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Abstract.

Scale spaces allow us to organize, compare and analyse differently sized structures of an object.

The linear scale space of a monochromatic image is the solution of the heat equation using that image as an
initial condition. Alternatively, this linear scale space can also be obtained applying Gaussian filters of increasing
variances to the original image. In this work, we compare (by looking at theoretical properties, running time
and output differences) five ways of discretizing this Gaussian scale-space: sampling Gaussian distributions;
recursively calculating Gaussian approximations; using Splines; approximating by first-order generators; and
finally, by a new method we call “Crossed Convolutions”. In particular, we explicitly present a correct way of
initializing the recursive method to approximate Gaussian convolutions.

1 Introduction

The concept of scale is intrinsic to the observation
of any physical object. In order to obtain information or
features from an object, we must use an appropriate scale
where such information is easily observable. For example,
in cartography, if we want to find a house in a neighbor-
hood, the scale 1:10.000 is appropriate. However, if we
want the location of this same spot in the planet, we have
to use a 1:1.000.000 scale.

An appropriate choice of scale is also imperative to
locate phenomena in time. Certain physical phenomena
are observable in time scales of micro-seconds (think of the
information flow inside a computer), while others occur in
time scale of billions of years (like the life cycle of stars).

Note that the concept of scale is closely linked to the
idea of resolution (or detail). In general, the resolution is
the inverse of scale: whenever we examine events of small
(fine) scale, we use high resolutions.

If we want a generic system that does not know a pri-
ori the desired scale for extracting information from an ob-
ject (or sequence of images), then it might be necessary to
create a representation of such an object in several scales.
In image processing, several such multi-scale representa-
tions have been created to face this difficulty, like Quad-
Trees, Pyramids, Wavelets and Scale-Spaces.

Some desirable properties for a multi-scale represen-
tation are:

e Isotropy or rotation invariance: there are no preferred
directions, that is, the representation of a structure is
independent of its orientation.

e Homogeneity or translation invariance: there are no
preferred locations, that is, the representation of a struc-
ture does not depend on its localization.

o Causality: no structure is created when the scale in-
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creases. More specifically, any feature present in a
certain scale comes from details that are present in
smaller scales; the representation of an object in a
coarser scale has no more details than the same ob-
ject represented on a smaller (finer) scale.

Note that these properties (specially the invariance by
translations) imply that the size of the support of an object
can’t change with scale; this is unlike the idea of scale in
cartographic maps, where a larger scale usually implies in
smaller object support. In particular, the scale space of an
image will be a sequence of images, all of the same size of
the original image. When the scale increases, the images

- get more blurred, as if we were watching the images from

a larger distance, but the support’s size is kept fixed. The
blurring is a direct consequence of the causality principle,
that forces the image to lose detail as the scale increases.

The structure of this paper goes as follows:

In section 2 we will formally define (non-discrete) lin-
ear (Gaussian) scale-spaces and present their main proper-
ties.

In section 3, we will discretize such linear scale-spaces
by discretizing the Gaussian filter kernel.

In section 4, we discretize linear scale-spaces by dis-
cretizing the PDE associated with the Heat Equaton, al-
ways keeping an eye to see if the non-discrete properties
transfer to the discrete case. In particular, we present a
new method (Crossed Convolutions) that solves the dis-
crete version of the heat equation exactly, and therefore
preserves many of the desirable properties of the non-discrete
case.

Finally, in section 5, we compare the results of our
implementations of the different methods (looking at theo-
retical differences, running time and output differences of
the many scale-spaces).



2 Gaussian Scale-Spaces

Definition 1 Let f : R® — R The Gaussian scale-space
of f is the function L : R* x Rt — R given by

L(x,t) = f %« Gi(x)

2 2
3_41_1(731‘*'““"3") is

where L(x,0) = f(x), G¢(x) = m t)%
™

the n-dimensional Gaussian distribution with variance 2t

(standard deviation o = \/2t) and x = (21, Z2,...,Tn) €

R™. The parameter t is named scale.

Figure 1 shows samples of Lenna’s image scale-space
at scales t = 0,0.25,0.5,1,2,4,8,16,32 (note thatt = 0
corresponds to the original image).

Figure 1: Lenna’s image scale-space.

The Gaussian scale-space has several interesting prop-
erties, most of them inherited from the Gaussian function.
Let’s list them briefly.

2.1 Properties
2.1.1 Linearity and Translation Invariance

Since we defined the Gaussian scale-space from a con-
volution, its dependence on f is necessarily linear and trans-
lation invariant.

2.1.2 Isotropy

Since the n-dimensional Gaussian is rotationally in-
variant or isotropic (see figure 2), so is the Gaussian scale-
space.
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Figure 2: 2D Gaussian, t = 0.5.

2.1.3 Semigroup

The Gaussian kernels G; have a semigroup property,
thatis, Gy, 4, = Gy, *Gy, forany t; and t; € Ry . There-
fore, L(x,t{ +t3) = L(x,t1)*Gy,—¢, (x), indicating scale
homogeneity, that is, all scales of L are treated in the same
way.

2.1.4 Causality

The causality property requires that the scale-space be
somehow smoothed with increasing scale, but it can be for-
malized in-many ways. One way of defining causality is to
use a maximum principle: broadly speaking, the value of
a local maximum (for fixed ) of L(-,¢) does not increase
as the scale ¢t increases, and the value of a local minimum
of L (-,t) does not decrease as the scale ¢ increases. With
such definition, the Gaussian scale-space is indeed causal.

2.1.5 Heat Equation

The.Gaussian scale-space L(x,t) = f * Gi(x) is
the solution of the following partial differential equation,
known as the Heat Equation

{ L(x,0) = f(x)
Ot = V2L(x, 1)

where the:Laplacian on the right side is taken only with
respect to the x variables (x € R™).

2.1.6 Uniqueness

The Gaussian scale-space is the only non-trivial space
that is linear, isotropic, invariant by translations and satis-
fies the maximum principle stated above. For a proof, see

[2].



3 Discretization via Convolution

How to discretize the Gaussian scale-space and keep
the properties we listed in the previous section? As a first
approach, we could define a discrete scale-space of a signal
by applying any family of filters to it.

Definition 2 Let g; be a family of discrete filter kernels
(with go [n] = 8[n] = bon, the discrete Dirac function).
The discrete scale-space (according to g;) of a discrete sig-
nal f : Z — R is the function L : Z x RT — R given by

Lin,t} = f*g:[n]
Note that L[n,0] = f[n].

The definition for multidimensional signals is similar.
For example, for images we have:

Definition 3 Let g be a family of discrete filter kernels
(with go [m,n] = & [m,n]). The discrete scale-space (ac-
cording to g;) of an image f : Z*> — R is the function
L:7Z% x Rt — R given by

L{m,n,t] = f * g [m,n]
Note that L {m,n,0] = f [m,n].

Of course, this has the potential to be useless if the
family g is not at least continuous on ¢, not to mention
that we would like g; to have something to do with the
non-discrete Gaussian function! In this section, we present
3 alternatives for the construction of the family g;, all of
them trying to represent Gaussian scale-spaces (if possible,
keeping the properties described in the continuous case).

3.1 Sampled Gaussian

Maybe the most straightforward solution to discretize
the Gaussian scale-space is to take the family g; from a
direct uniform sampling of the Gaussian function. For ex-
ample, in the unidimensional case, we could just calculate
the value of the Gaussian function at the integers

1 n2

= e 4t
Vint
For implementation purposes, since this function has
infinite support, we might have to decide on a cut-off point
for n. It is customary to take this cut-off point at 3 or 4
standard deviations from the mean, that is, to take

n2
ﬁe_ﬁ, for |n| < 4y/0 = 4V/2t
0, otherwise

gt [n]

gt [n]

where the constant C is taken to make g; normalized, that

is, such that
o0

Z gt[n] =1

n=—oo
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This renormalization is specially relevant for small
values of t, when the filter has small support. In partic-
ular, note that, when t — 0, G; (0) — oo and we don’t
want the same behavior for g, [0]. With the renormaliza-
tion, g; [0] = 1 for ¢ < 1/32 (in fact, g; [n] = & [n] for
t < 1/32).

Now we can define the scale-space of a 1D signal f as
in the previous section'

Ly[n] = f[n] * g: [n]

where g; [-] is defined as above. Unfortunately, such scale-
space does not have the semi-group nor the causality prop-
erty (both properties are defined in the discrete case follow-
ing the corresponding non-discrete definitions).

We extend the sampled Gaussian scale-space to the
multi-dimensional case using tensor products, that is, using

g [n1,n2,..] = ge [n1] .g¢ [n2] ...

where each of the g; on the right side is defined according
to the previous discussion.

Figure 3 shows samples of this discrete scale-space at
variances 0 (original image), 1, 10 and 100.

Figure 3: Sampled Gaussian scale-space.

'From here on, we slightly change the notation putting the variable ¢
on L [n, ] as a subscript.



3.2 Recursive Gaussian (Deriche)

Note that the calculation of the sampled Gaussian scale-
space is very costly, specially when its variance is big, due
to the computation of the convolutions involved. Deriche
[4] shows how to approximate the sampled Gaussian ker-
nel by a recursive kernel (that is, one whose convolution
can be quickly calculated via recursive relations), namely,

1

e 7% 17833 (1,68 cos(ag) +3.735 sin(ag))~
e~1723% (0.6803 cos(b—g) +0.2598 sin(bgj)

= g2t(z)
where 02 = 2t, o = 0.6318 and b = 1.997.

4 Discretization via Heat Equation

As we have seen in the previous section, the Gaussian
scale-space can be defined as the solution of the heat equa-
tion M = V2L(x,t). This suggests a discrete scale-
space based on the discretization of this equation instead of
adirect dlscretlzauon of the convolution in the solution. In
fact:

Theorem 4 The discrete heat equation

BLt [n]
at
(where A is a multiple of the discrete Laplacian opera-
tor) defines the only scale-space that is linear, symmetric,
translation-invariant, has the semigroup property and sat-
isfies the maximum principle.

= Ax L;[n] )}

Proof. See chapter 10 of [2] or chapter 4 of [3]. Here
we present just the general idea of the proof. First, we note
that the semigroup property is basically equivalent to ask
the scale-space to be given by some differential equation
of the form

6Lt [Il]

A2 = F{L],m)

The invariance by translations practically eliminates the de-
pendence on n on the right side; together with the linearity,
we can already see that the equation must have a convolu-
tion form

8L, [n]

ot
The maximum principle forces the operator A to have sev-
eral properties; in: particular, it has to be local (for exam-
ple, in Z2, using 8-connectivity, A must be a 323 kernel),
its center coefficient is negative and all others are positive,
and the sum of its coefficients is 0. Finally, the symmetry
condition forces .4 to be symmetric as well. Summarizing,
A must have the:form

A=K[1,-2,1]

:A*Lt[l'l]
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for one-dimensional scale-spaces, while

c 1-2c c 1
A=K | 1-2¢ —-4+4c 1-2¢ 0<e< =
c 1-2¢ c 2

for the two-dimensional case. It is not hard to see that A
is a multiple of a discrete approximation for the Laplacian
operator. &

Since the multiplicative constant K corresponds to a
simple rescaling of the ¢ parameter, it is common to take
K = ﬁlf (where h is the distance between grid points)
or, more simply, to take K = 1. The ¢ parameter, on
the other hand, cannot be determined without further con-
straints; note that ¢ measures somewhat the “importance”
of the diagonals of the matrix 4. It is common to take
¢ = 0 for the simplest discretization of the Laplacian~

0.1

Ao= | 1024 1
Ao .

"0 1

that has the advantage of satxsfymg thc faximum prmmple
even using 4- connecuvny However for amore “isotropic”
Laplac1an we prefer ¢ =

i 1 4 1
Ap=-14 -20 4
1. 4 1

Whatever the choice of A is, 'we call it the infinitesi-
mal generator of the scale-space. Based on this continuous
scale, discrete space équation, we can come up with some
other ideas for discrete scale-spaces.

4.1 First-order generator

We could apply a first-order method in ¢ to solve equa-
tion 1; for example, in the 2D case, we take a small step At
and write

Lt+At [m, TL] ~ ((5 + AAt) * Lt [m,n]

where 4 is the discrete unitary impulse

0 0 O
6=]0 1 0
0 0 O

Lindeberg [3] suggests then a discrete scale space com-
puted by powers of a first-order generator 6 + AAt:
(6 + AAt)*Ly, [m,n]

Lt0+nAt [m, n] P~ ((5 + .AAt) koon ok

v

n times

Using the discrete 2D Laplacian above, it can be shown
(like in [3]) that



e § + A At is unimodal only for ¢ < %;

At.
9

e § + A At itis separable only when ¢ =

e The causality (maximum principle) is satisfied only if
0<c<i

e ¢+ A At has maximum “rotational symmetry” when
¢ = & (see chapter 4 of [3]).

Figure 4 show samples of this scale-space (using ¢ =
&) fort =0,0.5, 5 and 50.

Figure 4: First-order generator scale-space

4.2 Crossed Convolutions

While all the scale-spaces presented so far approxi-
mate the original Gaussian scale-space, none of them solve
exactly equation 1, and therefore none of them have all the
properties that such solution would have. Moreover, it is
really not absolutely necessary to use first-order approxi-
mations for equation 1: one can solve it explicitly.

For example, in the 1D case,

OL¢[n] _
#— =(1,-2,1] % L; [n]
Lo[n] = f[n]

can be explicitly solved using a Z-transform (see [2] or [3]).
The solution is given by

Li[n) = f * P [n]
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where P, [n] is a symmetric Poisson kernel?, that is,
Py [n] =e %I, (2t)

:6—‘%(... ,I-n(2t)7"' 710(2t)u"' 7In(2t)’)

where I, (t) is the modified Bessel function * of order n.

Note that this is the only 1D discrete scale-space with
the properties of linearity, invariance by translations, semi-
group, symmetry and causality (given by the maximum
principle). Also, it is not hard to show that P; [n] has vari-
ance 2t, the same variance of the Gaussian G; (z). For
these (and other) reasons, it is common to call P; [n] the
discrete Gaussian distribution.

For 2D signals, we could just use tensor products;
then, we would have a scale-space defined by

Lifm,n] = f = P, [m,n]
P, [m,n] = P, [m} P; [n]
that is indeed the solution of
0L [m,n]
ot

However, can we write an explicit formula for the so-
lution of the discrete heat equation for other discretizations
of the Laplacian? The answer is positive:

= Ap * L[m,n]

Theorem S The solution of the discrete 2D heat equation

OL¢[m,
——%=A:*Lt[m,n]

Lo [m,n] = f[m,n]

)

can be written as

P! * PEY

Li[m,n] = P(zl—2c)t ¥lhooeye ¥ et * Py ¥ fm,n]

where
Fgim,n] = Py[m]é[n];
PY[m,n] = Pa [n] 6 (m]
PZtV(m,n) = P,[m]é[m —n);
P2V [m,n] = Po[m] 3 [m +n]
For example, PZ is the symmetric Poisson kernel of vari-
ance 2a spread only in the “x direction”, while PE1Y is the
same symmetric Poisson kernel but this time spread only in

the direction T = y (the 45° diagonal), with zeroes else-
where.

230 called because it corresponds to the difference of two independent
random variables with the same Poisson distribution.
30ne convenient way to define the modified Bessel function is to look
o -1
at the coefficients of the expansion of ¢5(*+27%) in a Laurent power
series in 2, that is

oo
e%(z-}—%-): Z In(a)z"
k=-—o00

A subroutine for the calculation of modified Bessel functions can be
found in {7].



Proof. Let

ge(z,y) = Y Li[j,klaiy*

Jyk=—o00
be the Z-transform of L;. Then, from 2

agt (.’L‘, y)

o = Heley+ay™ +a7ly+27ly7) +

(1-2)(z+z " +y+y™ ') —4+4c}
9t (z,y)

* We solve this and get

9:(z,y) = we(z,9)g90(z, y)
where wy(z,y) is

etle(@ytey™ v y+a Ty T+ (1-2¢) (a2 y+y T ) —4+4c}
Rearranging the terms of w; (z, y) conveniently:

9¢(z,y)
— e(172c)t(z+£ -2)
e(1-200t(y+5 —2)
ectzyt 5 —2)

e == go(z,y)

Now it is easy to see that each of the 4 exponentials is the
Z-transform of one of the symmetric Poisson kernels in the
solution (just expand them in Laurent power series and use
the definition of the modified Bessel functions). m
Therefore, we can compute L; [m, n] in 4 steps:

Convolve f[m,n] with Pf_,,; this is the same as
convolving each line of f with the 1D Poisson kernel

1)(1—2c)t§

Convolve each column of the result with Pi_ac);
o Convolve each 45° diagonal of the result with Py;;

Convolve each —45° diagonal of the result with P.;.

In particular, the case ¢ = 0 gives the old tensor prod-
uct Ly [m,n] = f [m,n] x PF [m] * P} [n].

Figure 5 shows samples of the Crossed convolution
Scale-space for ¢ = % in the variances 2¢ = 0,1,10 and
100. Since the convolution has infinite support, we mir-

rored the image across its borders to compute it.
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Figure 5: Crossed Convolution Scale-space

5 Comparative Analysis

In this section we make a comparative analysis of the dis-
cretizations.

5.1 Theoretical Analysis

The table below summarizes the properties of the con-
sidered scale-spaces

semigroup | causality | scale
sampled Gaussian R
first-order generator* | v/ v AtZ
crossed convolutions | v/ v R

All these methods try to approximate the continuous
Gaussian scale-space in different ways. Note that both
the sampled gaussian method and the crossed convolutions
method incur in additional numerical errors by performing
a kernel cut-off® to avoid infinite supports; the first-order
generator method trades this infinite support by the approx-
imation Liy a¢ {m, n] = (8§ + AAt) * Ly [m, n].

51t is interesting to note that the cut-off for the crossed convolution
method can be avoided using an implementation in the frequency domain,
since the Fourier transforms of the symmetric Poisson kernels can be ex-
plicitly written.



5.2 Runtime

In the table below we show the algorithmic time and the
runtime (in seconds) of the calculation of each scale-space
for the indicated variances. While these values were taken
from a low-performance computer, they are a good basis
of comparison between different algorithms. All of them
show that calculation of scale-spaces can be quite costly.

mult var=1.0 var=243.0
s. Gaussian 8N 0.22 1.87
first-order gen. | 100°N | 0.4 67.6
crossed conv. 16cN | 0.22-0.36 | 1.87 - 2.37

The first column indicates the number of multiplica-
tions for the calculation of each convolution, where N is
the number of pixels in the image, o is the standard devia-
tion of the filter kernel and d is the denominator of the scaie
% in the spline case.

For the crossed convolutions, we display running times
forc=0andc = (1;. Note that, for ¢ = 0, the times are the
same as the sampled Gaussian times (since there are only
two convolutions to be performed in this case).

Note also that, since the first-order generator method
and the crossed convolutions method both have the semi-
group property, we could calculate scale-spaces for larger
scales using previously calculated smaller scales — this re-
duces running time for these algorithms when calculating
several scales.

5.3 Output difference

We show the squared distance between images f, g :

{0,1,---,M -1} x {0,1,--- ,N — 1} - R given by
| M-IN-1
. - - _ 2
dit(,9) = 5757 22 3 (Flmonl =)

In the table below, we display the dist function for
several variances and pairs of methods (the image used in
these comparisons was Lenna’s image). Signal extensions
are by mirroring across borders unless stated otherwise.

var dist
S. Gaussian C.Conv(c=0) | 3,0 0,115
S. Gaussian C.Conv{(c=0) | 27,0 | 0,003
C.Conv(c=0)| 1-Gen(c =0) 27,0 | 0,0044
C.Conv(c=0) [ 1-Gen (c = %) 27,0 | 0,0029
1-Gen(c=g) | C.Conv(c=¢)]|27,0]5,074

We note that all scale-spaces calculated are very close
to each other. The only case in which two methods show

some difference is the crossed convolutions method and the

first-order generator method for ¢ = §.
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5.4 Final remarks

We note that the crossed convolutions method is the
only one that retains all the properties of the continuous
case. Since its computational cost is still acceptable, it is
our personal favorite scale-space.

The sampled Gaussian method, while presenting sim-
ilar results to the others and similar running times, seems to
us to be overshadowed by the crossed convolutions method,
that has the same running times and several theoretical prop-
erties in its favor.

First-order generators take longer and correspond only
to a first-order approximation of the solution of the discrete
heat equation. Besides, its theoretical properties of causal-
ity and semigroup breakdown whenever we need scales
that are not multiples of the predefined scale step.

Finally, we must note that all the convolutions could
be computed using Discrete Fourier Transforms (FFT al-
gorithms); this might not only speed up all algorithms but,
in some cases, avoid numerical errors that come from trun-
cating the supports of the used kernels.
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