasp an ob-
ject (a chair) close to a lit. This task sequence is per-
formed by means of using a low-level script triggered
by the object (a chair), which was out of place (in-
teraction feature). So, after the positive identification



provided by the system classifier, the interaction in-
formation encoded in the virtual version of the smart
object chair can be used to effectively reach and grasp
it.

Figure 8: Virtual Human Agent performing a
grasping task.

8 Conclusion and future work

We have proposed a task achievement approach using a
high-level behavioral architecture based on smart ob-
jects and local perceptions to define which object to
choose, consequently driving the agent actions. This
approach allows agents to produce on-line its low-level
actions or tasks necessary to accomplish a given mis-
sion. This avoids the drawback of encoding a complex
plan (tasks) or other information about the environ-
ment/objects that are typical in the “mission plan-
ning” schemes. This capability is interesting and we
conjecture that it can be adapted in a multi-agent
context, taking into account the other agents global
scripts, external changes in the environment detected
by using perception, and internal predicted changes
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Simulated robot performing a
close manipulation (reaching).

Figure 9:

produced by a close resource manipulation. Note that
one can also use interactions between several objects
to re-edit the agents global scripts.

The main reason of using such approach is its pos-
sible application in a real robot system, without strong
adaptations. The extraction of meaning perceptual
features and the definition of world states from them
is a challenging problem, partially solved in this pa-
per. We have abstracted this by using a previously
acquired combination of featured models that repre-
sent each virtual object, whose interactive features are
defined empirically in the smart objects approach. In a
more autonomous paradigm, an agent (or robot) would
define these interactive features and discriminatory ca-
pabilities by using a learning approach, interacting di-
rectly with its environment.

We plan to improve this implementation by
increasing the set of low-level actions that the
agent/simulated robot are able to perform (interac-
tions with objects). This work can be yet improved by
using a learning approach to derive the possible inter-
actions with the objects. As an example of an interest-
ing task planned in this context, at starting the agent
system has no knowledge about the environment (its
world map is empty) nor the system knows about ob-
ject patterns (system memory has no feature models or
pattern representations). The goal is to incrementally



construct a shared map of the environment, learning
perceptual patterns, and geometry /topology of the ob-
jects. After such a world representation is constructed,
agents can perform other more specific tasks. A final
possibility of future work is to put the software tools
running in a real robot and to evaluate its interaction
capabilities with real objects.
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