Multi-resolution Classification Trees in OCR Design

MARCEL BRUN, JUNIOR BARRERA, NINA S. T. HIRATA,
NESTOR W. TREPODE, DANIEL DANTAS AND RoUTO TERADA

Departamento de Ciéncia da Computagio
Instituto de Matemadtica e Estatistica - Universidade de Sao Paulo
Rua do Matdo 1010, CEP 05508-900, Sao Paulo, SP
<mbrun, jb,nina,walter,ddantas,rt>@ime.usp.br

Abstract. This paper recalls the idea of classification trees in OCR (Optical Character Recognition)
systems and proposes a technique for the automatic design of these classification trees. The design of
both the classification trees and of the classification operators are based on training from sample pairs of
observed-ideal images, allowing the development of customized OCRs.

Keywords: Classification tree, OCR, morphological multi-classifier.

1 Introduction

The aim of an optical character recognition (OCR) sys-
tem is to generate electronic documents (ASCII files)
corresponding to printed materials such as books, of-

fice documents, memoranda, etc. In general, this pro-

cess involves image analysis procedures. Recognition
of characters is one of the major tasks involved in the
process of an OCR. In character recognition, one usu-
ally faces two fundamental problems: to segment the
characters (letters and symbols) [5, 6] and to classify
each of the characters.

Several approaches for character recognition have
been proposed in the last decades [7]. There are several
commercial OCRs in the market. In order to improve
the accuracy of the overall result, the usual approaches
incorporate from image processing and pattern recog-
nition techniques to spell checking procedures. While
the generality of some OCRs limits their accuracy, it
is possible to project a customized OCR for a specific
font or document set and achieve higher accuracy. Spe-
cific OCRs may incorporate training and filtering that
are particularly suited for the document type to be
processed. In this case, in place of generality, we seek
accuracy.

In this paper we consider the use of morphological
operators for character recognition, extending a previ-
ous result on the use of classification trees in OCR [4].
In the referred work, a method based on a classification
tree was introduced. Instead of designing one classifier
for classifying all objects in a single classification step,
the classification process is viewed as a multi-step pro-
cedure, that is, objects are classified into subclasses
and then each subclass is further classified into more
subclasses. However, a difficulty part of the proposed
technique is the design of the classification tree. Here

1530-1834/01 $10.00 © 2001 IEEE

59

we discuss an automatic technique for designing clas-
sification trees.

Following this introduction, in Section 2 we re-
call some basic concepts on mathematical morphology
for binary images, its extension to the classification of
shapes, and design of morphological multi-classifiers.
In Section 3, we recall classification trees in the con-
text of OCRs. In Section 4, we introduce a technique
for the automatic design of classification trees. In Sec-
tion 5, we describe the main components involved in
the proposed OCR. In Section 6, we present some ap-
plication results. Finally, in Section 7, we present the
conclusions of this work and discuss further researches
in this field.

2 Morphological operators for shape classifi-
cation

An image is typically composed by several objects,
where each object may correspond to more than one
component in the image. The purpose of classification
is to assign a unique classification code to each object
in the image, according to the class it belongs to. This
may be accomplished by assigning the correct classifi-
cation code to all pixels in each object.

Let E = Z? be the integer plane and P(E) be the
power set of E. A binary image on E may be modeled
by a binary function f : E — {0,1}, or equivalently,
by a subset S C E, by letting z € S < f(z) =1, for
allz € E.

A mapping ¥ : P(E) — P(E) is translation in-
variant (t.i.) if and only if

z € ¥(S), <=z € U(Sy),Vz,he E,NSCE, (1)

where S;, denotes the translation of set S by vector h.

Let W C E be a finite subset, called window. A
mapping ¥ : P(E) — P(E) is locally defined within W
(1.d.) if and only if

T €V(S) <= ¥ (SNW,),Vr€e ENSCE. (2)

A mapping ¥ : P(E) — P(E) that is bothi.t. and
L.d. is called a binary W -operator and can be charac-
terized by a binary function ¢ : P(W) — {0,1}, as
follows:

zeUS) <= P(S_., NW)=1VzeE. (3)

Binary W-operators can be used, by adjusting the
window size, to recognize shapes of objects that belong
to one particular class. Hence, if there are n different
classes, the classification could be performed by a fam-
ily 4; of n binary operators, one for the recognition of
objects in each of the classes. The drawback of this
approach is that one needs to design an operator for
each class. We also need to deal with the question on
how to deal with objects that are recognized by more
than one operator.

A natural extension of binary classifiers are the
multi-classifiers [4]. Let {0,1,...,n}F denote the set
of all mappings from E to {0,1,...,n} (correspond-
ing, in our context, to the set of gray-level images de-
fined on E, with n + 1 gray levels) and let us consider
an operator of the form ¥ : P(E) — {0,1,...,n}%,
characterized by a multi-level function ¢ : P(W) —
{0,1,...,n}. Here, an operator assigns one classifica-
tion labelin {0,1,...,n} to each of the shapesin W. In
this case, the input is a binary image and the output is
a gray level classified image. Each pixel in the output
image has a value between 0 and n, the classification
label. The label 0 is reserved for the background, and
n indicates the number of classes considered.

The advantage of using multi-classifiers is in the
fact that instead of designing n operators, one for each
class, one needs to design only one operator.

2.1 Representation of multi-classifiers

Let 9 be a mapping from P(W) to {0,1,...,n}. Define
the kernel of ¥ at level i as being the set K;(3)) given
by, for any x € P(W),

x € Ki(y) <= ¢¥(x) > 0. (4)

Note that K,(¢) C K,_1(¥) C -+ C K1 (¥) C Ko(¥).

The mapping ¢ has the following sup-
decomposition [3]:
P(x) = maz{i : x € K;(¢)}. (5)

60

The basis of ¢ at level i, B;(1), is the set of max-
imal intervals of K;(¢). In terms of basis, the sup-
decomposition can be written [3] as

¥(x) = maz{i: x € [A, B],[4,B] € Bi(y)}. (6)

2.2 Design of multi-classifiers

Here we describe a procedure for designing multi-
classifiers from training data. In our context, a training
data is a set of observed-ideal pairs of images, illustrat-
ing the desired classification. The observed images are
binary images containing the objects to be classified
and the ideal images are the respective images with
the correct classification label.

Shapes x C W and their respective classification
labels y are collected from the training data. Then,
they are used to estimate P(y = i|x),7=0,1,2,...,n.
For each shape x observed in the training data, the
most frequently assigned label defines the class ¢ to
which x belongs, that is, we set ¢(x) = ¢ by choos-
ing ¢ such that P(y = i|x) = maz{P(y = j|x),j =
0,1,2,...,n}.

The next step consists in designing an operator
¥ such that ¥(x) = ¢(x), for each observed shape x.
The procedure consists in designing each of the n basis,
corresponding to the maximal intervals of the kernel
(eq. 4), from level 1 to n. The bases B;(1)) associated
to the kernels can be computed by an incremental pro-
cedure [4, 1]. In this procedure, minimization of the
representation and generalization of the classification
(i-e., attribution of classification to the shapes not ob-
served in the training data) are accomplished. Mini-

" mization of representation is given by the basis repre-

sentation of the kernels and generalization depends on
how the algorithm deals with the non-observed shapes.
In this work we use the ISI (incremental splitting of in-
tervals) [2] algorithm.

The design of multi-classifiers may be computa-
tionally inefficient if the number of classes and the win-
dow size are large. Another problem is the estimation
precision of the conditional probabilities. Recently,
classification trees [4] were proposed as an approach
to overcome these difficulties.

3 Classification Trees

A classification tree breaks the original classification
task in a non-single number of classification steps. In
other words, instead of assigning the correct classifica-
tion in a single classification step, the objects are ini-
tially classified into subfamilies. Then, in a second step
of classification, each of the subfamilies are classified
into another number of subfamilies, and this process is

repeated for each subfamily until a full classification is
performed. This idea is shown through a diagram in

Figure 1.

T

/0 /o /

\
??@ OO OO
DODOE

Figure 1: Example of a classification tree.

In the example of Figure 1, the classification pro-
cess consists of three steps. The whole set of classes
({0,1,2,3,4,5,6,7}) is first split into three subfami-
lies, namely, the sets {0,2, 3,6}, {1,7} and-{4,5}. The
set {0,2,3,6} is then split into two subsets, {0, 3} and
{2,6}, while the other two are split into unitary sets,
and so on.

Each non-leaf node V of a classification tree con-
tains the following information:

e a subfamily F (V) of classes.

e a list of child nodes child(V'). The subfamilies as-
signed to the child nodes form a disjoint partition

of F(V).

e an operator (multi-classifier) ¥y that classifies the
objects contained in classes of F(V') into the re-
spective subfamilies of its child nodes.

The leaf nodes contain objects from a single class.
Thus, there is no operator assigned to the leaf nodes.

Once such a structure is given, we need to design
operators that are able to classify objects according to
the tree. For instance, the operator assigned to the
root node must be able to separate the family of all
possible objects ({0, 1,2, 3,4, 5,6, 7}) into three subsets
{0,2,3,6}, {1,7} and {4,5}. The operator assigned to
the first child node must be able to separate objects
in {0,2,3,6} into two subfamilies, namely {0,3} and
{2,6}, and so on.

Given an image and a classification tree whose set
of objects in the root node is the set of all objects
present in the image, in order to classify those objects,
one must traverse the entire tree (except for the leaf
nodes) applying the operators. The operator of the
root node is applied on the original image. An image

61

is created for each child node, containing only those
objects classified as being of the respective subfamily.
Then, the operator of each of the child nodes is applied
on the respective images, and so on, until a leaf node
is reached. The classification result is obtained from
all final images.

The basic idea behind this technique is that clas-
sification into intermediary classes of objects should be
easier because the operator does not need to perform
complex discrimination of shapes.

4 Design of Classification Trees

To design a classification tree, a tree structure is usu-
ally fixed and then an operator for each non-leaf node
is designed using the training procedure described in
Section 2.2. Window size is empirically tested for each
node, until an acceptable result is found. If a character
receives more than a certain percentage of classification
as being of a subfamily, then it is kept in the training
images of the respective child node. Due to this, a
character may be in images of more than one of its
children. If a chiaracter is kept in a subfamily where
it should not be;.the operator assigned to split that
subfamily tends to eliminate it because it is trained to
recognize only those characters in the respective sub-
family.

A difficulty-part on designing classification trees is
to specify the family of classes assigned to each node.
In designing the classification trees, a natural choice is
to keep the objects that have similar shapes in a same
subfamily.

We propose a new technique that automatically
designs a classification tree structure. The goal is to
use small windows at the first levels of the tree and
generate intermediary groups that may be easily dis-
criminated.

4.1 Classification matrix

Let F be a family of object classes. We would like
to find a relatively small window W that is enough to
discriminate objects in different classes of F. In order
to analyze the discriminatory power of a given window
W, we introduce the classification matriz.

To build a classification matrix, for a given win-
dow W and family F, a multi-classifier based on W is
designed from images containing objects of the classes
in F, according to the description in Section 2.2. This
operator is applied on the same images, in order to
compute T'(4,7), i.e., how many pixels of a character
of class i are classified as being of a class j. The sum
of a row 7 in T indicates the total number of pixels
corresponding to objects of class i.

Figure 2 shows a classification matrix for the fam-
ily {A,B,C,D, E, F}. In this matrix we can see that

Tij)|]A B € D E F
A 20 0 0 0 0 3
B 0 239 0 43 0 0
C 0 0 172 0 0 0
D 0 0 0 38 0 0
E 0 0 o0 0 118 8
F 2 0 0 0 28 271

Figure 2: Example of a classification matrix.

210 pixels of character A are correctly classified while 3
of them are incorrectly classified as being of character
F. Two pixels of character F are classified as being of
character A and 28 pixels as of character E, over 271
correct classifications. On the other hand, no part of
characters A, E and F has been classified as B, C or
D, and no part of these letters as A, E or F. Thus,
we can say that this classifier is able to separate the
family {4, E, F'} from the family {B, C, D}. Moreover,
we can see that letter C' is never misclassified, and no
other letter is misclassified as letter C. Therefore, we
can partition the family {4, B,C,D, E} in three sub-
sets, S; = {A,E,F}, S, = {B,D} and S; = {C}.

4.2 Similarity graph

The discriminatory power of a multi-classifier can be
analyzed through its classification matrix. To analyze
the similarity between objects of distinct classes, we
define a non-directed graph G, where the vertices are
the classes (characters), and there exists an edge be-
tween two vertices ¢ and j if and only if T'(,7) > 0 or
T(j,7) > 0. This graph, induced by the classification
matrix, is the similarity graph, where similar charac-
ters are connected by an edge. In this graph, three
cases may occur:

1. The graph is completely disconnected, i.e.,
T(i,7) = 0,Vi,7, ¢ # j. This is the ideal case,
i.e., the window is enough to discriminate all the
characters.

2. The graph is totally connected, i.e., T(i,5) >
0,Yi,7, 1 # j. This indicates that the characters
contain similar shapes relative to the window W
and they may not be discriminated; window W
is too small. The greater are the values of T'(3,)
and T'(7, %), the larger is the similarity between the
characters ¢ and j.

3. The graph contains nontrivial connected sub-
graphs. In this case, the operator does not clas-

62

sify all objects correctly. It is possible, however,
to group the characters into subfamilies in such a
way that no part of a character in a subfamily re-
ceives the classification of a character in another
subfamily.

Figure 3 shows the graph obtained from the ma-
trix T in Figure 2. We can see that there is three
connected subgraphs with vertex sets Vi = {AFE},
Va = {BD} and V3 = {C}, respectively. This means

B
c
A \
\\ °
T
Figure 3: Connected subgraphs.

that an operator based on W would be able to discrim-
inate the elements in V; from the elements in V5 or Vj.
However, it may not be able to clearly discriminate
characters A, F' and E, because there is, for instance,
some “confusion” between the shapes present in 4 and
F. Our conclusion here is that the operator based on
W could be used to split the set {A,B,C,D,E,F} in

the three sub-sets.

In general, case (3) results in a family
{G1,Gs,...,G,} of disjoint subgraphs, meaning that
no part of an object in a class of G; has been classified
as being of a class in another subgraph G';. In this case,
the window is able to separate elements of different
subgraphs. Hence, if we define the sets Vy,V5,....,V,
as the subfamilies under a node, a W-operator would
be able to discriminate the elements in G into the p
subfamilies.

In practice, even if the misclassification T'(z, j) and
T(j,4) are nonzero, these values may be very small,
compared to the number of pixels corresponding to the
characters 7 and j. In other words, if only a small part
of a character is classified incorrectly, it is still possible
to assign the right classification to it.

Let N(¢) and N(j) denote the number of pixels of
all occurrences of characters ¢ and j, respectively, and
define

N(i,7) = min{N (), N(5)} . (7
Graph G is created from a slightly modified classifica-
tion matrix, which we denote 7", obtained by taking
into account a threshold that depends on N (7, 7) and

a percentage parameter 8, 0 < 8 < 100:

() :{ T(i,5), i#jand T(i,j)> 25
0, otherwise.
®)
The resulting graph will have an edge between two
classes only if the misclassification between them is
significant, i.e., if the number of misclassified pixels
between them is a considerable percentage (defined by
#) of the number of pixels belonging to those classes.
This may cause some loss in the quality of the classifier,
but it tries to prevent the use of large windows, which
are not desirable because a large amount of training
data is needed to reach a good precision. The loss in
the classification quality can be overdue by the gain in
precision.

4.3 Design procedure

To define a classification tree structure, initially a root
node is created and a graph G is built from the clas-
sification matrix 7", obtained from the whole family
of classes {0,1,...,n}, using the first window in a se-
quence of increasing windows. In our experiments we
have used the sequence 3 x 3, 5x 3,5 x5, 7x 5, ..
(Figure 4).

3x3 5x3 5x5 7x5

Figure 4: Windows sequence.

The design process incrementally builds a clas-
sification tree, according to the rules described next.
These rules depend on the case that occurs in G (listed
at the beginning of the section). If case (1) occurs, the
process ends for that node. If case (2) occurs, that
means that the window is too small, and the process
is repeated for that node, using the next window in
the sequence of windows. Depending on the shape
of the characters, it may happen that even very large
windows can not separate characters into disjoint sets.
On the other hand, it is not desirable to allow the
window to increase too much, because that will imply
very poor precision for the trained operator. To avoid
this problem, each time the window is increased in this
case, the parameter 6 is also increased by a given fac-
tor. This may imply that the discrimination quality
could be compromised. However, since this will hap-
pen to a branch of the tree, it may be insignificant

63

relative to the overall classification result. Finally, if
case (3) occurs, then the family of classes in that node
is split into subfamilies corresponding to the disjoint
subgraphs. For each subfamily it is created a child
node, and the process ends for that node. The window
to be used for the child nodes is the next one in the
sequence and the parameter 4 is not changed.

The process is iteratively repeated while there are
nodes to be processed. At the end of this process, a
tree structure with a window and a family of classes
assigned to each node is defined. Once the structure
is defined, the next step consists in training a multi-
classifier for each node. As we have seen before, each
multi-classifier is trained to separate the characters in
the family of classes assigned to it into subfamilies cor-
responding to its child nodes.

Figure 5 shows a complete classification tree, ex-
cept for the leaf nodes, designed for a character recog-
nition problem discussed in Section 6.1. Figure 6 en-
hances a branch of this tree corresponding to the sub-
family composed by characters “mrlIiLY”. A 7 x 7
window is enough to discriminate characters “m” and
“r” from the others. A larger window, 9 x 9, is enough
to recognize characters “L” and “Y”, while a 11 x9 win-
dow recognizes characters “T” and “i”. The last class,
contains three very similar characters (“1”, “I” and
“]”) and the window needed to be increased to 13 x 11.
Usually, for a window of this size, the amount of train-
ing data required for good precision is very large. In
this case, however, this problem is attenuated because
the variety of shapes to be analyzed is limited.

ABCDEFGHIJIKLMNOPQRSTUVWYZ(
abedefghijkimnopyrsiuvwayzs

0123456749

Figure 5: An example of classification tree.

5 OCR Implementation

The two main parts of the designed OCR consists of a
training and an application component. The training

13x11 11x9

Figure 6: A subtree of the classification tree.

component allows the user to train a classification tree
from samples of observed-ideal images. The applica-
tion component allows the user to apply a classification
tree.

Images need to be adequately prepared for the uti-
lization of both components. The characters need to be
segmented [6] and labeled [4] according to their natural
order of occurrence in the image, in order to generate
the correct text after the classification. The prepara-
tion process may involve some tasks such as filtering,
enhancement, conversion of images from gray level to
binary, character normalization and down sampling,
not necessarily in this order. Depending on the images
involved, the filtering protocol may vary from case to
case. The resulting image must be a gray level image
representing a binary labeled image.

Two procedures that aims to reduce the variety of
shapes are edge noise filter by stamp and anchoring [1].
The anchoring process needs information on the label-
ing of characters. Figure 7 shows a possible sequence
of steps in the preprocessing stage.

+

Stamp

300 dpi tmage Stamped Image | wnll

Anchored Image

75 dpi Chassified

Anchor Sumling Clasificasion

Figure 7: Preprocessing stages for classification.

Once the pre-processing stage is applied on the
images, one can either design a classification tree (the
tree structure and the classification operators) by using
the training component of the OCR, or apply a given
classification tree on those images using the application
component and generate the respective RTF files.

The classification is based on a previously de-
signed classification tree. The trained classifier at-

64

tributes a value to each point in the image. Thus,
a character in the image may be labeled with different
values and, therefore, we need to decide which class
label will be assigned to each character. This is done
by voting: for each character, we assign the most fre-
quent value assigned by the designed multi-classifier to
its points.

Once the characters in the image are classified,
the next step of the OCR is to create a text docu-
ment corresponding to the text contained in the im-
age. In this part of the process, the labeled image is
important to establish the order in which the charac-
ters must appear in the text. For the cases in which the
most frequent label is not clear, the respective charac-
ter may be marked by a special symbol that means
“unrecognized”. The unrecognized characters may be
later solved by spell checking procedures or by other
recognition techniques.

An OCR should also recognize structures such as
words, paragraphs, titles. OCRs may incorporate an-
other functionalities such as text segmentation, au-
tomatic text layout recognition, and others. In such
cases, there should be also a new component that will
integrate all kinds of information (character, layout,
pages, etc).

6 Experimental Results

The new methodology to design classification trees was
tested for two groups of images: a set of images ob-
tained from laser printed materials corrupted with edge
noise, and another set of images obtained from docu-
ments printed by a dot matrix printer.

6.1 Laser printer digitized images

The source images are composed of 63 different char-
acters, the letters in lower and upper cases, and the
numbers from 0 to 9. Each image is composed of
630 characters, containing exactly 10 of each charac-
ter. These images were obtained by scanning a laser
printed text at 300 dpi. Because of the good qual-
ity of these images, we added 25% of salt and pepper
noise on the external edges of the characters, in or-
der to simulate a degradation that may usually occur
in scanned text images. The external edges of an im-
age can be obtained by subtracting the image from its
dilatation by a 3 x 3 box structuring element B, i.e.,
Edge = ég(Image) — I'mage. Figure 8 shows the effect
of this noise addition.

Two stamp operators were designed from two im-
ages. These operators were applied on the images, one
after the other, and then the anchoring process fol-
lowed by a down-sampling by a factor of 4 were applied

abc

Figure 8: Characters with salt noise.

on them. Eight of these images were used for the gen-
eration of the-classification tree, using § = 1.5% and
threshold factor of 2; both experimentally determined.
The obtained classification tree is the one depicted in
Figure 5.

Figure 9 shows the result of the operator used to
discriminate the letters “E” and “F” at the node la-
beled EF in the classification tree (Figure 5). The same
region in the original image is also shown. The origi-
nal image contains other characters than “E” and “F”,
but they are not being considered when processing this
node. Almost.all points in each of the characters are
correctly classified.

01234
FEF

Figure 9: Top: classification result for a nodée. Bottom:
Same region in the original image.

The designed classification tree was tested on ten
different test images of the same type. Table 1 shows
the result of these tests, including also tests with some
commercial OCRs. Compared to these commercial
OCRs, our performance was significantly better. In
each image, from a total of 630 characters, only a small
number of them (between 7 and 13) were misclassified.

65

OCR | Accuracy
Textbridge 87.89%
Cuneiform’99 | 90.63%
Ours 98.33%

Table 1: Accuracy on the first group of images.

6.2 Dot matrix printer digitized images

Dot matrix printers generates poor quality images, be-
cause the letters are roughly formed by points. The
documents we have used are printed in a special pa-
per with a yellow background pattern increasing the
difficulty of the recognition.

A top-hat transformation, with a 7 x 7 diamond
structuring element was applied to eliminate the back-
ground pattern. The images were binarized by thresh-
olding with an small threshold value. The binary im-
ages were then filtered by a closing-opening operator
with a 5-point cross structuring element. These images
have been processed by two stamp operators, followed
by anchoring and down-sampling by a factor of 4. A
sample of a scanned gray-scale image and the respec-
tive filtered, binarized and shrank images are shown in
Fig. 10.

Four images with a total of 5040 characters in
them were used to obtain the stamp operators and to
design a classification tree. Parameters § (threshold) of
3% and threshold factor of 3 were used. The obtained
classification tree was tested on two different images
with a total of 2505 characters. The result is shown
in Table 2 together with results of a commercial OCR.
The performance of the commercial OCR on the origi-
nal gray-scale image is very poor. Thus, we also tested
it on the images filtered by a threshold followed by two
median filters and also by our filter. In this OCR, an
option “Dot matrix” was set on to process the images.
The best result of the commercial OCR, which is due

OCR | Tested image | Accuracy
Cuneiform’99 | Original gray-level 20.19%
Cuneiform’99 | Our filter 77.83%
Cuneiform’99 | Threshold + medians | 85.97%
Ours Our filter + stamping | 88.58%

Table 2: Accuracy on the second group of images.

to an external filtering, is statistically close to our re-
sult. However, our result can be improved by using
more training data, because only four training images
have been used in this experiment.)

das cinco testemunhas,
especialmente convocad

da, perante as mesmas .

das cinco testemunhas,
especialmente convocad

da,

das cinca testemunhas,

perante as mesmas

rEpecialmente convocad

.da, pErante ad meYnNER

Figure 10: From top to bottom: original, binarized,
filtered and shrank images (scale modified).

7 Conclusions

In this paper, we have presented a technique for auto-
matic design of classification trees, based on concepts
of classification matrix and similarity graph. This
method is efficient because it does not analyze all pos-
sible combinations of subfamilies for a given family of
classes. These subfamilies are automatically generated
by analyzing the similarity graph, obtained from the
classification matrix that, essentially, tells how well a
given window W discriminates the objects in different
classes.

A characteristic of our approach is that it always
tries to find the smallest window that is enough to sepa-
rate the set of objects into disjoint subsets. This allows
the same object to be analyzed at different resolutions.
Basically, at the initial classification steps, a gross sep-
aration of characters can be done by a relatively small
window. At the deepest steps of the classification pro-
cess, the window required to separate the characters is
larger, however, the variety of objects that need to be
recognized is usually very small, making classification

66

statistically easier.

The concepts introduced here have been applied
in the context of OCR design, however they may be
applied to any classification problem. The results we
have obtained for two sets of images are better than of
some commercial OCRs. Since our approach is based
on training, it is possible to design customized classi-
fiers for particular classification problems.

8 Acknowledgments

M. B. is supported by FAPESP under grant 98/15586-
9. N. W. T. is supported by FAPESP under grants
99/11147-3 and 00/10684-4.

References

[1] J. Barrera, M. Brun, R. Terada, and E. R.
Dougherty. Boosting OCR. classifier by optimal
edge noise filtering. ISMM 2000, International
Symposium on Mathematical Morphology and its
Applications to Image and Signal Processing V,
2000.

J. Barrera, E. R. Dougherty, and N. S. Tomita.
Automatic Programming of Binary Morphological
Machines by Design of Statistically Optimal Op-
erators in the Context of Computational Learning
Theory. Electronic Imaging, 6(1):54-67, January
1997.

J. Barrera, R. Terada, R. Hirata Jr, and N. S. T.
Hirata. Automatic Programming of Morphological
Machines by PAC Learning. Fundamenta Infor-
maticae, 41(1-2):229-258, January 2000.

(3]

J. Barrera, R. Terada, R. A. Lotufo, N. S. T. Hi-
rata, R. Hirata Jr., and F. A. Zampirolli. An OCR
based on Mathematical Morphology. In Nonlinear
Image Processing 1X, volume 3304 of Proceedings of
SPIE, pages 197-208, San Jose, CA, January 1998.

(4]

R. G. Casey and E. Lecolinet. A Survey of Methods
and Strategies in Character Segmentation. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 18(7):690-706, July 1996.

[6] Y. Lu. Machine Printed Character Segmentation
— An Overview. Pattern Recognition, 28(1):67-80,

1995.

S. N. Srihari, J. J. Hull, and B. Suny. Encyclopedia
of Artificial Intelligence, volume 2, chapter Char-
acter Recognition, pages 138-150. John Wiley and
Sons, Inc., 1992.

[7]

