Multi-bands image analysis using local fractal dimension.
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Abstract. An important application of fractals is image texture analysis. The main aspect of fractal geometry
used in this application is the concept of fractal dimensions to characterize the texture-scaling behavior. A new
idea is presented here: the use of fractals for texture identification in muitiband image analysis. This is not a
simple extension of the usual characterization of multifractal from its local dimension in gray-level images. It is
related to examine the interrelationship among the image representation in bands. Moreover, each band can be

~seen as a set in the 3D space, which means that its fractal dimension may present results between 2 and 3.
Consequently, if two bands are considered in one gathering, their structure is a set in the 4D space and its fractal
dimension may present results between 2 and 4. For multi-bands image the fractal dimension upper bound can
be even larger. In this work, two propositions to handle the multi-band combination are presented. Both defined
for whatever combination of bands. As far as we know, no similar approach has been considered until now.

1 Introduction

Multiband imaging often found in color application has
been leading the research growth of a new global Earth
information and satellite industry. The recent generation
of imagery acquisition products, in addition to the spatial
resolution (which allows to distinguish objects on the
Earth's surface as small as one meter in size), has been
increased also in the range and number of multispectral
bands. Visible light is composed of wavelengths ranging
from 0.4um (Blue) to 0.7um (Red). This narrow portion
of the electromagnetic spectrum is the entire range to
which the human eye is sensitive. Landsat Thematic
Mapper-TM sensors collect data from Blue to Red (Band
1:0.54-0.52 pm, Band 2-0.52-0.60pm and Band 3-0.63-
0.69um) and beyond the Red end of the visible
wavelength, where there are three regions of infrared
energy waves: the near-infrared (Band 4-0.76um to
0.90um), the mid-infrared (Band 5-1.55um to 1.75um and
Band 7-2.08um to 2.35um) and the thermal infrared
(Band 6-10.4um to 12.51um).

From military purposes to commercial Geographic
Information Systems (GIS), the use of this multiband
image processing has also grown fast. For many tasks
related to such applications, images need to be segmented
so that, for example, areas at different times and
economical utilization can be compared. Each band has
special uses in this endeavor. Usually hot objects (forest
fires, lava flows and emissions from smokestacks) have
peaks that falls between 0.5um to 9.5um and thus can be
detected in Bands 5 and 7. Band 6 is designed to measure
surface temperatures (from -100°C to 150°C). In addition,
the high transmittance of mid-infrared wavelengths means
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that Bands 5 and 7 penetrate smoke that obscures
pinpointing fires in Bands 1 to 3.

The fraction of energy reflected at a particular
wavelength varies with different earth features. Moreover,
the reflectance of each earth feature varies at different
wavelength. Thus two features that are indistinguishable in
one spectral range may be very different in another
wavelength band and the image spectral information can
be used to distinguish regions. For example, in case of
Earth observation the main distinguishable aspects are
related to soil, building constructions, vegetation, water,
smokes, clouds and trafficability. Soil texture, surface
roughness and the presence of moisture (Iron oxide,
organic matter, etc) can reduce soil reflectance in visible
region (Bands 1-3), but the decrease of soil reflectance
from moisture influence are most notable in Bands 5 and
7, which provide useful information for building
constructions and soil trafficability. Vegetation reflectance.
varies during its cycle of growth. Pigments in plant leaves
dictate the reflectance in visible bands. Chlorophyll
strongly absorbs energy in wavelengths of 0.45um and
0.67um. Healthy vegetation appears green because of the
relatively high reflection of green energy by plant leaves
and the high absorption of blue and red. In near infrared
(Band 4), reflectance is determined by the cellular
structure, and in the mid-infrared (Band 5 and 7),
reflectance is due to plant water content. A water region
tends to be darker than its surrounding vegetation region.
The visible bands provide information on water turbidity,
bathymetry, currents and sediment plumes. In Bands 1 to
3 the energy reaching the sensor from the water may be
reflected from the surface, from particles in the water or
from the bottom if the water is clear and shallow. Water



body containing large quantities of suspended sediment
normally has higher reflectance than clear water in the
same arca. Because water absorbs energy at infrared
wavelengths, the infrared bands are used to easily locate
and delineate water bodies.

TM Bands 1 to 5 and 7 measure reflected energy.
TM Band 6, the thermal band, measures emitted energy.
The data acquired from each of these bands can be viewed
individually as a single band gray-level image. In single
band images, energy intensity is represented in varying
tones of gray. Color imagery is usually produced by
combining single-band images is a computer, assigning
one color per band (Red,Green or Blue) and then
producing a colored output. As well as each band has
special application; their combinations in color images
allow different analysis. For instance, the combination of
Band 4 (as Red), Band 5 (as Green) and Band 3 (as Blue)
added definition of land-water boundaries and highlights
subtle details not apparent in the visible bands alone. With
this band combination, vegetation show as variations in
hue as well as in tone, thus it is useful for analysis of soil
and vegetation conditions. By displaying Band 4 as Red,
Band 3 as Green and Band 2 as Blue, the human eye
easily discriminates subtle tone variation chlorophyll
reflectance and information can be -gleaned about
conditions and variety of vegetation.

Although TM sensor bands have been here
considered to illustrate, similar approaches of multi-bands
combinations can be used with others multi-bands sensor.
A similar situation appears with the space imaging sensors
Haute Resolution Visible-HRV and Advanced Very High
Resolution Radiometer (AVHRR) of SPOT and NOAA
satellite, respectively. Also in other applications,
combinations of different multi sensor data of the same
image (like the visible RGB and x-ray used for quality
control) can be used to improve the analysis.

However, combining band's information is not the
ultimate solution that can be gleaned. There are still
problems of distinguishing region with same characteristic
of reflectance unless textural information is used. Texture
classifications allow to identify regions having a similar
gray or color value into different objects if their present
patterns variations. Different woods and residential
regions are characterized by their high-contrast texture.
Fields, lakes and seas present smooth contrast in tone and
hue but highly different texture. Kinds of agricultural
fields have different texture regions that can be useful on
located their boundaries. So the next step in improving
image analysis is joining the multi-bands possibilities with
texture analysis.

In this paper, we propose a new idea by combining
texture analysis in a multiband study of fractal dimension.
It is not only related to the use of fractals to identify
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variation on texture in an image, but with the use of any
images combination of the same scene to identify the
texture. Nevertheless, for real world images some
properties and problems are related with fractal dimension
estimation, as discussed below (next section). Approaches
for combining the bands for texture analysis are then
proposed in section 3. They are very efficient
computationally, and suitable for texture image
recognition. We illustrate their use to image bands in
section 4. Finally, in section 5, we present the conclusions
of the proposed methodology.

2 Fractal dimension in gray-level images

Fractal geometry can be use to discriminate between
textures in self-similar sets. The word fractal refers to
entities (in present study sets of pixels) that display a
degree of self-similarity at different scales. Altought
Hausdorff dimension is the principal definition of

-dimension in this geometry; for real images it is a problem

to implement algorithm for efficient Hausdorff dimension
estimation (Conci and Monteiro, 2000). However, other
definitions are in widespread use, and it is appropriate
examine some of these .alternative definitions of
dimension (that can be used as an attempt to quantify and
classify textures of a set of pixels). The fractal dimensions
of a set A in Euclidean n-space can be derived from 1= N,

FD
r .

FD = log (N, ) / log(1/r) (1

where N, is the union of non-overlapping copies of A
scaled down by aratio r.

For calculating fractal dimensions (FD) of drawable
sets, the box-counting or box dimension (where B&W
sketch is considered 2-D) is the most widely used
dimension. Its calculation is relatively ease. This FD has
been called also entropy dimension, Kolmogorov entropy,
capacity dimension, metric dimension, logarithmic
density, information dimension and Minkowski dimension
(Falconer, 1997). This dimension provides a description
of how much of the surface a set fills. White pixels are
related with mass spread (area filled by the draw) and the
Black pixels characterize gaps (or vice-versa), that is the
area without mass distribution. If a set A & R” is covered
by just-touching boxes of side with length e=(1/2)" (figure
1), equation (1) can be rewriting for experimental propose
as

FD =lim , 5. (log N(A , €)) / (log 1/¢) 2)
where N4 . ¢ denotes the number of boxes of side length
€=(1/2)" which intersect the set A.

In algorithms, the image division in box of different
length is processed in a simple way: considering that the
image of M x M pixels has been partitioned into grids of
sxs pixels and scaled down to r=s/M, then taking



contributions from all grids each N, ¢ is computed. Then
the limit in (2) can be estimate from the least-squares
linear fit of log x log (figure 1).

However, an image fills all the underlined area. It is
not possible associate a color with gaps, all spatial
resolution pertains to the object. Gray-scale pictures or
each band of multibanded images must be seen as an
element of the space of functions

f:X->G

where the set X is taken as the set of spatial coordinates of
the image and G represents the set of intensity values of
the image in a given band. So a simple extension of box-
counting to gray scale images is by the assumption that it
can be viewed as three-dimensional object (the third
coordinate represent the pixel intensity as shown in figure
2), or as a terrain surface whose height is proportional to
the image intensity value. The FD of an image can be
derived from the relation (2), and one can expect results in
all possible range of 3D surfaces for each band, that is
from 2 to 3.
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Figure 1 Elements for computation box-counting
dimension: (left) the just-touching boxes covering the set
A with side length e=1/2 and e=(1/2)> Boxes intersection
with A and (right) least squares linear fit for estimation of

the limit.

Figure 2 Gray intensity as third coordinate

Suppose the image of MxM pixels has been
partitioned into grids of sxs pixels and scaled down to
r=s/M. If G is the total number of gray levels then
G/s’=M/s. On each grid there is a column of boxes of size
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sxsxs’. Assign number 1, 2, ...n to the boxes as shown in
figure 3, the box counting N, | ¢ for FD computation in
each band is a simple extension. Boxes are now 3D
elements and N4 ¢ in equation (2) denotes the number of
boxes of side length £=(1/2)" which intersect the set A ,
also in the pixel intensity direction.

For images, the Blanket Method (Peleg et al. 1984),
the Reticular Cell Counting (Gangepain and Roques-
Carmes, 1986) or the DBC - Differential-Box Counting
(Sarkar and Chaudhuri, 1994) are more adequate than
equation (2) to compute the FD. All these are based on the
Blanket Dimension or Blanket Covering Method, which is
an extension of the Mandelbrot's method of measuring the
length of a coastline. For a line curve it proposes drawing
a strip around the coastline such that no part of the strip is
more than a distance € from the curve. Then the width of
the strip is 2¢ and the length of the coastline at radius € is
its area divided by 2¢. For a surface, Peleg et al.(1984)
suggested that it have to be filled with a "blanket" such
that all points on the blanket surface is at distance € from
the surface. The blanket thickness is 2¢ , for each € there
is an upper surface, u;, and a bottom surface, b; (shown in
figure 4). An immediate consequence is that these
approaches overcoming problems with the scale
invariance (expected for fractal dimension in all
directions) from the beginning, in the first computation of
N , o That is, if all gray level direction is translated by
adding one box, then the N4 ¢ will present no variation.
Also if the image have its gray scale inverted (black to
white or vice-versa) its dimension no change by these
methods.

B, 5y e Image mtensity Surtace
SN A
VYA ':/ image Piane
. /4[;’/ V- o
A AT -
/". "</:: KN T A

Figure 3 Box-counting on the pixel intensity.

DBC can be easily introduced in equation 2 by
computing adequately N, . ). If the minimum gray level
of the image in the grid (i,j) fall in box number k, and the
maximum gray level of the images on the (i,j)th grid fall in
the box number 1, then in DBC approach:

n (i,j)=l-k+1 3)
is the blanket thickness on the grid(i,j). Taking
contributions from all grids

Na, o=Z n (i,j) 4



The FD can be estimate from the least squares linear fit of
log x log, after N4 , ¢, is counted for different values of
boxes dimensions (r and s) .

Although the DBC method gives a very good
estimate of FD, some simplifications (in computations)
and improvements (in time efficiency) is possible by using
the nodifications proposed by Conci and Campos(1996) in
the original method. In the so called MDBC - Modified
Differential-Box Counting - the image division in box of
different length is processed in a new manner from the
original DBC method. Consider the image of size MxM
pixels, we take M to be a power of 2 and take the range of
light intensity to be integers from O to 255. All images are
enclosed in a big box of size MxMx256. We consider the
image divided into box of side length sxsxs' for
§=2,4,8..2™ and s'=2,4...2™ for each image subdivision If
the minimum gray level of the image in the grid (i, j ) fall
in box number k, and the maximum gray level of the
images ( i, j )™ grid fall in the box number 1, then n is
counted as

n=int(Gray_max(i,j)/ s-int(Gray_min(i,j)/ s")+1 (5)

where int(..) is the integer part of a division. This change
allows the reading of image file only once, in the first
image division in boxes of 2x2 pixels. The bitmap of

3 Combining bands

Up to now, we have described approaches already used for
determination of the FD of binary and monochrome
images. These approaches are modeled respectively in the
2-dimensional or 3-dimensional spaces. In synthesis, first
they divide the plane (RY in squares or the space (R in
cubes, then they compute the squares or cubes that
intercepted the binary or the gray level images
respectively. Generalizing, we can suppose that the
experimental determination of the FD of multi-channel
images (in a multidimensional space R") implies in
recursive division of the space in n-dimensional boxes
followed by computation of those boxes intercepting the
image. For conformity with previous works these n-
dimensional boxes are named "n-boxes", n identifies the
dimension. Thus, the 1-boxes are a line segment (one-
dimensional), the 2-boxes are squares (two-dimensional),
the 3-boxes are cubes (three-dimensional), the 4-boxes are
hyper-cubes (four-dimensional) and n-boxes refers to n-
dimensional spaces.

In b/w images, the 2D space is divided by identical
parts of sides L1xL2 (2-boxes). L1 and L2 correspond to
the axes of the coordinates 1,2 (figure 1) of the image. In
the monochrome images (figure 2), the space 3D is
divided by identical parts of sides L.1xL2xL3 (3-boxes),
where L3 correspond at the intensity level of the image.
For color images the space 5D is divided by parts of sides
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MxM pixels needless be saved, when the image is read we
saved only two matrices of M/2xM/2 elements: Gray_max
and Gray_min (saving MxM/2). For boxes of 4x4 pixels
there will be M/4xM/4 elements in Gray_max and
Gray_min, and each new element (i_new,j_new) is
obtained from consulting only the four element (ij);
G(+1,); @,j+1) and (@+1,j+1) of the Gray_max and
Gray_min matrices. In each new iteration the Gray_max
and Gray_min matrix elements have half of the length of
the last iteration and can be saved in the same area. Then
using (2) we estimate FD from averaging of
log(N)/log(2n). This method had also be used on color
images without simultaneously consideration on all bands
(Conci and Proenga, 1997) and with high resolution
satellite images for texture segmentation (Conci, 1999).
This MDBC algorithm and the original BC are used in the
next section when the combination of band will be
considered. The MDBC method presents also invariance
to average gray level, which can be very important in
application where the level of illumination can change and
modify the texture contrast. For instance, this is the ideal
technique for applications on quality control texture
applications (Conci and Proenga, 1998).

L1xL2xL3xL4xL5 (5-boxes), where L1 and L2 are the
pixel coordinates and L3, L4 and L5 the color in the
considered color space (usually RGB). In the satellite
images, according to the number, c¢, of considered
channels, each axis in the nD space(n=c+2) is divided by
the same number of parts resulting the n-boxes, in the n-
dimensional space.
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Figure 4 The blanket thickness for different £

It is difficult, to realize objects with dimension
greater than 3D. However, each point in a color image
needs 5 coordinates to be modeled. Pixels on satellite
images need more components. To calculate the FD of



these images we needed to go besides the third dimension.
But how to divide a n-space for computing the n-boxes
intersections (being n>3)? How many n-boxes appear in a
certain recursive division of the nD space by 1/27 For
answer these questions, it is important to observe how
known dimensions behave in repeated divisions by half.
Note that the number of 1-boxes to 3-boxes in recursive
divisions is:

n-dim.  recursive 1/2 division number of n-boxes
1 2 4=2?
3 8=2
d 2d=2n.d
2 2 16=2°
3 64=2°
d 22.d=2n.d
3 2 64=2°
3 512=2°
d 234d=2nAd

That is the number of box depends upon the space n
dimension and the number of recursive divisions, d. For 2-
boxes it can be determined by 2%¢. In the same way, for 3-
boxes, it is 2“, where d is the number of half divisions.
Generalizing, for 4-boxes, 5-boxes or n-boxes, the number
of n-boxes is: 2°" . For the determination of the n-
dimensional FD, the contribution of each channel for the
determination of the Nn(n-boxes, d) is made by in
accordance with analyzes of the complexity of the blankets
the expression:

Dehannel (la.]) = il‘lt( ( Maxchanncl (ls.]) 'Minchanncl (ls.]) ) /s’ ) +1
Then, results of each half division of the image, N,(n-
boxes,d), can be combined using equations (1) or (2). In
the following section the first case are named combination
by average and the second least squares fit.

4 Experiments and results

In this section the:proposed DBC modifications is used in
some experiments. First, the goal is to examine the
accuracy of the FD estimation for each channel. Figure 5
shows a classical example of fractal and its FD reached by
the implementation. Several others well known fractals
can have their fractal dimension computed when
considered by this approach as Black and White images.
For a second group of experiments, using only one
band, the Brodatz’s textures on figure 6 are used. Table 1
compares the results of present work with others, in which
intensity level images can be analyzed. In these results, the
implementation uses 3-boxes of sides 2,4,8,16, and 32 on
the procedure that combines recursive division by the
average , column 9. For the line fitting procedure (column
10) all recursive division are used (that is, for these texture
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samples of 256x256x256, each image division goes from
2097152 boxes with 2x2x2 to 8 boxes of 128x128x128).
On the screen zoom showed on figure 7, the two
implemented combination of all 7 channels (by averaging
or line fitting the 9-boxes at all resolution) can be seem.
For these results, in multiband combination, we used the
images from LANSAT 7 on figure 8 to 10. In these figures
the color images on the left is the band combination in
analyze displayed as R,G or B. It is possible to display
whatever band combination, wanted by the user. On figure
8 the usual combination of the visible channels creates a
natural-looking image. On the table, presented on the
screen, in fig. 8 it is possible to see the FD of each channel
and the results of these 3 channels together in the 5D row.
On figure 9, the combination of the near-infrared Band 4,
with mid-infrared Band 5 and the thermal infrared Band 6
adds subtle details, not readily apparent in the visible
band. Although, all images represent the same place, each
band combination to RGB produce a diferrent image.
Also, on the table of figure 9, it is possible to see the
obtained FD by each channel, and the results of these 3
channels together on the 5D row. Figure 10 shows the
implementation results of mid infrared band 7.

Figure 5 DF Sierpinski gasket (In3/In2= 1.58496....)

5 Conclusions

Multi-band combination in image fractal analysis has been
introduced in this paper,. Well know fractals and several
images of “Brodatz textures”, with their fractal dimension
computed by various methods, were used to illustrate the
efficiency of this approach to find FD for each band or for
Black and White images.

Of course, figures of classical Fractal Geometry are
calculate with advantage using theoretical definitions of
dimension. Here, they have been used only to show the
correction of the implementation. This situation is changed
when experimental techniques are compared. Roughly
speaking, table 1 says that each implementation presents
special properties and consequences. We might hope to
explain something by not restricting the attention to
results. Pentland (1984) suggested a method of estimating
FD by using Fourier power spectrum of image intensity



surface, such method gives satisfactory results but, since
this Fourier transformation computation is included, it is
slower than the others. Peleg et al (1984) extended fractal
idea to image, they drove image vision as a terrain surface
whose height is proportional to the image gray value. The
reticular cell counting estimator has been proposed by
Gangepain and Roques-Carmes (1986). But this estimator
can only be used when the range of the actual FD of an
image is from 2.0 to 2.5. Parker (1997) uses Hurst
-coefficient as an approximation of equation (1) for gray
level images, but this coefficients turn possible results out
of the theoretical range expected for images, that is the
interval [2 ,3]. Voss (1986) refers to box counting as the
process of estimating the probability that m points lie in
the box. Keller et al. (1989) proposed a modification of
the method due to Voss, which presents satisfactory results
up to FD=2.75. Sarkar and Chaudhuri (1994) described an
efficient box-counting approach, named Differential Box-
Counting (DBC), that uses differences on computing Ny ,
and gives satisfactory results in all range of FD. In Conci
and Campos(1996) fast computation and identification of
image variations were the main goal, so the results
considered only the average and the minimum number of
image box division. In the opposite end is the work of
Coelho and Conci (2001) that looks for correction of
results on comparison with an experimental Hausdorff
Dimension approach. This work uses cubes of all the
possible sizes (considering sides of 2, 3, 5, 6, 9, 10, 12,
15, 18, 20, 30, 36 and 45 pixels) with or without
superposition and several curve fittings. It also considers
the possibility of using thermal channels for image
threshold before calculation of FD.

The main aspect of the present work are the
possibilities opened by using all the Landsat bands and
fractal dimension for texture classification. The examples
show the possibilities of the proposed technique, that is the
only that uses band's reciprocal action. Although others
works have used satellite images ans fractal geometry only
one channel have been used on analllysis (Carvalho and
SilvaDias, 1998). The modification used in Buchnicek at
al. (2000) consists of counting separately squares (2d
elements, no 3d boxes), which are completely black and
separately squares, which cover border of black object,
e.g. those squares which contain at least part of the tested
black object and obtain three fractal dimensions which
characterize properties of black plane, black-white border
of black object. Altought image information can be
handled in four color spaces - intensity (shades of gray),
HSB/HSV (hue, saturation, brightness/value), HLS (hue,
lightness, saturation) and RGB (red, green and blue
channel) in HARFA, (Buchnicek at al., 2000:
http://www.fch.vutbr.cz/lectures/imagesci/harfa.htm)  for
FD determination they use only images in B&W. HarFA
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examines fractal structures which come into existence
during process they called "masking". Masking transforms
colored image object into black&white one. There are
many criteria which can be changed to derive many
different fractal structures from one image (e.g. it can alter
minimal value of hue to be masked as black one, or it can
determine that black will be all pixels which fulfil
conditions of their RGB channels). So they can get various
fractal dimensions for one image. If the point is to
characterize image by its fractal dimension, how know
which of them is appropriate. So it is impossible compare
our results on bands with HarFA results because all 3D
information on the image will be lost.

Figure 6 Bordatz's Textures [16]: D05,D09, D24,
D28, D55, D68, D84 and D92, used on table 1

experiments.

Channels DF Average DF least Square
Coord (x,)

Channel 1 2856 2537
Channel 2 2871 2,601
Channel 3 2881 2,634
Channel 4 2885 2,620
Channel 5 2886 2,626
Channel 6 2845 2524
Channel 7 2872 2572
DF 9D 8,236 6546

Figure 7 Zoom on the result of combining all 7 bands
counting the 9-boxes and combining all bands for both
procedures
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Sarkar{11] Peleg[10] Gang.[9] Average Line Fit
2.45 2.52 2.38 2,77 2,49
2.59 2.65 243 2,70 2,46
2.45 2.59 2.39 2,76 2,51
2.55 2.61 2.41 2,76 2,51
248 2.60 2.39 2,69 2,46
2.52 2.63 2.40 2,74 2,47
2.60 2.68 2.43 2,75 2,47
2.50 2.59 241 2,81 2,58

Table 1 Comparison of FD among various works (image numbers correspond to Brodatz’s book)
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Figure 8 Bands 1,2,3 as RGB images on the left. In the table, FD of each band and their combination by counting 5-box
for both implemented procedures

Channels -~ |DF Average. . |DF least Square
Coord (xy) '
Crammel

12885 2,620

25886 2626
2845 2524

3817

Figure 9 Bands 4,5,6 as RGB images on the left. In the table, FD of each band and their combination by counting 5-box
for both implemented procedures

Chamnels - [DF Average .. [DF least Square
Coord (xy)

2572
2572

Figure 10 Band 7 as gray level image on the left. In the table, FD for this band counting 3-box for both implemented
procedures.
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