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Abstract. This paper presents a novel Euclidean distance transform algorithm formulated under the Mathematical
Morphology approach. The distance transform is an erosion by a structuring function dependent on the distance
metric used. To achieve high speed performance, the squared Euclidean distance structuring function is decom-
posed into a family of four one-dimensional two-point structuring functions. The erosion algorithm is based on a
propagation scheme which resulted in a overall Euclidean distance transform algorithm very simple to code and
understand, yet with speed performance compared to the Chamfer 3-5-7 sequential raster and anti-raster algorithm.

1 Introduction

Distance Transform (DT) is a powerful image processing
transformation that assigns to pixels of a binary image its
distance to the background pixels. It can be used for a vari-
ety of binary image operations such as computing Voronoi
regions, image classification, skeletons, dilation, erosion,
binary image interpolation, matching etc. The DT was first
introduced by Rosenfeld and Pfaltz [RP68]. The most nat-
ural metric for computing distance in most applications is
the Euclidean metric, mainly because of its rotation invari-
ance property. However, due to the difficulty to implement
efficient algorithms for the Euclidean Distance Transform
(EDT), many researchers developed algorithms to compute
approximate EDT and the most popular is known as Cham-
fer metric DT algorithm [Bor86]. Its popularity is due to
its simplicity, good speed performance and reasonable ap-
proximation to the EDT. The few exact EDT algorithms re-
ported in the literature are either inefficient or complex to
implement and understand.

In 1992, Ragnemalm [Rag92] described a propagation
algorithm to compute the EDT. Recently, Eggers [Egg98]
improved the speed of the propagation algorithm but in-
creased the complexity of the coding.

Shih and Mitchel, in 1992 [SM92], have shown that
the DT can be computed by a morphological erosion of the
input image by a structuring function given by the negative
of the distance to the origin. Later, in 1994, Huang and
Mitchel [HM94] arrived at an efficient computation of the
square of the EDT by decomposing the structuring function
by a sequence of 3 x 3 different structuring functions.

The work by Mitchel and collaborators has opened a
door to study and classify the diversity of distance trans-
form algorithms available in the literature. As there are
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many ways to implement efficiently the morphological ero-
sion using parallel, recursive and propagation algorithms
and using different ways to decompose the structuring func-
tion, Zampirolli and Lotufo {ZL00] proposed a classifica-
tion of the Distance Transforms algorithms by analyzing
which erosion algorithm and which structuring function de-
composition scheme was used in each paper. As an ad-
ditional result of this classification, a new EDT algorithm,
described here, use a one-dimensional decomposition of the
3x3 structuring functions and a fast 1-D directional propa-
gation erosion algorithm. The algorithm is separable such
that higher dimensions EDT can be computed from the 1-D
EDT algorithm, exhibiting the same parallelism behavior of
higher dimensions FFT algorithms.

The main features of our proposed algorithm are sum-
marized as follows:

o Exact discrete Euclidean Distance Transform.
e Well suited to higher dimensions.

e Code simplicity when compared to other efficient EDT
algorithms.

e One of the fastest known algorithm for general serial
computers. Its speed is comparable to the recursive
Chamfer distance transform implementation.

o Efficient parallelization.

This paper is organized as follows. Section 2 reviews
the computation of the Distance Transform using a gray-
scale morphological erosion. Section 3 presents efficient
ways to decompose the squared EDT structuring functions
and shows two erosion implementations, parallel and by
propagation. In Section 4, we discuss the speed analysis



and show comparisons with other distance transform algo-
rithms. Finally, Section 5 give the conclusions.

2 Definitions and notation

Let Z be the set of integer numbers, E C Z? the image
domain and K = [0,%] C Z and interval of integer num-
bers representing the possible gray-scale values in the im-
age. The gray-scale erosion operator, g5 : K& — KE, is
defined as [Hei91]:

es(f)(2z) = min{f(y)—b(y —z) : y € (B+2)NE}, (1)

where f € KB,z € E, B € P(Z%) (P(E) is the set of
parts of E and B is called structuring element), B + ¢ =
{y+z, y € B} (translation of B by z) and b s a structuring
function definedin Bby b: B — Z.

2.1 Euclidean distance

The squared Euclidean distance between two pixels p =
(p1,p2) and ¢ = (q1,q2), p and g € Z? is given by:
a2 (p,q) = (= — P=)’ + (g, — py)*.
We define distance function of a pixel x to a set X, as:
d(z,X) = min{d(z,y) : y € X}.

The squared Euclidean distance function (denoted
by ¥2(f) or simply EDT?) is defined as:

(f)(z) = di(z,{y € E: f(y) = 0}), @

that assigns to each pixel the minimum squared distance to
the image background.

2.2 EDT by erosion

Shih and Mitchel [SM92] have shown that the EDT? can
be exactly computed by the morphological erosion of the
binary input image with values 0 and co using a structuring
function b,:

V2(f) = e (), 3)
where the structuring function is given by:
be(x) :—dg(l‘,(’)),.’t €eE®E, )

where O = (0, 0).
A useful property of this particular erosion is its idem-
potency:

&b (€. (f)) = €v.(f). &)
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3 Efficient erosion algorithms

There are two ways to improve the efficiency of the ero-
sion algorithms. By decomposing the structuring function
in smaller structuring functions and by using different ero-
sion algorithms, where the main classifications are parallel,
sequential and propagation.

3.1 Structuring function decomposition

The direct application of the structuring function b, is in-
efficient. A usual decomposition scheme, applied to con-
nected structuring elements is to use the Minkowski addi-
tion, in the following way {Ser82, SM92]. If b, can be writ-
ten as:

be =b1Db2®b3--- (6

then,

&b, (f) = -+ - €vg (€02 (€0, (£))),

where @ is the gray-scale Minkowski addition:
Vz e B; ® Bj,

)

(b:0b;) () = max{bi(y)+bj(z~y) 1 y € (Bj+2)}, 8)

where j = 1,...k, B; = {z € E: —z € B;} is the reflec-
tion of B;, and B; @ B; is the set Minkowski addition'.

It is important to note that the order of the erosion ap-
plication does not matter as the Minkowski addition is com-
mutative.

Shih and Mitchel have shown that b, used in the EDT?2
can be decomposed in a sequence of decreasing 3 x 3 struc-
turing functions b;:

—4i+2 -2t+1 —-4i+2
bi=| -2t +1 0 -21+1 |, ©))
—~4i+2 -21+1 —4i+2

where the origin, at the center, is marked in bold and ¢ €
{1,2,...}.

In this paper, we call the attention that b; can be fur-
ther decomposed in four one-dimensional 2-point structur-
ing functions, two in the vertical directions, North (by;),
and South (bs;), and two in the horizontal directions, East
(bg;), and West (by;):

bm=["2’;)“}, bgi=[0 —2i+1],
(10)
0 .
bs,‘=[_2i+1:’, bw¢=[—2’t+1 0].

Note that the same symbol is used for the set addition and numerical
addition.



The structuring function for the EDT? can be decom-
posed in:

be = - ®ObNoDbN1 D Dbsa Dbs1 B ---

Dby Qb1 D - Dbp Db, (11)

This decomposition leads to two important conse-
quences. Firstly the EDT? can be separated in simpler 1-D
erosions, which brings independence to the computation of
each image line or column. Secondly, the structuring func-
tions are reduced to two-point directional structuring func-
tion, allowing simple and efficient algorithm implementa-
tions.

This means that the EDT? can be computed by erod-
ing each column of the image by bni,bn2,... until sta-
bility using the idempotency property, then similarly erod-
ing the columns by bgy, bsa, . . ., then eroding the rows by

be1,bea, . . ., and finally, eroding the rows by by/1, bwo, . . ..

3.2 Parallel erosion

In the parallel algorithms, the pixels are processed indepen-
dently of the way the pixels are scanned. The output pixels
depend only on the input image pixels and on the structur-
ing function.

The parallel erosion algorithm can be written in pseudo
code as:

Function g = eroPar(f,b)
for all z € E in parallel

9(z) = min{f(y) — bly—=z): ye (B+1x)};

where the input and output images are f and g respectively,
and b is the structuring function. This leads to the follow-
ing EDT? algorithm, which is one of the simplest exact Eu-
clidean distance in the literature:

Function g = edt(f)
{f is assumed to be a binary image with values 0 and M,
where M is the maximum possible squared distance
in the image}
for each column ¢
{First step, vertical erosions}
forb=1,3,5,7,... until stability
for each row r
N(r,c) = min{f(r,¢c), f(r —1,¢) + b};
forb=1,3,5,7,... until stability
for each row r
S(r,¢) = min{N(r,c), N(r + 1,¢) + b};
for each row r
{Second step, horizontal erosions}
forb=1,3,5,7,... until stability
for each column ¢
E(r,c) = min{S(r,c), S(r,c + 1) + b};
forb=1,3,5,7,... until stability
for each column ¢
g(r,¢) = min{E(r,c), E(r,c — 1) + b};

The inefficiency of this algorithm is due to unneces-
sary scanning in the areas of the image where the erosion
is not affected. Better efficiency can be accomplished with
propagation algorithms.

3.3 Erosion by propagation

The idea of the erosion algorithm by propagation is to pro-
cess only the neighborhood of the pixels that may change
in the erosion. This set of pixels is called front or border
of f, denoted by 0f,. The efficiency of the propagation
algorithm is increased when a sequence of erosions is com-
puted. In this case, the front for the next erosion is com-
puted during the previous erosion.

Below is the pseudocode of the erosion by propaga-
tion.

Function (g, 3gs] = eroPro(f,b,8fs)
{g and 8g, are output parameters}
g=1
forallz € 0f;,

forally € (B+z)NE
if g(y) > fz) — bz ~y)
9(y) = f(z) — bz —y);
ify ¢ 0gs, set_in(dgs,y);

where set_in(gs,y) is the function that inserts y in the
set Jgp. Observe that the pixel is inserted in the front only
once. It is possible to generalize the erosion by propagation
to use a sequence of erosions by a non-crescent family of
structuring functions, i.e., by > by > - -+ > by.

For the erosions using the 2-point decomposed fam-
ily of structuring functions, it is possible to further improve
the efficiency of the propagation algorithm. These improve-
ments are different for each of the two steps: the first verti-
cal erosion and the second horizontal erosion.

For the first vertical erosion, the pseudo code is given
below:

Function edt1(f)
{f is input and output, H is image height}
for each column ¢
b=1;
for eachrowr =2,..., H
if f(r,c) > f(r—1,¢)+b
f(’I‘,C) = f(’l"—- 176) +b;

b=>b+2;
else
b=1,
b=1;

foreachrowr = H-1,H-2,..,1
if f(r,c) > f(r+1,¢) +b
f(r,e) = flr+1,0) +b;
b=b+2;
else
b=1;



As the input image is binary, the front can be propa-
gated in the same direction of the structuring function using
a sequential processing so that the pixel under processing is
a function of the previous modified pixel. In this way the
vertical erosion can be computed using a single raster and
an anti-raster scan.

For the second part, the horizontal erosion, it is not
possible to make a sequential processing wave, but it is pos-
sible to avoid the copying of the images and process the
image in place as long as the order of processing be the op-
posite order of the front propagation. When using the East
direction, the raster order must be West, so that the mod-
ified pixel will not be used in that scan. This is achieved
using a FIFO queues, two for each direction. The speed ef-
ficiency of this algorithm is improved by the fact that only
the front pixels are processed until stability. The algorithm
for the second part is given below in pseudo code:

Function edt2( f)
{f is input and output, W is image width}
for each row r
forc = W — 1 until 1 step —1, insertQueue(Eq,c);
forc = 2 until W, insertQueue(Wgq,c);
b=1,
while (not EmptyQueue(Wgq) or
notEmptyQueue(Eq))
while not EmptyQueue(Eq)
¢ = fromQueue(Eq);
if f(r,e+1) > f(r,c) +b
flre+1) = f(r,c) +b;
fcet+l<W
insertQueue(Eq2,c + 1);
while not EmptyQueue(Wq)
¢ = fromQueue(W q);
if f(r,e—1) > f(r,c)+b
f(r,e—1) = f(r,c) + b;

fc—1>1
insertQueue(Wq2,c — 1);
b=b+2;
Wq=Wgq2;
Eq = Eq2;

We call the attention that the queues used in this algo-
rithm have a maximum size of the width of the image. For
best performance, these queues can be easily implemented
by fixed length integer vectors.

Example

To better illustrate the EDT? algorithm using erosions, a
simple example f 'with a 4x4 image is shown below. The
result of the vertical ‘erosion by the structuring function B,
is shown next. Finally, f; is the first horizontal erosion and
Jf2 is the second horizontal erosion and the final squared Eu-
clidean distance transform. In the results of the horizontal
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erosions, the pixels inserted in the propagation queue are
marked in bold.

-5
o oo 0 o ::13
00 00 00 00
f= o 0 oo oo | B, = _01 ’
0 o0 o0 ™ _3
-5
9 4 0 o
4 1 1
fo=foB=| 1 o 4 2|,
01 9
Bh1=(—1 0 —1),
51 0 1
211 2
flzf‘ueBhlz 1 0 1 5 ) (13)
01 2 10
Bpa=(-3 0 -3),
4 1 0 1
211 2
fo=f1©Bp = 101 4 14)
01 2 5

4 Speed analysis and comparison

The first step of the algorithm requires a raster and an anti-
raster scan with the neighborhood of two pixels each. The
speed performance of the second step is more complex. The
best case situation requires a raster and an anti-raster scan
with neighborhood of two pixels, which occurs with an im-
age with equal columns, where no horizontal propagation is
required. In a typical case, the speed will depends on how
many times the pixel goes into the propagation queue. The
worst case happens with a square image with a diagonal
line of zeros. In this situation the number of times a pixel
is inserted in the queue is in average 1W//4 times, where W
is the width of the image. Although this makes this algo-
rithm proportional to the square of the image dimensions,
for typical images, the pixel appears in the queue approxi-
mately 1.3 times. In conclusion, counting the first and sec-
ond steps, the algorithm requires 9.3 pixel accesses for real
case images. The performance of the algorithm degrades
when the image has large distances to diagonal features.
For illustration, we show a speed comparison using
other four different Distance Transform algorithms in Ta-
ble 1. LZ is the algorithm proposed here, Eggers [Egg98],



tmgl | img2 | img3 | img4 | imgd
LZ {0.033 | 0.029 | 0.031 | 0.171 | 0.054
Egg | 0.226 | 0.140 | 0.168 | 0.260 | 0.213
Cha | 0.068 | 0.021 | 0.021 | 0.068 | 0.036 |
Dan | 0.055 | 0.048 | 0.049 | 0.053 | 0.051
Box | 0.080 | 0.023 | 0.022 | 0.079 | 0.042

Table 1: Time in seconds of several algorithms applied to
five different images (see text).

64K | 256K M 4M
LZ | 0.016 | 0.090 | 0.390 | 1.69
Boz | 0.017 | 0.088 | 0.368 | 1.45

Table 2: Time in seconds of the proposed algorithm and
the chess-board DT applied to the real image (¢mg5) repli-
cated by a factor of 4, 16, 32 and 64 to illustrate the scaling
behavior of the algorithm for a typical image.

is an exact EDT based on propagation and Cha is the Cham-
fer 5-7-11 [Bor86]. Although this algorithm is an approx-
imation of the EDT, we include it here as it is one of the
most popular distance transform algorithms. Dan is one
of the first Euclidean DT algorithms that although it is not
exact, it is still well known among the community. Finally,
Boz is a distance transform using the chess-board metric
using a graph searching algorithm presented by the authors
in [LFZ00]. This algorithm is much faster than the first part
of the linear-time EDT algorithm recently published by O.
Cuisenaire [Cui99], using graph searching techniques.

The images used are of size 256 x 256, where imgl
is an image with a single background pixel at the center,
1mg2 is an image with random squares of different sizes,
img3 is an image of random circles of different sizes, both
with 20% of foreground pixels, img4 is an image with a
diagonal background line and img5 is a real image. The
experiments of Table 1 were made in a Sun Ultra 5 Sparc-
Station, 270MHz, 128MB RAM and the algorithms coded
in the ANSI C.

To illustrate the behavior of the algorithm with images
of different sizes, the real image (img5) was replicated by a
factor of 4, 8, 16 and 64 and a comparison was made using
the Bozx chess-board DT. This time the execution time was
measured in a Pentium III, 750MHz, 128MB RAM note-
book.

From the results presented in Table 1, we can conclude
that the proposed algorithm has a speed performance com-
parable to some of the best known Euclidean distance trans-
form approximation algorithms.
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5 Conclusions and comments

We have shown a novel exact multidimensional parallel Eu-
clidean Distance Transform algorithm based on morpho-
logical erosions by family of decomposed 1-D directional
structuring functions of size 2. The 1-D structuring function
decomposition allows independence of lines and columns
making the algorithm very suitable for parallel processing
and easily extended for higher dimensions. The erosion by
propagation algorithm uses a fixed size propagation queue
allowing simple and efficient implementation.

We have also confirmed that the framework of Mathe-
matical Morphology is very suitable to the understanding
and designing of efficient distance transform algorithms.
The pseudo-code presented in this work is one of the sim-
plest EDT algorithms reported in the literature, both for
coding and understanding, with a typical speed performance
of about 9 accesses per pixel.

For future work, we will implement a multidimensional
version of the algorithm and investigate the quadratic be-
havior of the worst case condition of the proposed algo-
rithm and compare it to a recently published paper MRH00]
which claims a linear time behavior using similar 1-D prop-
agations.
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